

wen
线条

wen
线条

wen
线条

wen
线条

wen
线条

wen
线条

wen
线条

wen
线条

wen
线条

Computer Systems

A Programmer’s Perspective1

(Beta Draft)

Randal E. Bryant
David R. O’Hallaron

November 16, 2001

1Copyright c 2001, R. E. Bryant, D. R. O’Hallaron. All rights reserved.

2

Contents

Preface i

1 Introduction 1

1.1 Information is Bits in Context . 2

1.2 Programs are Translated by Other Programs into Different Forms 3

1.3 It Pays to Understand How Compilation Systems Work . 4

1.4 Processors Read and Interpret Instructions Stored in Memory. 5

1.4.1 Hardware Organization of a System . 5

1.4.2 Running thehello Program . 8

1.5 Caches Matter . 9

1.6 Storage Devices Form a Hierarchy . 10

1.7 The Operating System Manages the Hardware . 11

1.7.1 Processes .. 13

1.7.2 Threads . 14

1.7.3 Virtual Memory 14

1.7.4 Files . 15

1.8 Systems Communicate With Other Systems Using Networks 16

1.9 Summary . 18

I Program Structure and Execution 19

2 Representing and Manipulating Information 21

2.1 Information Storage . 22

2.1.1 Hexadecimal Notation . 23

2.1.2 Words . 25

3

4 CONTENTS

2.1.3 Data Sizes . 25

2.1.4 Addressing and Byte Ordering .. 26

2.1.5 Representing Strings. 33

2.1.6 Representing Code .. 33

2.1.7 Boolean Algebras and Rings . 34

2.1.8 Bit-Level Operations in C 37

2.1.9 Logical Operations in C . 39

2.1.10 Shift Operations in C . 40

2.2 Integer Representations 41

2.2.1 Integral Data Types . 41

2.2.2 Unsigned and Two’s Complement Encodings . 41

2.2.3 Conversions Between Signed and Unsigned . 45

2.2.4 Signed vs. Unsigned in C . 47

2.2.5 Expanding the Bit Representation of a Number 49

2.2.6 Truncating Numbers . 51

2.2.7 Advice on Signed vs. Unsigned . 52

2.3 Integer Arithmetic .. 53

2.3.1 Unsigned Addition .. 53

2.3.2 Two’s Complement Addition . .. 56

2.3.3 Two’s Complement Negation . 60

2.3.4 Unsigned Multiplication. 61

2.3.5 Two’s Complement Multiplication. 62

2.3.6 Multiplying by Powers of Two .. 63

2.3.7 Dividing by Powers of Two . 64

2.4 Floating Point . 66

2.4.1 Fractional Binary Numbers . 67

2.4.2 IEEE Floating-Point Representation 69

2.4.3 Example Numbers . 71

2.4.4 Rounding .. 74

2.4.5 Floating-Point Operations . 76

2.4.6 Floating Point in C . 77

2.5 Summary . 79

CONTENTS 5

3 Machine-Level Representation of C Programs 89

3.1 A Historical Perspective . 90

3.2 Program Encodings . 92

3.2.1 Machine-Level Code . 93

3.2.2 Code Examples . 94

3.2.3 A Note on Formatting . 97

3.3 Data Formats . 98

3.4 Accessing Information 99

3.4.1 Operand Specifiers . 100

3.4.2 Data Movement Instructions . 102

3.4.3 Data Movement Example . 103

3.5 Arithmetic and Logical Operations 105

3.5.1 Load Effective Address . 106

3.5.2 Unary and Binary Operations . 106

3.5.3 Shift Operations . 107

3.5.4 Discussion . 108

3.5.5 Special Arithmetic Operations .. 109

3.6 Control . 110

3.6.1 Condition Codes . .. 110

3.6.2 Accessing the Condition Codes. 111

3.6.3 Jump Instructions and their Encodings . 114

3.6.4 Translating Conditional Branches . 117

3.6.5 Loops 119

3.6.6 Switch Statements . 128

3.7 Procedures . 132

3.7.1 Stack Frame Structure . 132

3.7.2 Transferring Control. 134

3.7.3 Register Usage Conventions . 135

3.7.4 Procedure Example . 137

3.7.5 Recursive Procedures . 140

3.8 Array Allocation and Access. 142

3.8.1 Basic Principles . 143

3.8.2 Pointer Arithmetic .. 144

6 CONTENTS

3.8.3 Arrays and Loops . .. 145

3.8.4 Nested Arrays . 145

3.8.5 Fixed Size Arrays . 148

3.8.6 Dynamically Allocated Arrays . 150

3.9 Heterogeneous Data Structures . 153

3.9.1 Structures . 153

3.9.2 Unions . 156

3.10 Alignment . 160

3.11 Putting it Together: Understanding Pointers 162

3.12 Life in the Real World: Using the GDB Debugger . 165

3.13 Out-of-Bounds Memory References and Buffer Overflow 167

3.14 *Floating-Point Code . 172

3.14.1 Floating-Point Registers . 172

3.14.2 Extended-Precision Arithmetic .. 173

3.14.3 Stack Evaluation of Expressions. 176

3.14.4 Floating-Point Data Movement and Conversion Operations 179

3.14.5 Floating-Point Arithmetic Instructions . .. 181

3.14.6 Using Floating Point in Procedures . 183

3.14.7 Testing and Comparing Floating-Point Values . 184

3.15 *Embedding Assembly Code in C Programs 186

3.15.1 Basic Inline Assembly. 187

3.15.2 Extended Form ofasm . 189

3.16 Summary . 192

4 Processor Architecture 201

5 Optimizing Program Performance 203

5.1 Capabilities and Limitations of Optimizing Compilers. 204

5.2 Expressing Program Performance 207

5.3 Program Example . 209

5.4 Eliminating Loop Inefficiencies . 212

5.5 Reducing Procedure Calls . 216

5.6 Eliminating Unneeded Memory References . 218

CONTENTS 7

5.7 Understanding Modern Processors 220

5.7.1 Overall Operation . 221

5.7.2 Functional Unit Performance . 224

5.7.3 A Closer Look at Processor Operation . .. 225

5.8 Reducing Loop Overhead . 233

5.9 Converting to Pointer Code .. 238

5.10 Enhancing Parallelism . 241

5.10.1 Loop Splitting 241

5.10.2 Register Spilling . .. 245

5.10.3 Limits to Parallelism . 247

5.11 Putting it Together: Summary of Results for Optimizing Combining Code. 247

5.11.1 Floating-Point Performance Anomaly . 248

5.11.2 Changing Platforms . 249

5.12 Branch Prediction and Misprediction Penalties . .. 249

5.13 Understanding Memory Performance . 252

5.13.1 Load Latency . 253

5.13.2 Store Latency . 255

5.14 Life in the Real World: Performance Improvement Techniques 260

5.15 Identifying and Eliminating Performance Bottlenecks. 261

5.15.1 Program Profiling . 261

5.15.2 Using a Profiler to Guide Optimization . 263

5.15.3 Amdahl’s Law . 266

5.16 Summary . 267

6 The Memory Hierarchy 275

6.1 Storage Technologies. 276

6.1.1 Random-Access Memory. 276

6.1.2 Disk Storage . 285

6.1.3 Storage Technology Trends . .. 293

6.2 Locality . 295

6.2.1 Locality of References to Program Data .. 295

6.2.2 Locality of Instruction Fetches .. 297

6.2.3 Summary of Locality. 297

8 CONTENTS

6.3 The Memory Hierarchy . 298

6.3.1 Caching in the Memory Hierarchy . 301

6.3.2 Summary of Memory Hierarchy Concepts . 303

6.4 Cache Memories . 304

6.4.1 Generic Cache Memory Organization . 305

6.4.2 Direct-Mapped Caches . 306

6.4.3 Set Associative Caches . 313

6.4.4 Fully Associative Caches . 315

6.4.5 Issues with Writes .. 318

6.4.6 Instruction Caches and Unified Caches . 319

6.4.7 Performance Impact of Cache Parameters . 320

6.5 Writing Cache-friendly Code. 322

6.6 Putting it Together: The Impact of Caches on Program Performance 327

6.6.1 The Memory Mountain. 327

6.6.2 Rearranging Loops to Increase Spatial Locality 331

6.6.3 Using Blocking to Increase Temporal Locality 335

6.7 Summary . 338

II Running Programs on a System 347

7 Linking 349

7.1 Compiler Drivers . 350

7.2 Static Linking . 351

7.3 Object Files . 352

7.4 Relocatable Object Files . 353

7.5 Symbols and Symbol Tables . 354

7.6 Symbol Resolution . 357

7.6.1 How Linkers Resolve Multiply-Defined Global Symbols. 358

7.6.2 Linking with Static Libraries . 361

7.6.3 How Linkers Use Static Libraries to Resolve References 364

7.7 Relocation . 365

7.7.1 Relocation Entries .. 366

7.7.2 Relocating Symbol References . 367

CONTENTS 9

7.8 Executable Object Files . 371

7.9 Loading Executable Object Files . 372

7.10 Dynamic Linking with Shared Libraries . 374

7.11 Loading and Linking Shared Libraries from Applications 376

7.12 *Position-Independent Code (PIC) . 377

7.13 Tools for Manipulating Object Files . 381

7.14 Summary . 382

8 Exceptional Control Flow 391

8.1 Exceptions . 392

8.1.1 Exception Handling . 393

8.1.2 Classes of Exceptions. 394

8.1.3 Exceptions in Intel Processors .. 397

8.2 Processes. 398

8.2.1 Logical Control Flow . 398

8.2.2 Private Address Space . 399

8.2.3 User and Kernel Modes . 400

8.2.4 Context Switches . 401

8.3 System Calls and Error Handling . 402

8.4 Process Control . .. 403

8.4.1 Obtaining Process ID’s. 404

8.4.2 Creating and Terminating Processes 404

8.4.3 Reaping Child Processes. 409

8.4.4 Putting Processes to Sleep 414

8.4.5 Loading and Running Programs. 415

8.4.6 Usingfork andexecve to Run Programs . 418

8.5 Signals . 419

8.5.1 Signal Terminology . 423

8.5.2 Sending Signals . 423

8.5.3 Receiving Signals . .. 426

8.5.4 Signal Handling Issues . 429

8.5.5 Portable Signal Handling . 434

8.6 Nonlocal Jumps . 436

10 CONTENTS

8.7 Tools for Manipulating Processes. 441

8.8 Summary . 441

9 Measuring Program Execution Time 449

9.1 The Flow of Time on a Computer System . 450

9.1.1 Process Scheduling and Timer Interrupts. 451

9.1.2 Time from an Application Program’s Perspective 452

9.2 Measuring Time by Interval Counting .. 454

9.2.1 Operation . 456

9.2.2 Reading the Process Timers . .. 456

9.2.3 Accuracy of Process Timers . .. 457

9.3 Cycle Counters . .. 459

9.3.1 IA32 Cycle Counters. 460

9.4 Measuring Program Execution Time with Cycle Counters 460

9.4.1 The Effects of Context Switching . 462

9.4.2 Caching and Other Effects . 463

9.4.3 TheK-Best Measurement Scheme. 467

9.5 Time-of-Day Measurements. 476

9.6 Putting it Together: An Experimental Protocol . .. 478

9.7 Looking into the Future 480

9.8 Life in the Real World: An Implementation of theK-Best Measurement Scheme. 480

9.9 Summary . 481

10 Virtual Memory 485

10.1 Physical and Virtual Addressing. 486

10.2 Address Spaces . .. 487

10.3 VM as a Tool for Caching . 488

10.3.1 DRAM Cache Organization . .. 489

10.3.2 Page Tables . 489

10.3.3 Page Hits . 490

10.3.4 Page Faults . 491

10.3.5 Allocating Pages . 492

10.3.6 Locality to the Rescue Again . .. 493

CONTENTS 11

10.4 VM as a Tool for Memory Management . 493

10.4.1 Simplifying Linking . 494

10.4.2 Simplifying Sharing . 494

10.4.3 Simplifying Memory Allocation. 495

10.4.4 Simplifying Loading. 495

10.5 VM as a Tool for Memory Protection . 496

10.6 Address Translation . 497

10.6.1 Integrating Caches and VM . 500

10.6.2 Speeding up Address Translation with a TLB . 500

10.6.3 Multi-level Page Tables. 501

10.6.4 Putting it Together: End-to-end Address Translation. 504

10.7 Case Study: The Pentium/Linux Memory System. 508

10.7.1 Pentium Address Translation . 508

10.7.2 Linux Virtual Memory System .. 513

10.8 Memory Mapping . 516

10.8.1 Shared Objects Revisited . 517

10.8.2 Thefork Function Revisited . 519

10.8.3 Theexecve Function Revisited . 519

10.8.4 User-level Memory Mapping with themmapFunction 520

10.9 Dynamic Memory Allocation . 522

10.9.1 Themalloc andfree Functions . 523

10.9.2 Why Dynamic Memory Allocation? . 524

10.9.3 Allocator Requirements and Goals . 526

10.9.4 Fragmentation . 528

10.9.5 Implementation Issues . 529

10.9.6 Implicit Free Lists . 529

10.9.7 Placing Allocated Blocks . 531

10.9.8 Splitting Free Blocks. 531

10.9.9 Getting Additional Heap Memory. 532

10.9.10 Coalescing Free Blocks. 532

10.9.11 Coalescing with Boundary Tags. 533

10.9.12 Putting it Together: Implementing a Simple Allocator. 535

10.9.13 Explicit Free Lists . 543

12 CONTENTS

10.9.14 Segregated Free Lists . 544

10.10Garbage Collection . 546

10.10.1 Garbage Collector Basics . 547

10.10.2 Mark&Sweep Garbage Collectors . 548

10.10.3 Conservative Mark&Sweep for C Programs . 550

10.11Common Memory-related Bugs in C Programs . 551

10.11.1 Dereferencing Bad Pointers . 551

10.11.2 Reading Uninitialized Memory .. 551

10.11.3 Allowing Stack Buffer Overflows . 552

10.11.4 Assuming that Pointers and the Objects they Point to Are the Same Size 552

10.11.5 Making Off-by-one Errors . 553

10.11.6 Referencing a Pointer Instead of the Object it Points to 553

10.11.7 Misunderstanding Pointer Arithmetic . .. 554

10.11.8 Referencing Non-existent Variables . 554

10.11.9 Referencing Data in Free Heap Blocks . 555

10.11.10Introducing Memory Leaks 555

10.12Summary . 556

III Interaction and Communication Between Programs 561

11 Concurrent Programming with Threads 563

11.1 Basic Thread Concepts . 563

11.2 Thread Control . 566

11.2.1 Creating Threads . 567

11.2.2 Terminating Threads . 567

11.2.3 Reaping Terminated Threads . 568

11.2.4 Detaching Threads . 568

11.3 Shared Variables in Threaded Programs . 570

11.3.1 Threads Memory Model . 570

11.3.2 Mapping Variables to Memory . 570

11.3.3 Shared Variables . 572

11.4 Synchronizing Threads with Semaphores. 573

11.4.1 Sequential Consistency . 573

CONTENTS 13

11.4.2 Progress Graphs . 576

11.4.3 Protecting Shared Variables with Semaphores. 579

11.4.4 Posix Semaphores .. 580

11.4.5 Signaling With Semaphores . .. 581

11.5 Synchronizing Threads with Mutex and Condition Variables. 583

11.5.1 Mutex Variables . 583

11.5.2 Condition Variables .. 586

11.5.3 Barrier Synchronization. 587

11.5.4 Timeout Waiting . .. 588

11.6 Thread-safe and Reentrant Functions . 592

11.6.1 Reentrant Functions . 593

11.6.2 Thread-safe Library Functions . 596

11.7 Other Synchronization Errors . 596

11.7.1 Races 596

11.7.2 Deadlocks . 599

11.8 Summary . 600

12 Network Programming 605

12.1 Client-Server Programming Model . 605

12.2 Networks . 606

12.3 The Global IP Internet . 611

12.3.1 IP Addresses. 612

12.3.2 Internet Domain Names . 614

12.3.3 Internet Connections . 618

12.4 Unix file I/O . 619

12.4.1 Theread andwrite Functions . 620

12.4.2 Robust File I/O With thereadn andwriten Functions. 621

12.4.3 Robust Input of Text Lines Using thereadline Function 623

12.4.4 Thestat Function . 623

12.4.5 Thedup2 Function . 626

12.4.6 Theclose Function . 627

12.4.7 Other Unix I/O Functions . 628

12.4.8 Unix I/O vs. Standard I/O . 628

14 CONTENTS

12.5 The Sockets Interface . 629

12.5.1 Socket Address Structures . 629

12.5.2 Thesocket Function . 631

12.5.3 Theconnect Function . 631

12.5.4 Thebind Function . 633

12.5.5 Thelisten Function . 633

12.5.6 Theaccept Function . 635

12.5.7 Example Echo Client and Server . 636

12.6 Concurrent Servers . 638

12.6.1 Concurrent Servers Based on Processes .. 638

12.6.2 Concurrent Servers Based on Threads . .. 640

12.7 Web Servers . 646

12.7.1 Web Basics . 647

12.7.2 Web Content . 647

12.7.3 HTTP Transactions . 648

12.7.4 Serving Dynamic Content . 651

12.8 Putting it Together: The TINY Web Server . 652

12.9 Summary . 662

A Error handling 665

A.1 Introduction . 665

A.2 Error handling in Unix systems . 666

A.3 Error-handling wrappers . 667

A.4 The csapp.h header file . 671

A.5 The csapp.c source file . 675

B Solutions to Practice Problems 691

B.1 Intro . 691

B.2 Representing and Manipulating Information 691

B.3 Machine Level Representation of C Programs . .. 700

B.4 Processor Architecture 715

B.5 Optimizing Program Performance . 715

B.6 The Memory Hierarchy . 717

CONTENTS 15

B.7 Linking . 723

B.8 Exceptional Control Flow . 725

B.9 Measuring Program Performance. 728

B.10 Virtual Memory . 730

B.11 Concurrent Programming with Threads . 734

B.12 Network Programming . 736

16 CONTENTS

Preface

This book is for programmers who want to improve their skills by learning about what is going on “under
the hood” of a computer system. Our aim is to explain the important and enduring concepts underlying all
computer systems, and to show you the concrete ways that these ideas affect the correctness, performance,
and utility of your application programs. By studying this book, you will gain some insights that have
immediate value to you as a programmer, and others that will prepare you for advanced courses in compilers,
computer architecture, operating systems, and networking.

The book owes its origins to an introductory course that we developed at Carnegie Mellon in the Fall of
1998, called15-213: Introduction to Computer Systems. The course has been taught every semester since
then, each time to about 150 students, mostly sophomores in computer science and computer engineering.
It has become a prerequisite for all upper-level systems courses. The approach is concrete and hands-on.
Because of this, we are able to couple the lectures with programming labs and assignments that are fun and
exciting.

The response from our students and faculty colleagues was so overwhelming that we decided that others
might benefit from our approach. Hence the book. This is the Beta draft of the manuscript. The final
hard-cover version will be available from the publisher in Summer, 2002, for adoption in the Fall, 2002
term.

Assumptions About the Reader’s Background

This course is based on Intel-compatible processors (called “IA32” by Intel and “x86” colloquially) running
C programs on the Unix operating system. The text contains numerous programming examples that have
been compiled and run under Unix. We assume that you have access to such a machine, and are able to log
in and do simple things such as changing directories. Even if you don’t use Linux, much of the material
applies to other systems as well. Intel-compatible processors running one of the Windows operating systems
use the same instruction set, and support many of the same programming libraries. By getting a copy of the
Cygwin tools (http://cygwin.com/), you can set up a Unix-like shell under Windows and have an
environment very close to that provided by Unix.

We also assume that you have some familiarity with C or C++. If your only prior experience is with Java,
the transition will require more effort on your part, but we will help you. Java and C share similar syntax
and control statements. However, there are aspects of C, particularly pointers, explicit dynamic memory
allocation, and formatted I/O, that do not exist in Java. The good news is that C is a small language, and it

i

ii PREFACE

is clearly and beautifully described in the classic “K&R” text by Brian Kernighan and Dennis Ritchie [37].
Regardless of your programming background, consider K&R an essential part of your personal library.

New to C?
To help readers whose background in C programming is weak (or nonexistent), we have included these special notes
to highlight features that are especially important in C. We assume you are familiar with C++ or Java.End

Several of the early chapters in our book explore the interactions between C programs and their machine-
language counterparts. The machine language examples were all generated by the GNUGCC compiler
running on an Intel IA32 processor. We do not assume any prior experience with hardware, machine lan-
guage, or assembly-language programming.

How to Read This Book

Learning how computer systems work from a programmer’s perspective is great fun, mainly because it can
be done so actively. Whenever you learn some new thing, you can try it out right away and see the result
first hand. In fact, we believe that the only way to learn systems is todo systems, either working concrete
problems, or writing and running programs on real systems.

This theme pervades the entire book. When a new concept is introduced, it is followed in the text by one
or morePractice Problemsthat you should work immediately to test your understanding. Solutions to
the Practice Problems are at the back of the book. As you read, try to solve each problem on your own,
and then check the solution to make sure you’re on the right track. Each chapter is followed by a set of
Homework Problemsof varying difficulty. Your instructor has the solutions to the Homework Problems in
an Instructor’s Manual. Each Homework Problem is classified according to how much work it will be:

Category 1: Simple, quick problem to try out some idea in the book.

Category 2: Requires 5–15 minutes to complete, perhaps involving writing or running programs.

Category 3: A sustained problem that might require hours to complete.

Category 4: A laboratory assignment that might take one or two weeks to complete.

Each code example in the text was formatted directly, without any manual intervention, from a C program
compiled withGCC version 2.95.3, and tested on a Linux system with a 2.2.16 kernel. The programs are
available from our Web page atwww.cs.cmu.edu/˜ics .

The file names of the larger programs are documented in horizontal bars that surround the formatted code.
For example, the program

iii

code/intro/hello.c

1 #include <stdio.h>
2

3 int main()
4 {
5 printf("hello, world\n");
6 }

code/intro/hello.c

can be found in the filehello.c in directorycode/intro/. We strongly encourage you to try running
the example programs on your system as you encounter them.

There are various places in the book where we show you how to run programs on Unix systems:

unix> ./hello
hello, world
unix>

In all of our examples, the output is displayed in a roman font, and the input that you type is displayed in
an italicized font. In this particular example, the Unix shell program prints a command-line prompt and
waits for you to type something. After you type the string “./hello” and hit the return or enter
key, the shell loads and runs thehello program from the current directory. The program prints the string
“hello, world\n” and terminates. Afterwards, the shell prints another prompt and waits for the next
command. The vast majority of our examples do not depend on any particular version of Unix, and we
indicate this independence with the generic “unix>” prompt. In the rare cases where we need to make a
point about a particular version of Unix such as Linux or Solaris, we include its name in the command-line
prompt.

Finally, some sections (denoted by a “*”) contain material that you might find interesting, but that can be
skipped without any loss of continuity.

Acknowledgements

We are deeply indebted to many friends and colleagues for their thoughtful criticisms and encouragement. A
special thanks to our 15-213 students, whose infectious energy and enthusiasm spurred us on. Nick Carter
and Vinny Furia generously provided their malloc package. Chris Lee, Mathilde Pignol, and Zia Khan
identified typos in early drafts.

Guy Blelloch, Bruce Maggs, and Todd Mowry taught the course over multiple semesters, gave us encour-
agement, and helped improve the course material. Herb Derby provided early spiritual guidance and encour-
agement. Allan Fisher, Garth Gibson, Thomas Gross, Satya, Peter Steenkiste, and Hui Zhang encouraged
us to develop the course from the start. A suggestion from Garth early on got the whole ball rolling, and this
was picked up and refined with the help of a group led by Allan Fisher. Mark Stehlik and Peter Lee have
been very supportive about building this material into the undergraduate curriculum. Greg Kesden provided

iv PREFACE

helpful feedback. Greg Ganger and Jiri Schindler graciously provided some disk drive characterizations and
answered our questions on modern disks. Tom Stricker showed us the memory mountain.

A special group of students, Khalil Amiri, Angela Demke Brown, Chris Colohan, Jason Crawford, Peter
Dinda, Julio Lopez, Bruce Lowekamp, Jeff Pierce, Sanjay Rao, Blake Scholl, Greg Steffan, Tiankai Tu, and
Kip Walker, were instrumental in helping us develop the content of the course.

In particular, Chris Colohan established a fun (and funny) tone that persists to this day, and invented the
legendary “binary bomb” that has proven to be a great tool for teaching machine code and debugging
concepts.

Chris Bauer, Alan Cox, David Daugherty, Peter Dinda, Sandhya Dwarkadis, John Greiner, Bruce Jacob,
Barry Johnson, Don Heller, Bruce Lowekamp, Greg Morrisett, Brian Noble, Bobbie Othmer, Bill Pugh,
Michael Scott, Mark Smotherman, Greg Steffan, and Bob Wier took time that they didn’t have to read and
advise us on early drafts of the book. A very special thanks to Peter Dinda (Northwestern University), John
Greiner (Rice University), Bruce Lowekamp (William & Mary), Bobbie Othmer (University of Minnesota),
Michael Scott (University of Rochester), and Bob Wier (Rocky Mountain College) for class testing the Beta
version. A special thanks to their students as well!

Finally, we would like to thank our colleagues at Prentice Hall. Eric Frank (Editor) and Harold Stone
(Consulting Editor) have been unflagging in their support and vision. Jerry Ralya (Development Editor) has
provided sharp insights.

Thank you all.

Randy Bryant
Dave O’Hallaron

Pittsburgh, PA
Aug 1, 2001

Chapter 1

Introduction

A computer systemis a collection of hardware and software components that work together to run computer
programs. Specific implementations of systems change over time, but the underlying concepts do not. All
systems have similar hardware and software components that perform similar functions. This book is written
for programmers who want to improve at their craft by understanding how these components work and how
they affect the correctness and performance of their programs.

In their classic text on the C programming language [37], Kernighan and Ritchie introduce readers to C
using thehello program shown in Figure 1.1.

code/intro/hello.c

1 #include <stdio.h>
2

3 int main()
4 {
5 printf("hello, world\n");
6 }

code/intro/hello.c

Figure 1.1:The hello program.

Although hello is a very simple program, every major part of the system must work in concert in order
for it to run to completion. In a sense, the goal of this book is to help you understand what happens and
why, when you runhello on your system.

We will begin our study of systems by tracing the lifetime of thehello program, from the time it is
created by a programmer, until it runs on a system, prints its simple message, and terminates. As we follow
the lifetime of the program, we will briefly introduce the key concepts, terminology, and components that
come into play. Later chapters will expand on these ideas.

1

2 CHAPTER 1. INTRODUCTION

1.1 Information is Bits in Context

Our hello program begins life as asource program(or source file) that the programmer creates with an
editor and saves in a text file calledhello.c. The source program is a sequence of bits, each with a value
of 0 or 1, organized in 8-bit chunks calledbytes. Each byte represents some text character in the program.

Most modern systems represent text characters using the ASCII standard that represents each character with
a unique byte-sized integer value. For example, Figure 1.2 shows the ASCII representation of thehello.c
program.

i n c l u d e <sp> < s t d i o .
35 105 110 99 108 117 100 101 32 60 115 116 100 105 111 46

h > \n \n i n t <sp> m a i n () \n {
104 62 10 10 105 110 116 32 109 97 105 110 40 41 10 123

\n <sp> <sp> <sp> <sp> p r i n t f (" h e l
10 32 32 32 32 112 114 105 110 116 102 40 34 104 101 108

l o , <sp> w o r l d \ n ") ; \n }
108 111 44 32 119 111 114 108 100 92 110 34 41 59 10 125

Figure 1.2:The ASCII text representation of hello.c.

The hello.c program is stored in a file as a sequence of bytes. Each byte has an integer value that
corresponds to some character. For example, the first byte has the integer value 35, which corresponds to
the character ’#’. The second byte has the integer value 105, which corresponds to the character ’i ’, and so
on. Notice that each text line is terminated by the invisiblenewlinecharacter ’\n’, which is represented by
the integer value 10. Files such ashello.c that consist exclusively of ASCII characters are known astext
files. All other files are known asbinary files.

The representation ofhello.c illustrates a fundamental idea: All information in a system — including
disk files, programs stored in memory, user data stored in memory, and data transferred across a network
— is represented as a bunch of bits. The only thing that distinguishes different data objects is the context
in which we view them. For example, in different contexts, the same sequence of bytes might represent an
integer, floating point number, character string, or machine instruction. This idea is explored in detail in
Chapter 2.

Aside: The C programming language.
C was developed in 1969 to 1973 by Dennis Ritchie of Bell Laboratories. The American National Standards Institute
(ANSI) ratified the ANSI C standard in 1989. The standard defines the C language and a set of library functions
known as theC standard library. Kernighan and Ritchie describe ANSI C in their classic book, which is known
affectionately as “K&R” [37].

In Ritchie’s words [60], C is “quirky, flawed, and an enormous success.” So why the success?

� C was closely tied with the Unix operating system.C was developed from the beginning as the system
programming language for Unix. Most of the Unix kernel, and all of its supporting tools and libraries, were
written in C. As Unix became popular in universities in the late 1970s and early 1980s, many people were

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

1.2. PROGRAMS ARE TRANSLATED BY OTHER PROGRAMS INTO DIFFERENT FORMS 3

exposed to C and found that they liked it. Since Unix was written almost entirely in C, it could be easily
ported to new machines, which created an even wider audience for both C and Unix.

� C is a small, simple language.The design was controlled by a single person, rather than a committee, and
the result was a clean, consistent design with little baggage. The K&R book describes the complete language
and standard library, with numerous examples and exercises, in only 261 pages. The simplicity of C made it
relatively easy to learn and to port to different computers.

� C was designed for a practical purpose.C was designed to implement the Unix operating system. Later,
other people found that they could write the programs they wanted, without the language getting in the way.

C is the language of choice for system-level programming, and there is a huge installed based of application-level
programs as well. However, it is not perfect for all programmers and all situations. C pointers are a common source
of confusion and programming errors. C also lacks explicit support for useful abstractions such as classes and
objects. Newer languages such as C++ and Java address these issues for application-level programs.End Aside.

1.2 Programs are Translated by Other Programs into Different Forms

Thehello program begins life as a high-level C program because it can be read and understand by human
beings in that form. However, in order to runhello.c on the system, the individual C statements must be
translated by other programs into a sequence of low-levelmachine-languageinstructions. These instructions
are then packaged in a form called anexecutable object program, and stored as a binary disk file. Object
programs are also referred to asexecutable object files.

On a Unix system, the translation from source file to object file is performed by acompiler driver:

unix> gcc -o hello hello.c

Here, theGCC compiler driver reads the source filehello.c and translates it into an executable object file
hello. The translation is performed in the sequence of four phases shown in Figure 1.3. The programs
that perform the four phases (preprocessor, compiler, assembler, andlinker) are known collectively as the
compilation system.

pre-
processor

(cpp)

hello.i compiler
(cc1)

hello.s assembler
(as)

hello.o linker
(ld)

hellohello.c

source
program

(text)

modified
source

program
(text)

assembly
program

(text)

relocatable
object

programs
(binary)

executable
object

program
(binary)

printf.o

Figure 1.3:The compilation system.

� Preprocessing phase.The preprocessor (cpp) modifies the original C program according to directives
that begin with the# character. For example, the#include <stdio.h> command in line 1 of
hello.c tells the preprocessor to read the contents of the system header filestdio.h and insert it
directly into the program text. The result is another C program, typically with the.i suffix.

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

4 CHAPTER 1. INTRODUCTION

� Compilation phase.The compiler (cc1) translates the text filehello.i into the text filehello.s,
which contains anassembly-language program. Each statement in an assembly-language program
exactly describes one low-level machine-language instruction in a standard text form. Assembly
language is useful because it provides a common output language for different compilers for different
high-level languages. For example, C compilers and Fortran compilers both generate output files in
the same assembly language.

� Assembly phase.Next, the assembler (as) translateshello.s into machine-language instructions,
packages them in a form known as arelocatable object program, and stores the result in the object
file hello.o. The hello.o file is a binary file whose bytes encode machine language instructions
rather than characters. If we were to viewhello.o with a text editor, it would appear to be gibberish.

� Linking phase.Notice that ourhello program calls theprintf function, which is part of thestan-
dard C library provided by every C compiler. Theprintf function resides in a separate precom-
piled object file calledprintf.o, which must somehow be merged with our hello.o program.
The linker (ld) handles this merging. The result is thehello file, which is anexecutable object file
(or simplyexecutable) that is ready to be loaded into memory and executed by the system.

Aside: The GNU project.
GCC is one of many useful tools developed by the GNU (GNU’s Not Unix) project. The GNU project is a tax-
exempt charity started by Richard Stallman in 1984, with the ambitious goal of developing a complete Unix-like
system whose source code is unencumbered by restrictions on how it can be modified or distributed. As of 2002,
the GNU project has developed an environment with all the major components of a Unix operating system, except
for the kernel, which was developed separately by the Linux project. The GNU environment includes theEMACS

editor,GCC compiler,GDB debugger, assembler, linker, utilities for manipulating binaries, and many others.

The GNU project is a remarkable achievement, and yet it is often overlooked. The modern open source movement
(commonly associated with Linux) owes its intellectual origins to the GNU project’s notion offree software. Further,
Linux owes much of its popularity to the GNU tools, which provide the environment for the Linux kernel.End
Aside.

1.3 It Pays to Understand How Compilation Systems Work

For simple programs such ashello.c, we can rely on the compilation system to produce correct and
efficient machine code. However, there are some important reasons why programmers need to understand
how compilation systems work:

� Optimizing program performance.Modern compilers are sophisticated tools that usually produce
good code. As programmers, we do not need to know the inner workings of the compiler in order
to write efficient code. However, in order to make good coding decisions in our C programs, we
do need a basic understanding of assembly language and how the compiler translates different C
statements into assembly language. For example, is aswitch statement always more efficient than
a sequence ofif-then-else statements? Just how expensive is a function call? Is awhile loop
more efficient than ado loop? Are pointer references more efficient than array indexes? Why does
our loop run so much faster if we sum into a local variable instead of an argument that is passed by
reference? Why do two functionally equivalent loops have such different running times?

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

1.4. PROCESSORS READ AND INTERPRET INSTRUCTIONS STORED IN MEMORY 5

In Chapter 3, we will introduce the Intel IA32 machine language and describe how compilers translate
different C constructs into that language. In Chapter 5 we will learn how to tune the performance of
our C programs by making simple transformations to the C code that help the compiler do its job. And
in Chapter 6 we will learn about the hierarchical nature of the memory system, how C compilers store
data arrays in memory, and how our C programs can exploit this knowledge to run more efficiently.

� Understanding link-time errors.In our experience, some of the most perplexing programming errors
are related to the operation of the linker, especially when are trying to build large software systems.
For example, what does it mean when the linker reports that it cannot resolve a reference? What is
the difference between a static variable and a global variable? What happens if we define two global
variables in different C files with the same name? What is the difference between a static library and
a dynamic library? Why does it matter what order we list libraries on the command line? And scariest
of all, why do some linker-related errors not appear until run-time? We will learn the answers to these
kinds of questions in Chapter 7

� Avoiding security holes.For many years now,buffer overflow bugshave accounted for the majority of
security holes in network and Internet servers. These bugs exist because too many programmers are
ignorant of the stack discipline that compilers use to generate code for functions. We will describe
the stack discipline and buffer overflow bugs in Chapter 3 as part of our study of assembly language.

1.4 Processors Read and Interpret Instructions Stored in Memory

At this point, ourhello.c source program has been translated by the compilation system into an exe-
cutable object file calledhello that is stored on disk. To run the executable on a Unix system, we type its
name to an application program known as ashell:

unix> ./hello
hello, world
unix>

The shell is a command-line interpreter that prints a prompt, waits for you to type a command line, and
then performs the command. If the first word of the command line does not correspond to a built-in shell
command, then the shell assumes that it is the name of an executable file that it should load and run. So
in this case, the shell loads and runs thehello program and then waits for it to terminate. Thehello
program prints its message to the screen and then terminates. The shell then prints a prompt and waits for
the next input command line.

1.4.1 Hardware Organization of a System

At a high level, here is what happened in the system after you typedhello to the shell. Figure 1.4 shows
the hardware organization of a typical system. This particular picture is modeled after the family of Intel
Pentium systems, but all systems have a similar look and feel.

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

yzw
高亮

6 CHAPTER 1. INTRODUCTION

main
memory

I/O
bridge

Memory Interface

ALU

register file

CPU

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard display

disk

I/O bus Expansion slots for
other devices such
as network adapters.

hello executable
stored on disk

PC

Figure 1.4: Hardware organization of a typical system. CPU: Central Processing Unit, ALU: Arith-
metic/Logic Unit, PC: Program counter, USB: Universal Serial Bus.

Buses

Running throughout the system is a collection of electrical conduits calledbusesthat carry bytes of infor-
mation back and forth between the components. Buses are typically designed to transfer fixed-sized chunks
of bytes known aswords. The number of bytes in a word (theword size) is a fundamental system parameter
that varies across systems. For example, Intel Pentium systems have a word size of 4 bytes, while server-
class systems such as Intel Itaniums and Sun SPARCS have word sizes of 8 bytes. Smaller systems that
are used as embedded controllers in automobiles and factories can have word sizes of 1 or 2 bytes. For
simplicity, we will assume a word size of 4 bytes, and we will assume that buses transfer only one word at
a time.

I/O devices

Input/output (I/O) devices are the system’s connection to the external world. Our example system has four
I/O devices: a keyboard and mouse for user input, a display for user output, and a disk drive (or simply disk)
for long-term storage of data and programs. Initially, the executablehello program resides on the disk.

Each I/O device is connected to the I/O bus by either acontroller or anadapter. The distinction between the
two is mainly one of packaging. Controllers are chip sets in the device itself or on the system’s main printed
circuit board (often called themotherboard). An adapter is a card that plugs into a slot on the motherboard.
Regardless, the purpose of each is to transfer information back and forth between the I/O bus and an I/O
device.

Chapter 6 has more to say about how I/O devices such as disks work. And in Chapter 12, you will learn how
to use the Unix I/O interface to access devices from your application programs. We focus on the especially

1.4. PROCESSORS READ AND INTERPRET INSTRUCTIONS STORED IN MEMORY 7

interesting class of devices known as networks, but the techniques generalize to other kinds of devices as
well.

Main memory

The main memoryis a temporary storage device that holds both a program and the data it manipulates
while the processor is executing the program. Physically, main memory consists of a collection ofDynamic
Random Access Memory (DRAM)chips. Logically, memory is organized as a linear array of bytes, each
with its own unique address (array index) starting at zero. In general, each of the machine instructions that
constitute a program can consist of a variable number of bytes. The sizes of data items that correspond to
C program variables vary according to type. For example, on an Intel machine running Linux, data of type
short requires two bytes, typesint, float, and long four bytes, and typedouble eight bytes.

Chapter 6 has more to say about how memory technologies such as DRAM chips work, and how they are
combined to form main memory.

Processor

Thecentral processing unit(CPU), or simplyprocessor, is the engine that interprets (orexecutes) instruc-
tions stored in main memory. At its core is a word-sized storage device (orregister) called the program
counter (PC). At any point in time, the PC points at (contains the address of) some machine-language
instruction in main memory.1

From the time that power is applied to the system, until the time that the power is shut off, the processor
blindly and repeatedly performs the same basic task, over and over and over: It reads the instruction from
memory pointed at by the program counter (PC), interprets the bits in the instruction, performs some simple
operationdictated by the instruction, and then updates the PC to point to thenextinstruction, which may or
may not be contiguous in memory to the instruction that was just executed.

There are only a few of these simple operations, and they revolve around main memory, theregister file, and
the arithmetic/logic unit(ALU). The register file is a small storage device that consists of a collection of
word-sized registers, each with its own unique name. The ALU computes new data and address values. Here
are some examples of the simple operations that the CPU might carry out at the request of an instruction:

� Load: Copy a byte or a word from main memory into a register, overwriting the previous contents of
the register.

� Store: Copy the a byte or a word from a register to a location in main memory, overwriting the
previous contents of that location.

� Update:Copy the contents of two registers to the ALU, which adds the two words together and stores
the result in a register, overwriting the previous contents of that register.

� I/O Read:Copy a byte or a word from an I/O device into a register.
1PC is also a commonly-used acronym for “Personal Computer”. However, the distinction between the two is always clear from

the context.

8 CHAPTER 1. INTRODUCTION

� I/O Write: Copy a byte or a word from a register to an I/O device.

� Jump: Extract a word from the instruction itself and copy that word into the program counter (PC),
overwriting the previous value of the PC.

Chapter 4 has much more to say about how processors work.

1.4.2 Running thehello Program

Given this simple view of a system’s hardware organization and operation, we can begin to understand what
happens when we run our example program. We must omit a lot of details here that will be filled in later,
but for now we will be content with the big picture.

Initially, the shell program is executing its instructions, waiting for us to type a command. As we type the
charactershello at the keyboard, the shell program reads each one into a register, and then stores it in
memory, as shown in Figure 1.5.

main
memory

I/O
bridge

Memory Interface

ALU

register file

CPU

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard display

disk

I/O bus Expansion slots for
other devices such
as network adapters.

PC

"hello"

user
types

"hello"

Figure 1.5:Reading thehello command from the keyboard.

When we hit theenter key on the keyboard, the shell knows that we have finished typing the command.
The shell then loads the executablehello file by executing a sequence of instructions that copies the code
and data in thehello object file from disk to main memory. The data include the string of characters
”hello, world\n” that will eventually be printed out.

Using a technique known asdirect memory access(DMA) (discussed in Chapter 6), the data travels directly
from disk to main memory, without passing through the processor. This step is shown in Figure 1.6.

Once the code and data in thehello object file are loaded into memory, the processor begins executing
the machine-language instructions in thehello program’smain routine. These instruction copy the bytes

1.5. CACHES MATTER 9

main
memory

I/O
bridge

Memory Interface

ALU

register file

CPU

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard display

disk

I/O bus Expansion slots for
other devices such
as network adapters.

hello executable
stored on disk

PC

hello code

"hello,world\n"

Figure 1.6:Loading the executable from disk into main memory.

in the ”hello, world\n” string from memory to the register file, and from there to the display device,
where they are displayed on the screen. This step is shown in Figure 1.7.

1.5 Caches Matter

An important lesson from this simple example is that a system spends a lot time moving information from
one place to another. The machine instructions in thehello program are originally stored on disk. When
the program is loaded, they are copied to main memory. When the processor runs the programs, they are
copied from main memory into the processor. Similarly, the data string ”hello,world\n”, originally
on disk, is copied to main memory, and then copied from main memory to the display device. From a
programmer’s perspective, much of this copying is overhead that slows down the “real work” of the program.
Thus, a major goal for system designers is make these copy operations run as fast as possible.

Because of physical laws, larger storage devices are slower than smaller storage devices. And faster devices
are more expensive to build than their slower counterparts. For example, the disk drive on a typical system
might be 100 times larger than the main memory, but it might take the processor 10,000,000 times longer to
read a word from disk than from memory.

Similarly, a typical register file stores only a few hundred of bytes of information, as opposed to millions
of bytes in the main memory. However, the processor can read data from the register file almost 100 times
faster than from memory. Even more troublesome, as semiconductor technology progresses over the years,
thisprocessor-memory gapcontinues to increase. It is easier and cheaper to make processors run faster than
it is to make main memory run faster.

To deal with the processor-memory gap, system designers include smaller faster storage devices called
cachesthat serve as temporary staging areas for information that the processor is likely to need in the near

10 CHAPTER 1. INTRODUCTION

main
memory

I/O
bridge

Memory Interface

ALU

register file

CPU

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard display

disk

I/O bus Expansion slots for
other devices such
as network adapters.

hello executable
stored on disk

PC

hello code

"hello,world\n"

"hello,world\n"

Figure 1.7:Writing the output string from memory to the display.

future. Figure 1.8 shows the caches in a typical system. AnL1 cacheon the processor chip holds tens of

main
memory
(DRAM)

memory
bridge

memory interfaceL2 cache

ALU

register file

CPU chip

cache bus system bus memory bus

L1
cache

Figure 1.8:Caches.

thousands of bytes and can be accessed nearly as fast as the register file. A largerL2 cachewith hundreds
of thousands to millions of bytes is connected to the processor by a special bus. It might take 5 times longer
for the process to access the L2 cache than the L1 cache, but this is still 5 to 10 times faster than accessing
the main memory. The L1 and L2 caches are implemented with a hardware technology known asStatic
Random Access Memory(SRAM).

One of the most important lessons in this book is that application programmers who are aware of caches can
exploit them to improve the performance of their programs by an order of magnitude. We will learn more
about these important devices and how to exploit them in Chapter 6.

1.6 Storage Devices Form a Hierarchy

This notion of inserting a smaller, faster storage device (e.g. an SRAM cache) between the processor and
a larger slower device (e.g., main memory) turns out to be a general idea. In fact, the storage devices in

1.7. THE OPERATING SYSTEM MANAGES THE HARDWARE 11

every computer system are organized as thememory hierarchyshown in Figure 1.9. As we move from the

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks
on remote network
servers.

Main memory holds disk
blocks retrieved from local
disks.

L2 cache holds cache lines
retrieved from memory.

CPU registers hold words
retrieved from cache
memory.

off-chip L2
cache (SRAM)

L1 cache holds cache lines
retrieved from memory.

L0:

L1:

L2:

L3:

L4:

L5:

Figure 1.9:The memory hierarchy.

top of the hierarchy to the bottom, the devices become slower, larger, and less costly per byte. The register
file occupies the top level in the hierarchy, which is known as level 0 or L0. The L1 cache occupies level 1
(hence the term L1). The L2 cache occupies level 2. Main memory occupies level 3, and so on.

The main idea of a memory hierarchy is that storage at one level serves as a cache for storage at the next
lower level. Thus, the register file is a cache for the L1 cache, which is a cache for the L2 cache, which is a
cache for the main memory, which is a cache for the disk. On some networked system with distributed file
systems, the local disk serves as a cache for data stored on the disks of other systems.

Just as programmers can exploit knowledge of the L1 and L2 caches to improve performance, programmers
can exploit their understanding of the entire memory hierarchy. Chapter 6 will have much more to say about
this.

1.7 The Operating System Manages the Hardware

Back to ourhello example. When the shell loaded and ran thehello program, and when thehello
program printed its message, neither program accessed the keyboard, display, disk, or main memory directly.
Rather, they relied on the services provided by theoperating system. We can think of the operating system
as a layer of software interposed between the application program and the hardware, as shown in Figure 1.10.
All attempts by an application program to manipulate the hardware must go through the operating system.

The operating system has two primary purposes: (1) To protect the hardware from misuse by runaway
applications, and (2) To provide applications with simple and uniform mechanisms for manipulating com-
plicated and often wildly different low-level hardware devices. The operating system achieves both goals

12 CHAPTER 1. INTRODUCTION

application programs

processor main memory I/O devices

operating system
software

hardware

Figure 1.10:Layered view of a computer system.

via the fundamental abstractions shown in Figure 1.11:processes, virtual memory, andfiles. As this figure

processor main memory I/O devices

processes

files

virtual memory

Figure 1.11:Abstractions provided by an operating system.

suggests, files are abstractions for I/O devices. Virtual memory is an abstraction for both the main memory
and disk I/O devices. And processes are abstractions for the processor, main memory, and I/O devices. We
will discuss each in turn.

Aside: Unix and Posix.
The 1960s was an era of huge, complex operating systems, such as IBM’s OS/360 and Honeywell’s Multics systems.
While OS/360 was one of the most successful software projects in history, Multics dragged on for years and never
achieved wide-scale use. Bell Laboratories was an original partner in the Multics project, but dropped out in 1969
because of concern over the complexity of the project and the lack of progress. In reaction to their unpleasant
Multics experience, a group of Bell Labs researchers — Ken Thompson, Dennis Ritchie, Doug McIlroy, and Joe
Ossanna — began work in 1969 on a simpler operating system for a DEC PDP-7 computer, written entirely in
machine language. Many of the ideas in the new system, such as the hierarchical file system and the notion of a
shell as a user-level process, were borrowed from Multics, but implemented in a smaller, simpler package. In 1970,
Brian Kernighan dubbed the new system “Unix” as a pun on the complexity of “Multics.” The kernel was rewritten
in C in 1973, and Unix was announced to the outside world in 1974 [61].

Because Bell Labs made the source code available to schools with generous terms, Unix developed a large following
at universities. The most influential work was done at the University of California at Berkeley in the late 1970s and
early 1980s, with Berkeley researchers adding virtual memory and the Internet protocols in a series of releases called
Unix 4.xBSD (Berkeley Software Distribution). Concurrently, Bell Labs was releasing their own versions, which
become known as System V Unix. Versions from other vendors, such as the Sun Microsystems Solaris system, were
derived from these original BSD and System V versions.

Trouble arose in the mid 1980s as Unix vendors tried to differentiate themselves by adding new and often incom-
patible features. To combat this trend, IEEE (Institute for Electrical and Electronics Engineers) sponsored an effort
to standardize Unix, later dubbed “Posix” by Richard Stallman. The result was a family of standards, known as
the Posix standards, that cover such issues as the C language interface for Unix system calls, shell programs and
utilities, threads, and network programming. As more systems comply more fully with the Posix standards, the
differences between Unix version are gradually disappearing.End Aside.

1.7. THE OPERATING SYSTEM MANAGES THE HARDWARE 13

1.7.1 Processes

When a program such ashello runs on a modern system, the operating system provides the illusion that
the program is the only one running on the system. The program appears to have exclusive use of both the
processor, main memory, and I/O devices. The processor appears to execute the instructions in the program,
one after the other, without interruption. And the code and data of the program appear to be the only objects
in the system’s memory. These illusions are provided by the notion of a process, one of the most important
and successful ideas in computer science.

A processis the operating system’s abstraction for a running program. Multiple processes can run concur-
rently on the same system, and each process appears to have exclusive use of the hardware. Byconcurrently,
we mean that the instructions of one process are interleaved with the instructions of another process. The
operating system performs this interleaving with a mechanism known ascontext switching.

The operating system keeps track of all the state information that the process needs in order to run. This
state, which is known as thecontext, includes information such as the current values of the PC, the register
file, and the contents of main memory. At any point in time, exactly one process is running on the system.
When the operating system decides to transfer control from the current process to a some new process, it
performs acontext switchby saving the context of the current process, restoring the context of the new
process, and then passing control to the new process. The new process picks up exactly where it left off.
Figure 1.12 shows the basic idea for our examplehello scenario.

shell
process

hello
process

application code

Time

context
switch

context
switch

OS code

application code

OS code

application code

Figure 1.12:Process context switching.

There are two concurrent processes in our example scenario: the shell process and thehello process.
Initially, the shell process is running alone, waiting for input on the command line. When we ask it to run
the hello program, the shell carries out our request by invoking a special function known as asystem
call that pass control to the operating system. The operating system saves the shell’s context, creates a new
hello process and its context, and then passes control to the newhello process. Afterhello terminates,
the operating system restores the context of the shell process and passes control back to it, where it waits
for the next command line input.

Implementing the process abstraction requires close cooperation between both the low-level hardware and
the operating system software. We will explore how this works, and how applications can create and control
their own processes, in Chapter 8.

One of the implications of the process abstraction is that by interleaving different processes, it distorts

14 CHAPTER 1. INTRODUCTION

the notion of time, making it difficult for programmers to obtain accurate and repeatable measurements of
running time. Chapter 9 discusses the various notions of time in a modern system and describes techniques
for obtaining accurate measurements.

1.7.2 Threads

Although we normally think of a process as having a single control flow, in modern system a process can
actually consist of multiple execution units, calledthreads, each running in the context of the process and
sharing the same code and global data.

Threads are an increasingly important programming model because of the requirement for concurrency in
network servers, because it is easier to share data between multiple threads than between multiple pro-
cesses, and because threads are typically more efficient than processes. We will learn the basic concepts of
threaded programs in Chapter 11, and we will learn how to build concurrent network servers with threads in
Chapter 12.

1.7.3 Virtual Memory

Virtual memoryis an abstraction that provides each process with the illusion that it has exclusive use of the
main memory. Each process has the same uniform view of memory, which is known as itsvirtual address
space. The virtual address space for Linux processes is shown in Figure 1.13 (Other Unix systems use a
similar layout). In Linux, the topmost 1/4 of the address space is reserved for code and data in the operating
system that is common to all processes. The bottommost 3/4 of the address space holds the code and data
defined by the user’s process. Note that addresses in the figure increase from bottom to the top.

The virtual address space seen by each process consists of a number of well-defined areas, each with a
specific purpose. We will learn more about these areas later in the book, but it will be helpful to look briefly
at each, starting with the lowest addresses and working our way up:

� Program code and data.Code begins at the same fixed address, followed by data locations that
correspond to global C variables. The code and data areas are initialized directly from the contents of
an executable object file, in our case thehello executable. We will learn more about this part of the
address space when we study linking and loading in Chapter 7.

� Heap.The code and data areas are followed immediately by the run-timeheap. Unlike the code and
data areas, which are fixed in size once the process begins running, the heap expands and contracts
dynamically at runtime as a result of calls to C standard library routines such asmalloc andfree.
We will study heaps in detail when we learn about managing virtual memory in Chapter 10.

� Shared libraries.Near the middle of the address space is an area that holds the code and data for
shared librariessuch as the C standard library and the math library. The notion of a shared library
is a powerful, but somewhat difficult concept. We will learn how they work when we study dynamic
linking in Chapter 7.

� Stack. At the top of the user’s virtual address space is theuser stackthat the compiler uses to im-
plement function calls. Like the heap, the user stack expands and contracts dynamically during the

1.7. THE OPERATING SYSTEM MANAGES THE HARDWARE 15

kernel virtual memory

memory mapped region for
shared libraries

run-time heap
(created at runtime by malloc)

user stack
(created at runtime)

unused
0

memory
invisible to
user code0xc0000000

0x08048000

0x40000000

read/write data

read-only code and data

loaded from the
hello executable file

printf() function

0xffffffff

Figure 1.13:Linux process virtual address space.

execution of the program. In particular, each time we call a function, the stack grows. Each time we
return from a function, it contracts. We will learn how the compiler uses the stack in Chapter 3.

� Kernel virtual memory. Thekernel is the part of the operating system that is always resident in
memory. The top 1/4 of the address space is reserved for the kernel. Application programs are not
allowed to read or write the contents of this area or to directly call functions defined in the kernel
code.

For virtual memory to work, a sophisticated interaction is required between the hardware and the operating
system software, including a hardware translation of every address generated by the processor. The basic
idea is to store the contents of a process’s virtual memory on disk, and then use the main memory as a cache
for the disk. Chapter 10 explains how this works and why it is so important to the operation of modern
systems.

1.7.4 Files

A Unix file is a sequence of bytes, nothing more and nothing less. Every I/O device, including disks,
keyboards, displays, and even networks, is modeled as a file. All input and output in the system is performed
by reading and writing files, using a set of operating system functions known assystem calls.

This simple and elegant notion of a file is nonetheless very powerful because it provides applications with
a uniform view of all of the varied I/O devices that might be contained in the system. For example, appli-
cation programmers who manipulate the contents of a disk file are blissfully unaware of the specific disk
technology. Further, the same program will run on different systems that use different disk technologies.

16 CHAPTER 1. INTRODUCTION

Aside: The Linux project.
In August, 1991, a Finnish graduate student named Linus Torvalds made a modest posting announcing a new
Unix-like operating system kernel:

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: What would you like to see most in minix?
Summary: small poll for my new operating system
Date: 25 Aug 91 20:57:08 GMT

Hello everybody out there using minix -
I’m doing a (free) operating system (just a hobby, won’t be big and
professional like gnu) for 386(486) AT clones. This has been brewing
since April, and is starting to get ready. I’d like any feedback on
things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implies that I’ll get something practical within a few months, and
I’d like to know what features most people would want. Any suggestions
are welcome, but I won’t promise I’ll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

The rest, as they say, is history. Linux has evolved into a technical and cultural phenomenon. By combining forces
with the GNU project, the Linux project has developed a complete, Posix-compliant version of the Unix operating
system, including the kernel and all of the supporting infrastructure. Linux is available on a wide array of computers,
from hand-held devices to mainframe computers. And it has renewed interest in the idea of open source software
pioneered by the GNU project in the 1980s. We believe that a number of factors have contributed to the popularity
of GNU/Linux systems:

� Linux is relatively small.With about one million (106) lines of source code, the Linux kernel is significantly
smaller than comparable commercial operating systems. We recently saw a version of Linux running on a
wristwatch!

� Linux is robust.The code development model for Linux is unique, and has resulted in a surprisingly robust
system. The model consists of (1) a large set of programmers distributed around the world who update their
local copies of the kernel source code, and (2) a system integrator (Linus) who decides which of these updates
will become part of the official release. The model works because quality control is maintained by a talented
programmer who understands everything about the system. It also results in quicker bug fixes because the
pool of distributed programmers is so large.

� Linux is portable. Since Linux and the GNU tools are written in C, Linux can be ported to new systems
without extensive code modifications.

� Linux is open-source.Linux is open source, which means that it can be down-loaded, modified, repackaged,
and redistributed without restriction, gratis or for a fee, as long as the new sources are included with the
distribution. This is different from other Unix versions, which are encumbered with software licenses that
restrict software redistributions that might add value and make the system easier to use and install.

End Aside.

1.8 Systems Communicate With Other Systems Using Networks

Up to this point in our tour of systems, we have treated a system as an isolated collection of hardware
and software. In practice, modern systems are often linked to other systems by networks. From the point of

1.8. SYSTEMS COMMUNICATE WITH OTHER SYSTEMS USING NETWORKS 17

view of an individual system, the network can be viewed as just another I/O device, as shown in Figure 1.14.
When the system copies a sequence of bytes from main memory to the network adapter, the data flows across

main
memory

I/O
bridge

memory interface

ALU

register file

CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

Expansion slots

network
adapter

network

PC

Figure 1.14:A network is another I/O device.

the network to another machine, instead of say, to a local disk drive. Similarly, the system can read data sent
from other machines and copy this data to its main memory.

With the advent of global networks such as the Internet, copying information from one machine to another
has become one of the most important uses of computer systems. For example, applications such as email,
instant messaging, the World Wide Web, FTP, and telnet are all based on the ability to copy information
over a network.

Returning to ourhello example, we could use the familiar telnet application to runhello on a remote
machine. Suppose we use a telnetclient running on our local machine to connect to a telnetserveron
a remote machine. After we log in to the remote machine and run a shell, the remote shell is waiting to
receive an input command. From this point, running thehello program remotely involves the five basic
steps shown in Figure 1.15.

local
telnet
client

remote
telnet
server

2. client sends "hello "
string to telnet server 3. server sends "hello "

string to the shell, which
 runs the hello program,

and sends the output
to the telnet server4. telnet server sends

"hello, world\n " string
to client

5. client prints
"hello, world\n "

string on display

1. user types
"hello " at the

keyboard

Figure 1.15:Using telnet to run hello remotely over a network.

After we type the ”hello” string to the telnet client and hit theenter key, the client sends the string to

18 CHAPTER 1. INTRODUCTION

the telnet server. After the telnet server receives the string from the network, it passes it along to the remote
shell program. Next, the remote shell runs thehello program, and passes the output line back to the telnet
server. Finally, the telnet server forwards the output string across the network to the telnet client, which
prints the output string on our local terminal.

This type of exchange between clients and servers is typical of all network applications. In Chapter 12 we
will learn how to build network applications, and apply this knowledge to build a simple Web server.

1.9 Summary

This concludes our initial whirlwind tour of systems. An important idea to take away from this discussion is
that a system is more than just hardware. It is a collection of intertwined hardware and software components
that must work cooperate in order to achieve the ultimate goal of running application programs. The rest of
this book will expand on this theme.

Bibliographic Notes

Ritchie has written interesting first-hand accounts of the early days of C and Unix [59, 60]. Ritchie and
Thompson presented the first published account of Unix [61]. Silberschatz and Gavin [66] provide a compre-
hensive history of the different flavors of Unix. The GNU (www.gnu.org) and Linux (www.linux.org)
Web pages have loads of current and historical information. Unfortunately, the Posix standards are not avail-
able online. They must be ordered for a fee from IEEE (standards.ieee.org).

Part I

Program Structure and Execution

19

Chapter 2

Representing and Manipulating
Information

Modern computers store and process information represented as two-valued signals. These lowly binary
digits, orbits, form the basis of the digital revolution. The familiar decimal, or base-10, representation has
been in use for over 1000 years, having been developed in India, improved by Arab mathematicians in the
12th century, and brought to the West in the 13th century by the Italian mathematician Leonardo Pisano,
better known as Fibonacci. Using decimal notation is natural for ten-fingered humans, but binary values
work better when building machines that store and process information. Two-valued signals can readily
be represented, stored, and transmitted, for example, as the presence or absence of a hole in a punched
card, as a high or low voltage on a wire, or as a magnetic domain oriented clockwise or counterclockwise.
The electronic circuitry for storing and performing computations on two-valued signals is very simple and
reliable, enabling manufacturers to integrate millions of such circuits on a single silicon chip.

In isolation, a single bit is not very useful. When we group bits together and apply someinterpretationthat
gives meaning to the different possible bit patterns, however, we can represent the elements of any finite set.
For example, using a binary number system, we can use groups of bits to encode nonnegative numbers. By
using a standard character code, we can encode the letters and symbols in a document. We cover both of
these encodings in this chapter, as well as encodings to represent negative numbers and to approximate real
numbers.

We consider the three most important encodings of numbers.Unsignedencodings are based on traditional
binary notation, representing numbers greater than or equal to 0.Two’s complementencodings are the most
common way to represent signed integers, that is, numbers that may be either positive or negative.Floating-
point encodings are a base-two version of scientific notation for representing real numbers. Computers
implement arithmetic operations such as addition and multiplication, with these different representations
similar to the corresponding operations on integers and real numbers.

Computer representations use a limited number of bits to encode a number, and hence some operations can
overflowwhen the results are too large to be represented. This can lead to some surprising results. For
example, on most of today’s computers, computing the expression

200 * 300 * 400 * 500

21

22 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

yields�884,901,888. This runs counter to the properties of integer arithmetic—computing the product of a
set of positive numbers has yielded a negative result.

On the other hand, integer computer arithmetic satisfies many of the familiar properties of true integer arith-
metic. For example, multiplication is associative and commutative, so that computing all of the following C
expressions yields�884,901,888:

(500 * 400) * (300 * 200)
((500 * 400) * 300) * 200
((200 * 500) * 300) * 400
400 * (200 * (300 * 500))

The computer might not generate the expected result, but at least it is consistent!

Floating point arithmetic has altogether different mathematical properties. The product of a set of positive
numbers will always be positive, although overflow will yield the special value+1. On the other hand,
floating point arithmetic is not associative due to the finite precision of the representation. For example,
the C expression(3.14+1e20)-1e20 will evaluate to0.0 on most machines, while3.14+(1e20-
1e20) will evaluate to3.14.

By studying the actual number representations, we can understand the ranges of values that can be repre-
sented and the properties of the different arithmetic operations. This understanding is critical to writing
programs that work correctly over the full range of numeric values and that are portable across different
combinations of machine, operating system, and compiler. Our treatment of this material is very mathe-
matical. We start with the basic definitions of the encodings and then derive such properties as the range of
representable numbers, their bit-level representations, and the properties of the arithmetic operations. We
believe it is important to examine this material from such an abstract viewpoint, because programmers need
to have a solid understanding of how computer arithmetic relates to the more familiar integer and real arith-
metic. Although it may appear intimidating, the mathematical treatment requires just an understanding of
basic algebra. We recommend working the practice problems as a way to solidify the connection between
the formal treatment and some real-life examples.

We derive several ways to perform arithmetic operations by directly manipulating the bit-level representa-
tions of numbers. Understanding these techniques will be important for understanding the machine-level
code generated when compiling arithmetic expressions.

The C++ programming language is built upon C, using the exact same numeric representations and opera-
tions. Everything said in this chapter about C also holds for C++. The Java language definition, on the other
hand, created a new set of standards for numeric representations and operations. Whereas the C standard is
designed to allow a wide range of implementations, the Java standard is quite specific on the formats and
encodings of data. We highlight the representations and operations supported by Java at several places in
the chapter.

2.1 Information Storage

Rather than accessing individual bits in a memory, most computers use blocks of eight bits, orbytesas
the smallest addressable unit of memory. A machine-level program views memory as a very large array of

2.1. INFORMATION STORAGE 23

Hex digit 0 1 2 3 4 5 6 7
Decimal Value 0 1 2 3 4 5 6 7
Binary Value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B C D E F
Decimal Value 8 9 10 11 12 13 14 15
Binary Value 1000 1001 1010 1011 1100 1101 1110 1111

Figure 2.1:Hexadecimal NotationEach Hex digit encodes one of 16 values.

bytes, referred to asvirtual memory. Every byte of memory is identified by a unique number, known as
its address, and the set of all possible addresses is known as thevirtual address space. As indicated by its
name, this virtual address space is just a conceptual image presented to the machine-level program. The
actual implementation (presented in Chapter 10) uses a combination of random-access memory (RAM),
disk storage, special hardware, and operating system software to provide the program with what appears to
be a monolithic byte array.

One task of a compiler and the run-time system is to subdivide this memory space into more manageable
units to store the differentprogram objects, that is, program data, instructions, and control information.
Various mechanisms are used to allocate and manage the storage for different parts of the program. This
management is all performed within the virtual address space. For example, the value of a pointer in C—
whether it points to an integer, a structure, or some other program unit—is the virtual address of the first
byte of some block of storage. The C compiler also associatestypeinformation with each pointer, so that it
can generate different machine-level code to access the value stored at the location designated by the pointer
depending on the type of that value. Although the C compiler maintains this type information, the actual
machine-level program it generates has no information about data types. It simply treats each program
object as a block of bytes, and the program itself as a sequence of bytes.

New to C?
Pointers are a central feature of C. They provide the mechanism for referencing elements of data structures,

including arrays. Just like a variable, a pointer has two aspects: itsvalue and itstype. The value indicates the
location of some object, while its type indicates what kind (e.g., integer or floating-point number) of object is stored
at that location.End

2.1.1 Hexadecimal Notation

A single byte consists of eight bits. In binary notation, its value ranges from000000002 to 111111112 .
When viewed as a decimal integer, its value ranges from010 to25510. Neither notation is very convenient for
describing bit patterns. Binary notation is too verbose, while with decimal notation, it is tedious to convert
to and from bit patterns. Instead, we write bit patterns as base-16, orhexadecimalnumbers. Hexadecimal
(or simply “Hex”) uses digits ‘0’ through ‘9’, along with characters ‘A’ through ‘F’ to represent 16 possible
values. Figure 2.1 shows the decimal and binary values associated with the 16 hexadecimal digits. Written
in hexadecimal, the value of a single byte can range from 0016 to FF16.

In C, numeric constants starting with0x or 0X are interpreted as being in hexadecimal. The characters

24 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

‘A’ through ‘F’ may be written in either upper or lower case. For example, we could write the number
FA1D37B16 as0xFA1D37B, as0xfa1d37b, or even mixing upper and lower case, e.g.,0xFa1D37b.
We will use the C notation for representing hexadecimal values in this book.

A common task in working with machine-level programs is to manually convert between decimal, binary,
and hexadecimal representations of bit patterns. A starting point is to be able to convert, in both directions,
between a single hexadecimal digit and a four-bit binary pattern. This can always be done by referring
to a chart such as that shown in Figure 2.1. When doing the conversion manually, one simple trick is to
memorize the decimal equivalents of hex digitsA, C, andF. The hex valuesB, D, andE can be translated to
decimal by computing their values relative to the first three.

Practice Problem 2.1:

Fill in the missing entries in the following figure, giving the decimal, binary, and hexadecimal values of
different byte patterns.

Decimal Binary Hexadecimal
0 00000000 00
55
136
243

01010010
10101100
11100111

A7
3E
BC

Aside: Converting between decimal and hexadecimal.
For converting larger values between decimal and hexadecimal, it is best to let a computer or calculator do the work.
For example, the following script in the Perl language converts a list of numbers from decimal to hexadecimal:

bin/d2h

1 #!/usr/local/bin/perl
2 # Convert list of decimal numbers into hex
3 for ($i = 0; $i < @ARGV; $i++) f
4 printf("%d = 0x%x\n", $ARGV[$i], $ARGV[$i]);
5 g

bin/d2h

Once this file has been set to be executable, the command:

unix> ./d2h 100 500 751

will yield output:

2.1. INFORMATION STORAGE 25

100 = 0x64
500 = 0x1f4
751 = 0x2ef

Similarly, the following script converts from hexadecimal to decimal:

bin/h2d

1 #!/usr/local/bin/perl
2 # Convert list of decimal numbers into hex
3 for ($i = 0; $i < @ARGV; $i++) f
4 $val = hex($ARGV[$i]);
5 printf("0x%x = %d\n", $val, $val);
6 g

bin/h2d

End Aside.

2.1.2 Words

Every computer has aword size, indicating the nominal size of integer and pointer data. Since a virtual
address is encoded by such a word, the most important system parameter determined by the word size is
the maximum size of the virtual address space. That is, for a machine with ann-bit word size, the virtual
addresses can range from0 to 2n � 1, giving the program access to at most2n bytes.

Most computers today have a 32-bit word size. This limits the virtual address space to 4 gigabytes (written
4 GB), that is, just over4 � 109 bytes. Although this is ample space for most applications, we have
reached the point where many large-scale scientific and database applications require larger amounts of
storage. Consequently, high-end machines with 64-bit word sizes are becoming increasingly commonplace
as storage costs decrease.

2.1.3 Data Sizes

Computers and compilers support multiple data formats using different ways to encode data, such as in-
tegers and floating point, as well as different lengths. For example, many machines have instructions for
manipulating single bytes, as well as integers represented as two, four, and eight-byte quantities. They also
support floating-point numbers represented as four and eight-byte quantities.

The C language supports multiple data formats for both integer and floating-point data. The C data type
char represents a single byte. Although the name “char” derives from the fact that it is used to store
a single character in a text string, it can also be used to store integer values. The C data typeint can
also be prefixed by the qualifierslong and short, providing integer representations of various sizes.
Figure 2.2 shows the number of bytes allocated for various C data types. The exact number depends on
both the machine and the compiler. We show two representative cases: a typical 32-bit machine, and the
Compaq Alpha architecture, a 64-bit machine targeting high end applications. Most 32-bit machines use
the allocations indicated as “typical.” Observe that “short” integers have two-byte allocations, while an
unqualifiedint is 4 bytes. A “long” integer uses the full word size of the machine.

26 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

C Declaration Typical 32-bit Compaq Alpha
char 1 1

short int 2 2
int 4 4

long int 4 8
char * 4 8

float 4 4
double 8 8

Figure 2.2:Sizes (in Bytes) of C Numeric Data Types.The number of bytes allocated varies with machine
and compiler.

Figure 2.2 also shows that a pointer (e.g., a variable declared as being of type “char *”) uses the full word
size of the machine. Most machines also support two different floating-point formats: single precision,
declared in C asfloat, and double precision, declared in C asdouble. These formats use four and eight
bytes, respectively.

New to C?
For any data typeT , the declaration

T *p;

indicates thatp is a pointer variable, pointing to an object of typeT . For example

char *p;

is the declaration of a pointer to an object of typechar . End

Programmers should strive to make their programs portable across different machines and compilers. One
aspect of portability is to make the program insensitive to the exact sizes of the different data types. The
C standard sets lower bounds on the numeric ranges of the different data types, as will be covered later,
but there are no upper bounds. Since 32-bit machines have been the standard for the last 20 years, many
programs have been written assuming the allocations listed as “typical 32-bit” in Figure 2.2. Given the
increasing prominence of 64-bit machines in the near future, many hidden word size dependencies will
show up as bugs in migrating these programs to new machines. For example, many programmers assume
that a program object declared as typeint can be used to store a pointer. This works fine for most 32-bit
machines but leads to problems on an Alpha.

2.1.4 Addressing and Byte Ordering

For program objects that span multiple bytes, we must establish two conventions: what will be the address
of the object, and how will we order the bytes in memory. In virtually all machines, a multibyte object is
stored as a contiguous sequence of bytes, with the address of the object given by the smallest address of the

2.1. INFORMATION STORAGE 27

bytes used. For example, suppose a variablex of type int has address0x100, that is, the value of the
address expression&x is 0x100. Then the four bytes ofx would be stored in memory locations0x100,
0x101, 0x102, and 0x103.

For ordering the bytes representing an object, there are two common conventions. Consider aw-bit integer
having a bit representation[xw�1; xw�2; : : : ; x1; x0], wherexw�1 is the most significant bit, andx0 is the
least. Assumingw is a multiple of eight, these bits can be grouped as bytes, with the most significant byte
having bits[xw�1; xw�2; : : : ; xw�8], the least significant byte having bits[x7; x6; : : : ; x0], and the other
bytes having bits from the middle. Some machines choose to store the object in memory ordered from least
significant byte to most, while other machines store them from most to least. The former convention—where
the least significant byte comes first—is referred to aslittle endian. This convention is followed by most
machines from the former Digital Equipment Corporation (now part of Compaq Corporation), as well as by
Intel. The latter convention—where the most significant byte comes first—is referred to asbig endian. This
convention is followed by most machines from IBM, Motorola, and Sun Microsystems. Note that we said
“most.” The conventions do not split precisely along corporate boundaries. For example, personal computers
manufactured by IBM use Intel-compatible processors and hence are little endian. Many microprocessor
chips, including Alpha and the PowerPC by Motorola can be run in either mode, with the byte ordering
convention determined when the chip is powered up.

Continuing our earlier example, suppose the variablex of typeint and at address0x100 has a hexadecimal
value of0x01234567. The ordering of the bytes within the address range0x100 through0x103 depends
on the type of machine:

Big endian
0x100 0x101 0x102 0x103

� � � 01 23 45 67 � � �

Little endian
0x100 0x101 0x102 0x103

� � � 67 45 23 01 � � �

Note that in the word0x01234567 the high-order byte has hexadecimal value0x01, while the low-order
byte has value0x67.

People get surprisingly emotional about which byte ordering is the proper one. In fact, the terms “little
endian” and “big endian” come from the bookGulliver’s Travelsby Jonathan Swift, where two warring
factions could not agree by which end a soft-boiled egg should be opened—the little end or the big. Just like
the egg issue, there is no technological reason to choose one byte ordering convention over the other, and
hence the arguments degenerate into bickering about sociopolitical issues. As long as one of the conventions
is selected and adhered to consistently, the choice is arbitrary.

Aside: Origin of “Endian.”
Here is how Jonathan Swift, writing in 1726, described the history of the controversy between big and little endians:

. . . the two great empires of Lilliput and Blefuscu. Which two mighty powers have, as I was going
to tell you, been engaged in a most obstinate war for six-and-thirty moons past. It began upon the
following occasion. It is allowed on all hands, that the primitive way of breaking eggs, before we eat

28 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

them, was upon the larger end; but his present majesty’s grandfather, while he was a boy, going to eat an
egg, and breaking it according to the ancient practice, happened to cut one of his fingers. Whereupon
the emperor his father published an edict, commanding all his subjects, upon great penalties, to break
the smaller end of their eggs. The people so highly resented this law, that our histories tell us, there have
been six rebellions raised on that account; wherein one emperor lost his life, and another his crown.
These civil commotions were constantly fomented by the monarchs of Blefuscu; and when they were
quelled, the exiles always fled for refuge to that empire. It is computed that eleven thousand persons
have at several times suffered death, rather than submit to break their eggs at the smaller end. Many
hundred large volumes have been published upon this controversy: but the books of the Big-endians
have been long forbidden, and the whole party rendered incapable by law of holding employments.

In his day, Swift was satirizing the continued conflicts between England (Lilliput) and France (Blefuscu). Danny
Cohen, an early pioneer in networking protocols, first applied these terms to refer to byte ordering [16], and the
terminology has been widely adopted.End Aside.

For most application programmers, the byte orderings used by their machines are totally invisible. Programs
compiled for either class of machine give identical results. At times, however, byte ordering becomes an
issue. The first is when binary data is communicated over a network between different machines. A common
problem is for data produced by a little-endian machine to be sent to a big-endian machine, or vice-versa,
leading to the bytes within the words being in reverse order for the receiving program. To avoid such
problems, code written for networking applications must follow established conventions for byte ordering
to make sure the sending machine converts its internal representation to the network standard, while the
receiving machine converts the network standard to its internal representation. We will see examples of
these conversions in Chapter 12.

A second case is when programs are written that circumvent the normal type system. In the C language, this
can be done using acastto allow an object to be referenced according to a different data type from which
it was created. Such coding tricks are strongly discouraged for most application programming, but they can
be quite useful and even necessary for system-level programming.

Figure 2.3 shows C code that uses casting to access and print the byte representations of different program
objects. We usetypedef to define data typebyte_pointer as a pointer to an object of type “un-
signed char.” Such a byte pointer references a sequence of bytes where each byte is considered to be a
nonnegative integer. The first routineshow_bytes is given the address of a sequence of bytes, indicated
by a byte pointer, and a byte count. It prints the individual bytes in hexadecimal. The C formatting directive
“%.2x” indicates that an integer should be printed in hexadecimal with at least two digits.

New to C?
Thetypedef declaration in C provides a way of giving a name to a data type. This can be a great help in improving
code readability, since deeply nested type declarations can be difficult to decipher.

The syntax fortypedef is exactly like that of declaring a variable, except that it uses a type name rather than a
variable name. Thus, the declaration ofbyte_pointer in Figure 2.3 has the same form as would the declaration
of a variable to type “unsigned char .”

For example, the declaration:

typedef int *int_pointer;
int_pointer ip;

defines type “int_pointer ” to be a pointer to anint , and declares a variableip of this type. Alternatively, we
could declare this variable directly as:

2.1. INFORMATION STORAGE 29

code/data/show-bytes.c

1 #include <stdio.h>
2

3 typedef unsigned char *byte_pointer;
4

5 void show_bytes(byte_pointer start, int len)
6 {
7 int i;
8 for (i = 0; i < len; i++)
9 printf(" %.2x", start[i]);

10 printf("\n");
11 }
12

13 void show_int(int x)
14 {
15 show_bytes((byte_pointer) &x, sizeof(int));
16 }
17

18 void show_float(float x)
19 {
20 show_bytes((byte_pointer) &x, sizeof(float));
21 }
22

23 void show_pointer(void *x)
24 {
25 show_bytes((byte_pointer) &x, sizeof(void *));
26 }

code/data/show-bytes.c

Figure 2.3: Code to Print the Byte Representation of Program Objects. This code uses casting to
circumvent the type system. Similar functions are easily defined for other data types.

30 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

int *ip;

End

New to C?
Theprintf function (along with its cousinsfprintf andsprintf) provides a way to print information with

considerable control over the formatting details. The first argument is aformat string , while any remaining
arguments are values to be printed. Within the formatting string, each character sequence starting with ‘%’ indicates
how to format the next argument. Typical examples include ‘%d’ to print a decimal integer and ‘%f’ to print a
floating-point number, and ‘%c’ to print a character having the character code given by the argument.End

New to C?
In function show_bytes (Figure 2.3) we see the close connection between pointers and arrays, as will be dis-

cussed in detail in Section 3.8. We see that this function has an argumentstart of typebyte_pointer (which
has been defined to be a pointer tounsigned char ,) but we see the array referencestart[i] on line 9. In
C, we can use reference a pointer with array notation, and we can reference arrays with pointer notation. In this
example, the referencestart[i] indicates that we want to read the byte that isi positions beyond the location
pointed to bystart . End

Proceduresshow_int, show_float, and show_pointer demonstrate how to use procedureshow_bytes
to print the byte representations of C program objects of typeint, float, and void *, respectively. Ob-
serve that they simply passshow_bytes a pointer&x to their argumentx , casting the pointer to be of type
“unsigned char *.” This cast indicates to the compiler that the program should consider the pointer to
be to a sequence of bytes rather than to an object of the original data type. This pointer will then be to the
lowest byte address used by the object.

New to C?
In lines 15, 20, and 24 of Figure 2.3 we see uses of two operations that are unique to C and C++. The C “address of”
operator& creates a pointer. On all three lines, the expression&x creates a pointer to the location holding variable
x . The type of this pointer depends on the type ofx , and hence these three pointers are of typeint *, float * ,
andvoid ** , respectively. (Data typevoid * is a special kind of pointer with no associated type information.)

The cast operator converts from one data type to another. Thus, the cast(byte_pointer) &x indicates that
whatever type the pointer&x had before, it now is a pointer to data of typeunsigned char . End

These procedures use the C operatorsizeof to determine the number of bytes used by the object. In
general, the expressionsizeof(T) returns the number of bytes required to store an object of typeT .
Usingsizeof , rather than a fixed value, is one step toward writing code that is portable across different
machine types.

We ran the code shown in Figure 2.4 on several different machines, giving the results shown in Figure 2.5.
The machines used were:

Linux: Intel Pentium II running Linux.

NT: Intel Pentium II running Windows-NT.

Sun: Sun Microsystems UltraSPARC running Solaris.

Alpha: Compaq Alpha 21164 running Tru64 Unix.

2.1. INFORMATION STORAGE 31

code/data/show-bytes.c

1 void test_show_bytes(int val)
2 {
3 int ival = val;
4 float fval = (float) ival;
5 int *pval = &ival;
6 show_int(ival);
7 show_float(fval);
8 show_pointer(pval);
9 }

code/data/show-bytes.c

Figure 2.4: Byte Representation Examples. This code prints the byte representations of sample data
objects.

Machine Value Type Bytes (Hex)
Linux 12,345 int 39 30 00 00
NT 12,345 int 39 30 00 00
Sun 12,345 int 00 00 30 39

Alpha 12,345 int 39 30 00 00
Linux 12; 345:0 float 00 e4 40 46
NT 12; 345:0 float 00 e4 40 46
Sun 12; 345:0 float 46 40 e4 00

Alpha 12; 345:0 float 00 e4 40 46
Linux &ival int * 3c fa ff bf
NT &ival int * 1c ff 44 02
Sun &ival int * ef ff fc e4

Alpha &ival int * 80 fc ff 1f 01 00 00 00

Figure 2.5:Byte Representations of Different Data Values.Results forint and float are identical,
except for byte ordering. Pointer values are machine-dependent.

32 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Our sample integer argument 12,345 has hexadecimal representation0x00003039. For the int data, we
get identical results for all machines, except for the byte ordering. In particular, we can see that the least
significant byte value of0x39 is printed first for Linux, NT, and Alpha, indicating little-endian machines,
and last for Sun, indicating a big-endian machine. Similarly, the bytes of thefloat data are identical,
except for the byte ordering. On the other hand, the pointer values are completely different. The different
machine/operating system configurations use different conventions for storage allocation. One feature to
note is that the Linux and Sun machines use four-byte addresses, while the Alpha uses eight-byte addresses.

Observe that although the floating point and the integer data both encode the numeric value 12,345, they
have very different byte patterns:0x00003039 for the integer, and0x4640E400 for floating point. In
general, these two formats use different encoding schemes. If we expand these hexadecimal patterns into
binary and shift them appropriately, we find a sequence of 13 matching bits, indicated below by a sequence
of asterisks:

0 0 0 0 3 0 3 9
00000000000000000011000000111001

4 6 4 0 E 4 0 0

01000110010000001110010000000000

This is not coincidental. We will return to this example when we study floating-point formats.

Practice Problem 2.2:

Consider the following 3 calls toshow_bytes :

int val = 0x12345678;
byte_pointer valp = (byte_pointer) &val;
show_bytes(valp, 1); /* A. */
show_bytes(valp, 2); /* B. */
show_bytes(valp, 3); /* C. */

Indicate below the values that would be printed by each call on a little-endian machine and on a big-
endian machine.

A. Little endian: Big endian:

B. Little endian: Big endian:

C. Little endian: Big endian:

Practice Problem 2.3:

Usingshow_int andshow_float , we determine that the integer 3490593 has hexadecimal repre-
sentation0x00354321 , while the floating-point number3490593:0 has hexadecimal representation
representation0x4A550C84 .

A. Write the binary representations of these two hexadecimal values.

B. Shift these two strings relative to one another to maximize the number of matching bits.

C. How many bits match? What parts of the strings do not match?

2.1. INFORMATION STORAGE 33

2.1.5 Representing Strings

A string in C is encoded by an array of characters terminated by the null (having value 0) character. Each
character is represented by some standard encoding, with the most common being the ASCII character code.
Thus, if we run our routineshow_bytes with arguments"12345" and6 (to include the terminating
character), we get the result31 32 33 34 35 00. Observe that the ASCII code for decimal digitx
happens to be0x3 x, and that the terminating byte has the hex representation0x00. This same result would
be obtained on any system using ASCII as its character code, independent of the byte ordering and word
size conventions. As a consequence, text data is more platform-independent than binary data.

Aside: Generating an ASCII table.
You can display a table showing the ASCII character code by executing the commandman ascii . End Aside.

Practice Problem 2.4:

What would be printed as a result of the following call toshow_bytes :

char *s = "ABCDEF";
show_bytes(s, strlen(s));

Note that letters ‘A’ through ‘Z’ have ASCII codes0x41 through0x5A .

Aside: The Unicode character set.
The ASCII character set is suitable for encoding English language documents, but it does not have much in the way
of special characters, such as the French ‘c¸.’ It is wholly unsuited for encoding documents in languages such as
Greek, Russian, and Chinese. Recently, the 16-bitUnicodecharacter set has been adopted to support documents in
all languages. This doubling of the character set representation enables a very large number of different characters
to be represented. The Java programming language uses Unicode when representing character strings. Program
libraries are also available for C that provide Unicode versions of the standard string functions such asstrlen and
strcpy . End Aside.

2.1.6 Representing Code

Consider the following C function:

1 int sum(int x, int y)
2 {
3 return x + y;
4 }

When compiled on our sample machines, we generate machine code having the following byte representa-
tions:

Linux: 55 89 e5 8b 45 0c 03 45 08 89 ec 5d c3

NT: 55 89 e5 8b 45 0c 03 45 08 89 ec 5d c3

34 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

˜

0 1

1 0

& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

ˆ 0 1

0 0 1

1 1 0

Figure 2.6:Operations of Boolean Algebra.Binary values 1 and 0 encode logic values TRUE and FALSE,
while operations̃ , &, | , andˆ encode logical operations NOT, AND, OR, and EXCLUSIVE-OR, respec-
tively.

Sun: 81 C3 E0 08 90 02 00 09

Alpha: 00 00 30 42 01 80 FA 6B

Here we find that the instruction codings are different, except for the NT and Linux machines. Different
machine types use different and incompatible instructions and encodings. The NT and Linux machines
both have Intel processors and hence support the same machine-level instructions. In general, however, the
structure of an executable NT program differs from a Linux program, and hence the machines are not fully
binary compatible. Binary code is seldom portable across different combinations of machine and operating
system.

A fundamental concept of computer systems is that a program, from the perspective of the machine, is
simply sequences of bytes. The machine has no information about the original source program, except
perhaps some auxiliary tables maintained to aid in debugging. We will see this more clearly when we study
machine-level programming in Chapter 3.

2.1.7 Boolean Algebras and Rings

Since binary values are at the core of how computers encode, store, and manipulate information, a rich body
of mathematical knowledge has evolved around the study of the values 0 and 1. This started with the work
of George Boole around 1850, and hence goes under the heading ofBoolean algebra. Boole observed that
by encoding logic values TRUE and FALSE as binary values 1 and 0, he could formulate an algebra that
captures the properties of propositional logic.

There is an infinite number of different Boolean algebras, where the simplest is defined over the two-element
setf0; 1g. Figure 2.6 defines several operations in this Boolean algebra. Our symbols for representing these
operations are chosen to match those used by the C bit-level operations, as will be discussed later. The
Boolean operatioñ corresponds to the logical operation NOT, denoted in propositional logic as:. That
is, we say that:P is true whenP is not true, and vice-versa. Correspondingly,˜ p equals 1 whenp equals
0, and vice-versa. Boolean operation& corresponds to the logical operation AND, denoted in propositional
logic as^. We say thatP ^Q holds when bothP andQ are true. Correspondingly,p&q equals 1 only when
p = 1 andq = 1. Boolean operation| corresponds to the logical operation OR, denoted in propositional
logic as_. We say thatP _ Q holds when eitherP or Q are true. Correspondingly,p | q equals 1
when eitherp = 1 or q = 1. Boolean operation̂ corresponds to the logical operation EXCLUSIVE-OR,
denoted in propositional logic as�. We say thatP � Q holds when eitherP or Q are true, but not both.

2.1. INFORMATION STORAGE 35

Shared Properties
Property Integer Ring Boolean Algebra
Commutativity a+ b = b+ a a | b = b | a

a� b = b� a a & b = b &a

Associativity (a+ b) + c = a+ (b+ c) (a | b) | c = a | (b | c)
(a� b)� c = a� (b� c) (a & b) & c = a & (b & c)

Distributivity a� (b+ c) = (a� b) + (a� c) a & (b | c) = (a & b) | (a & c)
Identities a+ 0 = a a | 0 = a

a� 1 = a a & 1 = a

Annihilator a� 0 = 0 a & 0 = 0

Cancellation �(�a) = a ˜ (˜ a) = a

Unique to Rings
Inverse a+�a = 0 —

Unique to Boolean Algebras
Distributivity — a | (b & c) = (a | b) & (a | c)
Complement — a | ˜ a = 1

— a & ˜ a = 0

Idempotency — a &a = a

— a | a = a

Absorption — a | (a & b) = a

— a & (a | b) = a

DeMorgan’s laws — ˜ (a & b) = ˜ a | ˜ b

— ˜ (a | b) = ˜ a & ˜ b

Figure 2.7:Comparison of Integer Ring and Boolean Algebra.The two mathematical structures share
many properties, but there are key differences, particularly between� and˜ .

Correspondingly,p ˆ q equals 1 when eitherp = 1 andq = 0, or p = 0 andq = 1.

Claude Shannon, who would later found the field of information theory, first made the connection between
Boolean algebra and digital logic. In his 1937 master’s thesis, he showed that Boolean algebra could be
applied to the design and analysis of networks of electromechanical relays. Although computer technology
has advanced considerably since that time, Boolean algebra still plays a central role in digital systems design
and analysis.

There are many parallels between integer arithmetic and Boolean algebra, as well as several important dif-
ferences. In particular, the set of integers, denotedZ, forms a mathematical structure known as aring,
denotedhZ;+;�;�; 0; 1i, with addition serving as thesumoperation, multiplication as theproduct op-
eration, negation as the additive inverse, and elements 0 and 1 serving as the additive and multiplicative
identities. The Boolean algebrahf0; 1g; | ;&; ˜ ; 0; 1i has similar properties. Figure 2.7 highlights properties
of these two structures, showing the properties that are common to both and those that are unique to one or
the other. One important difference is that˜ a is not an inverse fora under| .

36 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Aside: What good is abstract algebra?
Abstract algebra involves identifying and analyzing the common properties of mathematical operations in different
domains. Typically, an algebra is characterized by a set of elements, some of its key operations, and some im-
portant elements. As an example, modular arithmetic also forms a ring. For modulusn, the algebra is denoted
hZn;+n;�n;�n; 0; 1i, with components defined as follows:

Zn = f0; 1; : : : ; n� 1g

a+n b = a+ b mod n

a�n b = a� b mod n

�na =

�
0; a = 0
n� a; a > 0

Even though modular arithmetic yields different results from integer arithmetic, it has many of the same mathemat-
ical properties. Other well-known rings include rational and real numbers.End Aside.

If we replace the OR operation of Boolean algebra by the EXCLUSIVE-OR operation, and the complement
operatioñ with the identity operationI—whereI (a) = a for all a—we have a structurehf0; 1g; ˆ ;&; I ; 0; 1i.
This structure is no longer a Boolean algebra—in fact it’s a ring. It can be seen to be a particularly simple
form of the ring consisting of all integersf0; 1; : : : ; n� 1g with both addition and multiplication performed
modulon. In this case, we haven = 2. That is, the Boolean AND and EXCLUSIVE-OR operations cor-
respond to multiplication and addition modulo 2, respectively. One curious property of this algebra is that
every element is its own additive inverse:a ˆ I (a) = a ˆ a = 0.

Aside: Who, besides mathematicians, care about Boolean rings?
Every time you enjoy the clarity of music recorded on a CD or the quality of video recorded on a DVD, you are
taking advantage of Boolean rings. These technologies rely onerror-correcting codesto reliably retrieve the bits
from a disk even when dirt and scratches are present. The mathematical basis for these error-correcting codes is a
linear algebra based on Boolean rings.End Aside.

We can extend the four Boolean operations to also operate on bit vectors, i.e., strings of 0s and 1s of
some fixed lengthw. We define the operations over bit vectors according their applications to the matching
elements of the arguments. For example, we define[aw�1; aw�2; : : : ; a0]&[bw�1; bw�2; : : : ; b0] to be[aw�1&
bw�1; aw�2 & bw�2; : : : ; a0 & b0], and similarly for operations̃ , | , andˆ . Letting f0; 1gw denote the set
of all strings of 0s and 1s having lengthw, andaw denote the string consisting ofw repetitions of symbol
a, then one can see that the resulting algebras:hf0; 1gw ; | ;&; ˜ ; 0w; 1wi andhf0; 1gw ; ˆ ;&; I ; 0w; 1wi form
Boolean algebras and rings, respectively. Each value ofw defines a different Boolean algebra and a different
Boolean ring.

Aside: Are Boolean rings the same as modular arithmetic?
The two-element Boolean ringhf0; 1g; ˆ ;&; I ; 0; 1i is identical to the ring of integers modulo twohZ2;+2;�2;�2; 0; 1i.
The generalization to bit vectors of lengthw, however, however, yields a very different ring from modular arithmetic.
End Aside.

Practice Problem 2.5:

Fill in the following table showing the results of evaluating Boolean operations on bit vectors.

2.1. INFORMATION STORAGE 37

Operation Result
a [01101001]

b [01010101]

˜ a
˜ b
a & b

a | b

a ˆ b

One useful application of bit vectors is to represent finite sets. For example, we can denote any subset
A � f0; 1; : : : ; w � 1g as a bit vector[aw�1; : : : ; a1; a0], whereai = 1 if and only if i 2 A. For example,
(recalling that we writeaw�1 on the left anda0 on the right), we havea = [01101001] representing the
setA = f0; 3; 5; 6g, andb = [01010101] representing the setB = f0; 2; 4; 6g. Under this interpretation,
Boolean operations| and& correspond to set union and intersection, respectively, and˜ corresponds to set
complement. For example, the operationa & b yields bit vector[01000001], whileA \B = f0; 6g.
In fact, for any setS, the structurehP(S);[;\; ; ;; Si forms a Boolean algebra, whereP(S) denotes the
set of all subsets ofS, and denotes the set complement operator. That is, for any setA, its complement is
the setA = fa 2 Sja 62 Ag. The ability to represent and manipulate finite sets using bit vector operations
is a practical outcome of a deep mathematical principle.

2.1.8 Bit-Level Operations in C

One useful feature of C is that it supports bit-wise Boolean operations. In fact, the symbols we have used for
the Boolean operations are exactly those used by C:| for OR, & for AND, ˜ for NOT, andˆ for EXCLUSIVE-
OR. These can be applied to any “integral” data type, that is, one declared as typechar or int, with or
without qualifiers such asshort, long, or unsigned. Here are some example expression evaluations:

C Expression Binary Expression Binary Result C Result
˜0x41 ˜ [01000001] [10111110] 0xBE
˜0x00 ˜ [00000000] [11111111] 0xFF
0x69 & 0x55 [01101001] & [01010101] [01000001] 0x41
0x69 | 0x55 [01101001] | [01010101] [01111101] 0x7D

As our examples show, the best way to determine the effect of a bit-level expression is to expand the
hexadecimal arguments to their binary representations, perform the operations in binary, and then convert
back to hexadecimal.

Practice Problem 2.6:

To show how the ring properties ofˆ can be useful, consider the following program:

1 void inplace_swap(int *x, int *y)
2 {
3 *x = *x ˆ *y; /* Step 1 */

38 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

4 *y = *x ˆ *y; /* Step 2 */
5 *x = *x ˆ *y; /* Step 3 */
6 }

As the name implies, we claim that the effect of this procedure is to swap the values stored at the
locations denoted by pointer variablesx andy . Note that unlike the usual technique for swapping two
values, we do not need a third location to temporarily store one value while we are moving the other.
There is no performance advantage to this way of swapping. It is merely an intellectual amusement.

Starting with valuesa andb in the locations pointed to byx andy , respectively, fill in the following table
giving the values stored at the two locations after each step of the procedure. Use the ring properties to
show that the desired effect is achieved. Recall that every element is its own additive inverse, that is,
a ˆ a = 0.

Step *x *y
Initially a b

Step 1
Step 2
Step 3

One common use of bit-level operations is to implementmaskingoperations, where a mask is a bit pattern
that indicates a selected set of bits within a word. As an example, the mask0xFF (having 1s for the least
significant eight bits) indicates the low-order byte of a word. The bit-level operationx & 0xFF yields a
value consisting of the least significant byte ofx , but with all other bytes set to 0. For example, withx =
0x89ABCDEF, the expression would yield0x000000EF. The expressioñ 0 will yield a mask of all 1s,
regardless of the word size of the machine. Although the same mask can be written0xFFFFFFFF for a
32-bit machine, such code is not as portable.

Practice Problem 2.7:

Write C expressions for the following values, with the results forx = 0x98FDECBAand a 32-bit word
size shown in square brackets:

A. The least significant byte ofx , with all other bits set to 1 [0xFFFFFFBA].

B. The complement of the least significant byte ofx , with all other bytes left unchanged [0x98FDEC45].

C. All but the least significant byte ofx , with the least significant byte set to 0 [0x98FDEC00].

Although our examples assume a 32-bit word size, your code should work for any word sizew � 8.

Practice Problem 2.8:

The Digital Equipment VAX computer was a very popular machine from the late 1970s until the late
1980s. Rather than instructions for Boolean operations AND and OR, it had instructionsbis (bit set)
andbic (bit clear). Both instructions take a data wordx and a mask wordm. They generate a result
z consisting of the bits ofx modified according to the bits ofm. With bis , the modification involves
settingz to 1 at each bit position wherem is 1. With bic , the modification involves settingz to 0 at
each bit position wheremis 1.

We would like to write C functionsbis andbic to compute the effect of these two instructions. Fill in
the missing expressions in the code below using the bit-level operations of C.

2.1. INFORMATION STORAGE 39

/* Bit Set */
int bis(int x, int m)
{

/* Write an expression in C that computes the effect of bit set */
int result = ___________;
return result;

}

/* Bit Clear */
int bic(int x, int m)
{

/* Write an expression in C that computes the effect of bit set */
int result = ___________;
return result;

}

2.1.9 Logical Operations in C

C also provides a set oflogical operators||, &&, and! , which correspond to the OR, AND, and NOT

operations of propositional logic. These can easily be confused with the bit-level operations, but their
function is quite different. The logical operations treat any nonzero argument as representing TRUE and
argument 0 as representing FALSE. They return either 1 or 0 indicating a result of either TRUE or FALSE,
respectively. Here are some example expression evaluations:

Expression Result
!0x41 0x00
!0x00 0x01
!!0x41 0x01
0x69 && 0x55 0x01
0x69 || 0x55 0x01

Observe that a bit-wise operation will have behavior matching that of its logical counterpart only in the
special case where the arguments are restricted to be either 0 or 1.

A second important distinction between the logical operators&&and||, versus their bit-level counterparts
& and | is that the logical operators do not evaluate their second argument if the result of the expression
can be determined by evaluating the first argument. Thus, for example, the expressiona && 5/a will
never cause a division by zero, and the expressionp && *p++ will never cause the dereferencing of a null
pointer.

Practice Problem 2.9:

Suppose thatx andy have byte values0x66 and0x93 , respectively. Fill in the following table indicat-
ing the byte values of the different C expressions

40 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Expression Value Expression Value
x & y x && y
x | y x || y

˜x | ˜y !x || !y
x & !y x && ˜y

Practice Problem 2.10:

Using only bit-level and logical operations, write a C expression that is equivalent tox == y . That is,
it will return 1 whenx andy are equal and 0 otherwise.

2.1.10 Shift Operations in C

C also provides a set ofshift operations for shifting bit patterns to the left and to the right. For an operand
x having bit representation[xn�1; xn�2; : : : ; x0], the C expressionx << k yields a value with bit repre-
sentation[xn�k�1; xn�k�2; : : : ; x0; 0; : : : 0]. That is,x is shiftedk bits to the left, dropping off thek most
significant bits and filling the left end withk 0s. The shift amount should be a value between0 andn� 1.
Shift operations group from left to right, sox << j << k is equivalent to(x << j) << k. Be careful
about operator precedence:1<<5 - 1 is evaluated as1 << (5-1), not as (1<<5) - 1.

There is a corresponding right shift operationx >> k , but it has a slightly subtle behavior. Generally,
machines support two forms of right shift:logical andarithmetic. A logical right shift fills the left end
with k 0s, giving a result[0; : : : ; 0; xn�1; xn�2; : : : xk]. An arithmetic right shift fills the left end withk
repetitions of the most significant bit, giving a result[xn�1; : : : ; xn�1; xn�1; xn�2; : : : xk]. This convention
might seem peculiar, but as we will see it is useful for operating on signed integer data.

The C standard does not precisely define which type of right shift should be used. For unsigned data (i.e.,
integral objects declared with the qualifierunsigned), right shifts must be logical. For signed data (the
default), either arithmetic or logical shifts may be used. This unfortunately means that any code assuming
one form or the other will potentially encounter portability problems. In practice, however, almost all
compiler/machine combinations use arithmetic right shifts for signed data, and many programmers assume
this to be the case.

Practice Problem 2.11:

Fill in the table below showing the effects of the different shift operations on single-byte quantities.
Write each answer as two hexadecimal digits.

x x << 3 x >> 2 x >> 2
(Logical) (Arithmetic)

0xF0
0x0F
0xCC
0x55

2.2. INTEGER REPRESENTATIONS 41

C Declaration Guaranteed Typical 32-bit
Minimum Maximum Minimum Maximum

char �127 127 �128 127
unsigned char 0 255 0 255
short [int] �32,767 32,767 �32,768 32,767
unsigned short [int] 0 63,535 0 63,535
int �32,767 32,767 �2,147,483,648 2,147,483,647
unsigned [int] 0 65,535 0 4,294,967,295
long [int] �2,147,483,647 2,147,483,647 �2,147,483,648 2; 147; 483; 647

unsigned long [int] 0 4,294,967,295 0 4,294,967,295

Figure 2.8:C Integral Data types. Text in square brackets is optional.

2.2 Integer Representations

In this section we describe two different ways bits can be used to encode integers—one that can only rep-
resent nonnegative numbers, and one that can represent negative, zero, and positive numbers. We will see
later that they are strongly related both in their mathematical properties and their machine-level implemen-
tations. We also investigate the effect of expanding or shrinking an encoded integer to fit a representation
with a different length.

2.2.1 Integral Data Types

C supports a variety ofintegral data types—ones that represent a finite range of integers. These are shown
in Figure 2.8. Each type has a size designator:char, short, int, and long, as well as an indication of
whether the represented number is nonnegative (declared asunsigned), or possibly negative (the default).
The typical allocations for these different sizes were given in Figure 2.2. As indicated in Figure 2.8, these
different sizes allow different ranges of values to be represented. The C standard defines a minimum range of
values each data type must be able to represent. As shown in the figure, a typical 32-bit machine uses a 32-bit
representation for data typesint andunsigned, even though the C standard allows 16-bit representations.
As described in Figure 2.2, the Compaq Alpha uses a 64-bit word to representlong integers, giving an
upper limit of over1:84 � 1019 for unsigned values, and a range of over�9:22 � 1018 for signed values.

New to C?
Both C and C++ support signed (the default) and unsigned numbers. Java supports only signed numbers.End

2.2.2 Unsigned and Two’s Complement Encodings

Assume we have an integer data type ofw bits. We write a bit vector as either~x, to denote the entire vector,
or as[xw�1; xw�2; : : : ; x0] to denote the individual bits within the vector. Treating~x as a number written
in binary notation, we obtain theunsignedinterpretation of~x. We express this interpretation as a function

42 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Quantity Word Sizew
8 16 32 64

UMaxw 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
255 65,535 4,294,967,295 18,446,744,073,709,551,615

TMaxw 0x7F 0x7FFF 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
127 32,767 2,147,483,647 9,223,372,036,854,775,807

TMinw 0x80 0x8000 0x80000000 0x8000000000000000
�128 �32,768 �2,147,483,648 �9,223,372,036,854,775,808

�1 0xFF 0xFFFF 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
0 0x00 0x0000 0x00000000 0x0000000000000000

Figure 2.9:“Interesting” Numbers. Both numeric values and hexadecimal representations are shown.

B2Uw (for “binary to unsigned,” lengthw):

B2Uw(~x)
:
=

w�1X
i=0

xi2
i (2.1)

(In this equation, the notation “:=” means that the left hand side is defined to equal to the right hand side).
That is, functionB2Uw maps lengthw strings of 0s and 1s to nonnegative integers. The least value is
given by bit vector[00 � � � 0] having integer value0, and the greatest value is given by bit vector[11 � � � 1]
having integer valueUMaxw

:
=
Pw�1

i=0 2i = 2w� 1. Thus, the functionB2Uw can be defined as a mapping
B2Uw: f0; 1gw ! f0; : : : ; 2w�1g. Note thatB2Uw is abijection—it associates a unique value to each bit
vector of lengthw, and conversely each integer between 0 and2w � 1 has a unique binary representation as
a bit vector of lengthw.

For many applications, we wish to represent negative values as well. The most common computer repre-
sentation of signed numbers is known astwo’s complementform. This is defined by interpreting the most
significant bit of the word to have negative weight. We express this interpretation as a functionB2Tw (for
“binary to two’s complement” lengthw):

B2Tw(~x)
:
= �xw�12

w�1 +
w�2X
i=0

xi2
i (2.2)

The most significant bit is also called thesign bit. When set to 1, the represented value is negative, and
when set to 0 the value is nonnegative. The least representable value is given by bit vector[10 � � � 0] (i.e.,
set the bit with negative weight but clear all others) having integer valueTMinw

:
= �2w�1. The greatest

value is given by bit vector[01 � � � 1], having integer valueTMaxw
:
=
Pw�2

i=0 2i = 2w�1 � 1. Again, one
can see thatB2Tw is a bijectionB2Tw: f0; 1gw ! f�2w�1; : : : ; 2w�1 � 1g, associating a unique integer
in the representable range for each bit pattern.

Figure 2.9 shows the bit patterns and numeric values for several “interesting” numbers for different word
sizes. The first three give the ranges of representable integers. A few points are worth highlighting. First, the
two’s complement range is asymmetric:jTMinwj = jTMaxwj+ 1, that is, there is no positive counterpart
toTMinw. As we shall see, this leads to some peculiar properties of two’s complement arithmetic and can

2.2. INTEGER REPRESENTATIONS 43

be the source of subtle program bugs. Second, the maximum unsigned value is nearly twice the maximum
two’s complement value:UMaxw = 2TMaxw + 1. This follows from the fact that two’s complement
notation reserves half of the bit patterns to represent negative values. The other cases are the constants�1
and0. Note that�1 has the same bit representation asUMaxw—a string of all 1s. Numeric value0 is
represented as a string of all 0s in both representations.

The C standard does not require signed integers to be represented in two’s complement form, but nearly all
machines do so. To keep code portable, one should not assume any particular range of representable values
or how they are represented, beyond the ranges indicated in Figure 2.2. The C library file<limits.h>
defines a set of constants delimiting the ranges of the different integer data types for the particular machine
on which the compiler is running. For example, it defines constantsINT_MAX,INT_MIN, and UINT_MAX
describing the ranges of signed and unsigned integers. For a two’s complement machine where data type
int hasw bits, these constants correspond to the values ofTMaxw, TMinw, andUMaxw.

Practice Problem 2.12:

Assumingw = 4, we can assign a numeric value to each possible hex digit, assuming either an unsigned
or two’s complement interpretation. Fill in the following table according to these interpretations

~x (Hex) B2U 4(~x) B2T 4(~x)

0
3
8
A
F

Aside: Alternative represenations of signed numbers
There are two other standard representations for signed numbers:

One’s Complement: Same as two’s complement, except that the most significant bit has weight�(2w�1�1)
rather than�2w�1:

B2Ow(~x)
:
= �xw�1(2

w�1 � 1) +

w�2X
i=0

xi2
i

Sign-Magnitude: The most significant bit is a sign bit that determines whether the remaining bits should
be given negative or positive weight:

B2Sw(~x)
:
= (�1)xw�1 �

w�2X
i=0

xi2
i

!

Both of these representations have the curious property that there are two different encodings of the number 0. For
both representations,[00 � � � 0] is interpreted as+0. The value�0 can be represented in sign-magnitude as[10 � � � 0]
and in one’s complement as[11 � � � 1]. Although machines based on one’s complement representations were built
in the past, almost all modern machines use two’s complement. We will see that sign-magnitude encoding is used
with floating-point numbers.End Aside.

As an example, consider the following code:

44 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Weight 12,345 �12,345 53,191
Bit Value Bit Value Bit Value

1 1 1 1 1 1 1
2 0 0 1 2 1 2
4 0 0 1 4 1 4
8 1 8 0 0 0 0

16 1 16 0 0 0 0
32 1 32 0 0 0 0
64 0 0 1 64 1 64

128 0 0 1 128 1 128
256 0 0 1 256 1 256
512 0 0 1 512 1 512

1,024 0 0 1 1,024 1 1,024
2,048 0 0 1 2,048 1 2,048
4,096 1 4096 0 0 0 0
8,192 1 8192 0 0 0 0

16,384 0 0 1 16,384 1 16,384
�32; 768 0 0 1 �32,768 1 32,768

Total 12,345 �12,345 53,191

Figure 2.10:Two’s Complement Representations of 12,345 and�12,345, and Unsigned Representation
of 53,191.Note that the latter two have identical bit representations.

2.2. INTEGER REPRESENTATIONS 45

1 short int x = 12345;
2 short int mx = -x;
3

4 show_bytes((byte_pointer) &x, sizeof(short int));
5 show_bytes((byte_pointer) &mx, sizeof(short int));

When run on a big-endian machine, this code prints30 39 andcf c7, indicating that x has hexadecimal
representation0x3039, while mx has hexadecimal representation0xCFC7. Expanding these into binary
we get bit patterns[0011000000111001] for x and [1100111111000111] for mx. As Figure 2.10 shows,
Equation 2.2 yields values 12,345 and�12,345 for these two bit patterns.

2.2.3 Conversions Between Signed and Unsigned

Since bothB2Uw andB2Tw are bijections, they have well-defined inverses. DefineU2Bw to beB2U�1
w ,

andT2Bw to beB2T�1
2 . These functions give the unsigned or two’s complement bit patterns for a numeric

value. Given an integerx in the range0 � x < 2w, the functionU2Bw(x) gives the uniquew-bit unsigned
representation ofx. Similarly, whenx is in the range�2w�1 � x < 2w�1, the functionT2Bw(x) gives the
uniquew-bit two’s complement representation ofx. Observe that for values in the range0 � x < 2w�1,
both of these functions will yield the same bit representation—the most significant bit will be 0, and hence
it does not matter whether this bit has positive or negative weight.

Consider the following function:U2Tw(x)
:
= B2Tw(U2Bw(x)). This function takes a number between0

and2w�1� 1 and yields a number between�2w�1 and2w�1� 1, where the two numbers have identical bit
representations, except that the argument is unsigned, while the result has a two’s complement representa-
tion. Conversely, the functionT2Uw(x)

:
= B2Uw(T2Bw(x)) yields the unsigned number having the same

bit representation as the two’s complement value ofx . For example, as Figure 2.10 indicates, the 16-bit,
two’s complement representation of�12,345 is identical to the 16-bit, unsigned representation of 53,191.
ThereforeT2U 16(�12; 345) = 53; 191, andU2T 16(53; 191) = �12; 345.

These two functions might seem purely of academic interest, but they actually have great practical impor-
tance. They formally define the effect of casting between signed and unsigned values in C. For example,
consider executing the following code on a two’s complement machine:

1 int x = -1;
2 unsigned ux = (unsigned) x;

This code will setux to UMaxw, wherew is the number of bits in data typeint, since by Figure 2.9 we
can see that thew-bit two’s complement representation of�1 has the same bit representation asUMaxw. In
general, casting from a signed valuex to unsigned value(unsigned) x is equivalent to applying function
T2U . The cast does not change the bit representation of the argument, just how these bits are interpreted
as a number. Similarly, casting from unsigned valueu to signed value(int) u is equivalent to applying
functionU2T .

Practice Problem 2.13:

Using the table you filled in when solving Problem 2.12, fill in the following table describing the function
T2U 4:

46 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

0

2w–1

2w

0

2w–1

2w

Unsigned

Two’s
Complement 0

+2w–1

–2w–1

0

+2w–1

–2w–1

Figure 2.11: Conversion From Two’s Complement to Unsigned. FunctionT2U converts negative
numbers to large positive numbers.

x T2U 4(x)

�8
�6
�1
0

3

To get a better understanding of the relation between a signed numberx and its unsigned counterpart
T2Uw(x), we can use the fact that they have identical bit representations to derive a numerical rela-
tionship. Comparing Equations 2.1 and 2.2, we can see that for bit pattern~x, if we compute the differ-
enceB2Uw(~x) � B2Tw(~x), the weighted sums for bits from 0 tow � 2 will cancel each other, leav-
ing a value: B2Uw(~x) � B2Tw(~x) = xw�1(2

w�1 � �2w�1) = xw�12
w. This gives a relationship

B2Uw(~x) = xw�12
w + B2Tw(~x). If we let x = B2Tw(~x), we then have

B2Uw(T2Bw(x)) = T2Uw(x) = xw�12
w + x (2.3)

This relationship is useful for proving relationships between unsigned and two’s complement arithmetic. In
the two’s complement representation ofx, bit xw�1 determines whether or notx is negative, giving

T2Uw(x) =

(
x+ 2w; x < 0
x; x � 0

(2.4)

Figure 2.11 illustrates the behavior of functionT2U . As it illustrates, when mapping a signed number
to its unsigned counterpart, negative numbers are converted to large positive numbers, while nonnegative
numbers remain unchanged.

Practice Problem 2.14:

Explain how Equation 2.4 applies to the entries in the table you generated when solving Problem 2.13.

Going in the other direction, we wish to derive the relationship between an unsigned numberx and its signed
counterpartU2Tw(x). If we let x = B2Uw(~x), we have

B2Tw(U2Bw(x)) = U2Tw(x) = �xw�12
w + x (2.5)

2.2. INTEGER REPRESENTATIONS 47

0

2w–1

2w

Unsigned
Two’s
Complement0

+2w–1

–2w–1

Figure 2.12: Conversion From Unsigned to Two’s Complement. FunctionU2T converts numbers
greater than2w�1 � 1 to negative values.

In the unsigned representation ofx, bit xw�1 determines whether or notx is greater than or equal to2w�1,
giving

U2Tw(x) =

(
x; x < 2w�1

x� 2w; x � 2w�1 (2.6)

This behavior is illustrated in Figure 2.12. For small (< 2w�1) numbers, the conversion from unsigned to
signed preserves the numeric value. For large (� 2w�1) the number is converted to a negative value.

To summarize, we can consider the effects of converting in both directions between unsigned and two’s
complement representations. For values in the range0 � x < 2w�1 we haveT2Uw(x) = x and
U2Tw(x) = x. That is, numbers in this range have identical unsigned and two’s complement represen-
tations. For values outside of this range, the conversions either add or subtract2w. For example, we have
T2Uw(�1) = �1+2w = UMaxw—the negative number closest to 0 maps to the largest unsigned number.
At the other extreme, one can see thatT2Uw(TMinw) = �2w�1 + 2w = 2w�1 = TMaxw + 1—the most
negative number maps to an unsigned number just outside the range of positive, two’s complement numbers.
Using the example of Figure 2.10, we can see thatT2U 16(�12; 345) = 65; 536 +�12; 345 = 53; 191.

2.2.4 Signed vs. Unsigned in C

As indicated in Figure 2.8, C supports both signed and unsigned arithmetic for all of its integer data types.
Although the C standard does not specify a particular representation of signed numbers, almost all machines
use two’s complement. Generally, most numbers are signed by default. For example, when declaring a
constant such as12345 or 0x1A2B, the value is considered signed. To create an unsigned constant, the
character ‘U’ or ‘ u’ must be added as suffix, e.g.,12345U or 0x1A2Bu.

C allows conversion between unsigned and signed. The rule is that the underlying bit representation is not
changed. Thus, on a two’s complement machine, the effect is to apply the functionU2Tw when converting
from unsigned to signed, andT2Uw when converting from signed to unsigned, wherew is the number of
bits for the data type.

Conversions can happen due to explicit casting, such as in the code:

1 int tx, ty;

48 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

2 unsigned ux, uy;
3

4 tx = (int) ux;
5 uy = (unsigned) ty;

or implicitly when an expression of one type is assigned to a variable of another, as in the code:

1 int tx, ty;
2 unsigned ux, uy;
3

4 tx = ux; /* Cast to signed */
5 uy = ty; /* Cast to unsigned */

When printing numeric values withprintf, the directives %d,%u, and%xshould be used to print a number
as a signed decimal, an unsigned decimal, and in hexadecimal format, respectively. Note thatprintf does
not make use of any type information, and so it is possible to print a value of typeint with directive%u
and a value of typeunsigned with directive%d. For example, consider the following code:

1 int x = -1;
2 unsigned u = 2147483648; /* 2 to the 31st */
3

4 printf("x = %u = %d\n", x, x);
5 printf("u = %u = %d\n", u, u);

When run on a 32-bit machine it prints the following:

x = 4294967295 = -1
u = 2147483648 = -2147483648

In both cases,printf prints the word first as if it represented an unsigned number and second as if it
represented a signed number. We can see the conversion routines in action:T2U 32(�1) = UMax 32 =
4; 294; 967; 295 andU2T 32(2

31) = 231 � 232 = �231 = TMin32.

Some peculiar behavior arises due to C’s handling of expressions containing combinations of signed and
unsigned quantities. When an operation is performed where one operand is signed and the other is unsigned,
C implicitly casts the signed argument to unsigned and performs the operations assuming the numbers are
nonnegative. As we will see, this convention makes little difference for standard arithmetic operations, but
it leads to nonintuitive results for relational operators such as< and>. Figure 2.13 shows some sample
relational expressions and their resulting evaluations, assuming a 32-bit machine using two’s complement
representation. The nonintuitive cases are marked by ‘*’. Consider the comparison-1 < 0U . Since the
second operand is unsigned, the first one is implicitly cast to unsigned, and hence the expression is equivalent
to the comparison4294967295U < 0U (recall thatT2Uw(�1) = UMaxw), which of course is false.
The other cases can be understood by similar analyses.

2.2. INTEGER REPRESENTATIONS 49

Expression Type Evaluation
0 == 0U unsigned 1
-1 < 0 signed 1
-1 < 0U unsigned 0 *
2147483647 > -2147483648 signed 1
2147483647U > -2147483648 unsigned 0 *
2147483647 > (int) 2147483648U signed 1 *
-1 > -2 signed 1
(unsigned) -1 > -2 unsigned 0 *

Figure 2.13:Effects of C Promotion Rules on 32-Bit Machine.Nonintuitive cases marked by ‘*’. When
either operand of a comparison is unsigned, the other operand is implicitly cast to unsigned.

2.2.5 Expanding the Bit Representation of a Number

One common operation is to convert between integers having different word sizes, while retaining the same
numeric value. Of course, this may not be possible when the destination data type is too small to represent
the desired value. Converting from a smaller to a larger data type, however, should always be possible. To
convert an unsigned number to a larger data type, we can simply add leading 0s to the representation. this
operation is known aszero extension. For converting a two’s complement number to a larger data type, the
rule is to perform asign extension, adding copies of the most significant bit to the representation. Thus,
if our original value has bit representation[xw�1; xw�2; : : : ; x0], the expanded representation would be
[xw�1; : : : ; xw�1; xw�1; xw�2; : : : ; x0].

As an example, consider the following code:

1 short sx = val; /* -12345 */
2 unsigned short usx = sx; /* 53191 */
3 int x = sx; /* -12345 */
4 unsigned ux = usx; /* 53191 */
5

6 printf("sx = %d:\t", sx);
7 show_bytes((byte_pointer) &sx, sizeof(short));
8 printf("usx = %u:\t", usx);
9 show_bytes((byte_pointer) &usx, sizeof(unsigned short));

10 printf("x = %d:\t", x);
11 show_bytes((byte_pointer) &x, sizeof(int));
12 printf("ux = %u:\t", ux);
13 show_bytes((byte_pointer) &ux, sizeof(unsigned));

When run on a 32-bit, big-endian machine using two’s complement representations this code prints:

sx = -12345: cf c7
usx = 53191: cf c7
x = -12345: ff ff cf c7
ux = 53191: 00 00 cf c7

50 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

We see that although the two’s complement representation of�12,345 and the unsigned representation of
53,191 are identical for a 16-bit word size, they differ for a 32-bit word size. In particular,�12,345 has
hexadecimal representation0xFFFFCFC7, while 53,191 has hexadecimal representation0x0000CFC7.
The former has been sign-extended—16 copies of the most significant bit 1, having hexadecimal represen-
tation 0xFFFF, have been added as leading bits. The latter has been extended with 16 leading 0s, having
hexadecimal representation0x0000.

Can we justify that sign extension works? What we want to prove is that

B2Tw+k([xw�1; : : : ; xw�1; xw�1; xw�2; : : : ; x0]) = B2Tw([xw�1; xw�2; : : : ; x0])

where in the expression on the left-hand side, we have madek additional copies of bitxw�1. The proof
follows by induction onk. That is, if we can prove that sign-extending by one bit preserves the numeric
value, then this property will hold when sign-extending by an arbitrary number of bits. Thus, the task
reduces to proving that

B2Tw+1([xw�1; xw�1; xw�2; : : : ; x0]) = B2Tw([xw�1; xw�2; : : : ; x0])

Expanding the left-hand expression with Equation 2.2 gives

B2Tw+1([xw�1; xw�1; xw�2; : : : ; x0]) = �xw�12
w +

w�1X
i=0

xi2
i

= �xw�12
w + xw�12

w�1 +
w�2X
i=0

xi2
i

= �xw�1(2
w � 2w�1) +

w�2X
i=0

xi2
i

= �xw�12
w�1 +

w�2X
i=0

xi2
i

= B2Tw([xw�1; xw�2; : : : ; x0])

The key property we exploit is that�2w + 2w�1 = �2w�1. Thus, the combined effect of adding a bit of
weight�2w and of converting the bit having weight�2w�1 to be one with weight2w�1 is to preserve the
original numeric value.

One point worth making is that the relative order of conversion from one data size to another and between
unsigned and signed can affect the behavior of a program. Consider the following additional code for our
previous example:

1 unsigned uy = x; /* Mystery! */
2

3 printf("uy = %u:\t", uy);
4 show_bytes((byte_pointer) &uy, sizeof(unsigned));

2.2. INTEGER REPRESENTATIONS 51

This portion of the code causes the following to be printed:

uy = 4294954951: ff ff cf c7

This shows that the expressions:

(unsigned) (int) sx /* 4294954951 */

and

(unsigned) (unsigned short) sx /* 53191 */

produce different values, even though the original and the final data types are the same. In the former
expression, we first sign extend the 16-bitshort to a 32-bitint, whereas zero extension is performed in
the latter expression.

2.2.6 Truncating Numbers

Suppose that rather than extending a value with extra bits, we reduce the number of bits representing a
number. This occurs, for example, in the code:

1 int x = 53191;
2 short sx = (short) x; /* -12345 */
3 int y = sx; /* -12345 */

On a typical 32-bit machine, when we castx to be short, we truncate the 32-bit int to be a 16-bit
short int. As we saw before, this 16-bit pattern is the two’s complement representation of�12,345.
When we cast this back toint, sign extension will set the high-order 16 bits to 1s, yielding the 32-bit two’s
complement representation of�12,345.

When truncating aw-bit number~x = [xw�1; xw�2; : : : ; x0] to ak-bit number, we drop the high-orderw�k
bits, giving a bit vector~x0 = [xk�1; xk�2; : : : ; x0]. Truncating a number can alter its value—a form of
overflow. We now investigate what numeric value will result. For an unsigned numberx, the result of
truncating it tok bits is equivalent to computingx mod 2k. This can be seen by applying the modulus
operation to Equation 2.1:

B2Uw([xw; xw�1; : : : ; x0]) mod 2k =

"
w�1X
i=0

xi2
i

#
mod 2k

=

"
k�1X
i=0

xi2
i

#
mod 2k

=
k�1X
i=0

xi2
i

= B2U k([xk; xk�1; : : : ; x0])

52 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

In the above derivation we make use of the property that2i mod 2k = 0 for anyi � k, and that
Pk�1

i=0 xi2
i �Pk�1

i=0 2i = 2k � 1 < 2k.

For a two’s complement numberx, a similar argument shows thatB2Tw([xw; xw�1; : : : ; x0]) mod 2k =
B2U k([xk; xk�1; : : : ; x0]). That is,x mod 2k can be represented by an unsigned number having bit-level
representation[xk�1; : : : ; x0]. In general, however, we treat the truncated number as being signed. This will
have numeric valueU2T k(x mod 2k).

Summarizing, the effects of truncation are:

B2U k([xk; xk�1; : : : ; x0]) = B2Uw([xw; xw�1; : : : ; x0]) mod 2k (2.7)

B2T k([xk; xk�1; : : : ; x0]) = U2T k(B2Tw([xw; xw�1; : : : ; x0]) mod 2k) (2.8)

Practice Problem 2.15:
Suppose we truncate a four-bit value (represented by hex digits0 throughF) to a three-bit value (repre-
sented as hex digits0 through7). Fill in the table below showing the effect of this truncation for some
cases, in terms of the unsigned and two’s complement interpretations of those bit patterns.

Hex Unsigned Two’s Complement
Original Truncated Original Truncated Original Truncated

0 0 0 0

3 3 3 3

8 0 8 �8
A 2 10 �6
F 7 15 �1

Explain how Equations 2.7 and 2.8 apply to these cases.

2.2.7 Advice on Signed vs. Unsigned

As we have seen, the implicit casting of signed to unsigned leads to some nonintuitive behavior. Nonintuitive
features often lead to program bugs, and ones involving the nuances of implicit casting can be especially
difficult to see. Since the casting is invisible, we can often overlook its effects.

Practice Problem 2.16:
Consider the following code that attempts to sum the elements of an arraya, where the number of
elements is given by parameterlength :

1 /* WARNING: This is buggy code */
2 float sum_elements(float a[], unsigned length)
3 {
4 int i;
5 float result = 0;
6

7 for (i = 0; i <= length-1; i++)
8 result += a[i];
9 return result;

10 }

2.3. INTEGER ARITHMETIC 53

When run with argumentlength equal to 0, this code should return0:0. Instead it encounters a memory
error. Explain why this happens. Show how this code can be corrected.

One way to avoid such bugs is to never use unsigned numbers. In fact, few languages other than C support
unsigned integers. Apparently these other language designers viewed them as more trouble than they are
worth. For example, Java supports only signed integers, and it requires that they be implemented with two’s
complement arithmetic. The normal right shift operator>> is guaranteed to perform an arithmetic shift.
The special operator>>> is defined to perform a logical right shift.

Unsigned values are very useful when we want to think of words as just collections of bits with no nu-
meric interpretation. This occurs, for example, when packing a word withflagsdescribing various Boolean
conditions. Addresses are naturally unsigned, so systems programmers find unsigned types to be helpful.
Unsigned values are also useful when implementing mathematical packages for modular arithmetic and for
multiprecision arithmetic, in which numbers are represented by arrays of words.

2.3 Integer Arithmetic

Many beginning programmers are surprised to find that adding two positive numbers can yield a negative
result, and that the comparisonx < y can yield a different result than the comparisonx-y < 0. These
properties are artifacts of the finite nature of computer arithmetic. Understanding the nuances of computer
arithmetic can help programmers write more reliable code.

2.3.1 Unsigned Addition

Consider two nonnegative integersx andy, such that0 � x; y � 2w � 1. Each of these numbers can
be represented byw-bit unsigned numbers. If we compute their sum, however, we have a possible range
0 � x+y � 2w+1�2. Representing this sum could requirew+1 bits. For example, Figure 2.14 shows a plot
of the functionx+ y whenx andy have four-bit representations. The arguments (shown on the horizontal
axes) range from 0 to 15, but the sum ranges from 0 to 30. The shape of the function is a sloping plane. If
we were to maintain the sum as aw + 1 bit number and add it to another value, we may requirew + 2 bits,
and so on. This continued “word size inflation” means we cannot place any bound on the word size required
to fully represent the results of arithmetic operations. Some programming languages, such as Lisp, actually
supportinfinite precisionarithmetic to allow arbitrary (within the memory limits of the machine, of course)
integer arithmetic. More commonly, programming languages support fixed-precision arithmetic, and hence
operations such as “addition” and “multiplication” differ from their counterpart operations over integers.

Unsigned arithmetic can be viewed as a form of modular arithmetic. Unsigned addition is equivalent to
computing the sum modulo2w. This value can be computed by simply discarding the high-order bit in the
w + 1-bit representation ofx + y. For example, consider a four-bit number representation withx = 9
andy = 12, having bit representations[1001] and [1100], respectively. Their sum is21, having a 5-bit
representation[10101]. But if we discard the high-order bit, we get[0101], that is, decimal value5. This
matches the value21 mod 16 = 5.

In general, we can see that ifx+y < 2w, the leading bit in thew+1-bit representation of the sum will equal

54 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12
14

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12
14

0

4

8

12

16

20

24

28

32

Integer Addition

Figure 2.14:Integer Addition. With a four-bit word size, the sum could require 5 bits.

0

2w

2w+1
x + y

x +u y

Overflow

Figure 2.15:Relation Between Integer Addition and Unsigned Addition. Whenx + y is greater than
2w � 1, the sum overflows.

2.3. INTEGER ARITHMETIC 55

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12
14

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12
14

0

2

4

6

8

10

12

14

16

Unsigned Addition (4-bit word)

Normal

Overflow

Normal

Overflow

Figure 2.16:Unsigned Addition. With a four-bit word size, addition is performed modulo 16.

0, and hence discarding it will not change the numeric value. On the other hand, if2w � x+ y < 2w+1, the
leading bit in thew + 1-bit representation of the sum will equal 1, and hence discarding it is equivalent to
subtracting2w from the sum. These two cases are illustrated in Figure 2.15. This will give us a value in the
range0 � x+ y� 2w < 2w+1 � 2w = 2w, which is precisely the modulo2w sum ofx andy. Let us define
the operation+u

w for argumentsx andy such that0 � x; y < 2w as:

x +u
w y =

(
x+ y; x+ y < 2w

x+ y � 2w; 2w � x+ y < 2w+1 (2.9)

This is precisely the result we get in C when performing addition on twow-bit unsigned values.

An arithmetic operation is said tooverflowwhen the full integer result cannot fit within the word size limits
of the data type. As Equation 2.9 indicates, overflow occurs when the two operands sum to2w or more.
Figure 2.16 shows a plot of the unsigned addition function for word sizew = 4. The sum is computed
modulo24 = 16. Whenx + y < 16, there is no overflow, andx +u

4 y is simplyx + y. This is shown as
the region forming a sloping plane labeled “Normal.” Whenx + y � 16, the addition overflows, having

56 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

the effect of decrementing the sum by 16. This is shown as the region forming a sloping plane labeled
“Overflow.”

When executing C programs, overflows are not signalled as errors. At times, however, we might wish to
determine whether overflow has occurred. For example, suppose we computes

:
= x +u

w y, and we wish to
determine whethers equalsx+y. We claim that overflow has occurred if and only ifs < x (or equivalently
s < y.) To see this, observe thatx + y � x, and hence ifs did not overflow, we will surely haves � x.
On the other hand, ifs did overflow, we haves = x + y � 2w. Given thaty < 2w, we havey � 2w < 0,
and hences = x+ y � 2w < x. In our earlier example, we saw that9 +u

4 12 = 5. We can see that overflow
occurred, since5 < 9.

Modular addition forms a mathematical structure known as anAbelian group, named after the Danish math-
ematician Niels Henrik Abel (1802–1829). That is, it is commutative (that’s where the “Abelian” part
comes in) and associative. It has an identity element 0, and every element has an additive inverse. Let us
consider the set ofw-bit unsigned numbers with addition operation+u

w. For every valuex, there must
be some value- u

w x such that- u
w x +u

w x = 0. Whenx = 0, the additive inverse is clearly0. For
x > 0, consider the value2w � x. Observe that this number is in the range0 � 2w � x < 2w, and
(x+ 2w � x) mod 2w = 2w mod 2w = 0. Hence it is the inverse ofx under +u

w. These two cases lead to
the following equation for0 � x < 2w:

- u
w x =

(
x; x = 0
2w � x; x > 0

(2.10)

Practice Problem 2.17:

We can represent a bit pattern of lengthw = 4 with a single hex digit. For an unsigned interpretation of
these digits use Equation 2.10 fill in the following table giving the values and the bit representations (in
hex) of the unsigned additive inverses of the digits shown.

x - u
4
x

Hex Decimal Decimal Hex
0
3
8
A
F

2.3.2 Two’s Complement Addition

A similar problem arises for two’s complement addition. Given integer valuesx andy in the range�2w�1 �
x; y � 2w�1 � 1, their sum is in the range�2w � x + y � 2w � 2, potentially requiringw + 1 bits to
represent exactly. As before, we avoid ever-expanding data sizes by truncating the representation tow bits.
The result is not as familiar mathematically as modular addition, however.

Thew-bit two’s complement sum of two numbers has the exact same bit-level representation as the un-
signed sum. In fact, most computers use the same machine instruction to perform either unsigned or signed

2.3. INTEGER ARITHMETIC 57

0

–2w –1

+2w
Positive Overflow

Negative Overflow
–2w

+2w –1

0

–2w –1

+2w –1

x + y

x +t yCase 4

Case 3

Case 2

Case 1

Figure 2.17:Relation Between Integer and Two’s Complement Addition. Whenx + y is less than
�2w�1, there is a negative overflow. When it is greater than2w�1 + 1, there is a positive overflow.

addition. Thus, we can define two’s complement addition for word sizew, denoted as+t
w on operandsx

andy such that�2w�1 � x; y < 2w�1 as

x +t
w y

:
= U2Tw(T2U w(x) +u

w T2Uw(y)) (2.11)

By Equation 2.3 we can writeT2Uw(x) asxw�12
w +x, andT2Uw(y) asyw�12

w + y. Using the property
that+u

w is simply addition modulo2w, along with the properties of modular addition, we then have

x +t
w y = U2Tw(T2U w(x) +u

w T2Uw(y))

= U2Tw[(�xw�12
w + x+�yw�12

w + y) mod 2w]

= U2Tw[(x+ y) mod 2w]

The termsxw�12
w andyw�12

w drop out since they equal 0 modulo2w.

To better understand this quantity, let us definez as the integer sumz :
= x+ y, z0 asz0 := z mod 2w, andz00

asz00 := U2Tw(z
0). The valuez00 is equal tox+t

w y. We can divide the analysis into four cases as illustrated
in Figure 2.17:

1. �2w � z < �2w�1. Then we will havez0 = z + 2w. This gives0 � z0 < �2w�1 + 2w = 2w�1.
Examining Equation 2.6, we see thatz0 is in the range such thatz00 = z0. This case is referred to as
negative overflow. We have added two negative numbersx andy (that’s the only way we can have
z < �2w�1) and obtained a nonnegative resultz00 = x+ y + 2w.

2. �2w�1 � z < 0. Then we will again havez0 = z + 2w, giving�2w�1 + 2w = 2w�1 � z0 < 2w.
Examining Equation 2.6, we see thatz0 is in such a range thatz00 = z0 � 2w, and thereforez00 =
z0 � 2w = z + 2w � 2w = z. That is, our two’s complement sumz00 equals the integer sumx+ y.

3. 0 � z < 2w�1. Then we will havez0 = z, giving 0 � z0 < 2w�1, and hencez00 = z0 = z. Again, the
two’s complement sumz00 equals the integer sumx+ y.

58 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

x y x+ y x +t
4 y Case

�8 �5 �13 3 1
[1000] [1011] [0011]

�8 �8 �16 0 1
[1000] [1000] [0000]

�8 5 �3 �3 2
[1000] [0101] [1101]

2 5 7 7 3
[0010] [0101] [0111]

5 5 10 �6 4
[0101] [0101] [1010]

Figure 2.18:Two’s Complement Addition Examples. The bit-level representation of the four-bit two’s
complement sum can be obtained by performing binary addition of the operands and truncating the result to
4 bits.

4. 2w�1 � z < 2w. We will again havez0 = z, giving 2w�1 � z0 < 2w. But in this range we have
z00 = z0 � 2w, giving z00 = x+ y � 2w. This case is referred to aspositive overflow. We have added
two positive numbersx andy (that’s the only way we can havez � 2w�1) and obtained a negative
resultz00 = x+ y � 2w.

By the preceding analysis, we have shown that when operation+t
w is applied to valuesx andy in the range

�2w�1 � x; y � 2w�1 � 1, we have

x +t
w y =

8><
>:

x+ y � 2w; 2w�1 � x+ y Positive Overflow
x+ y; �2w�1 � x+ y < 2w�1 Normal
x+ y + 2w; x+ y < �2w�1 Negative Overflow

(2.12)

As an illustration, Figure 2.18 shows some examples of four-bit two’s complement addition. Each example
is labeled by the case to which it corresponds in the derivation of Equation 2.12. Note that24 = 16, and
hence negative overflow yields a result 16 more than the integer sum, and positive overflow yields a result
16 less. We include bit-level representations of the operands and the result. Observe that the result can be
obtained by performing binary addition of the operands and truncating the result to four bits.

Figure 2.19 illustrates two’s complement addition for word sizew = 4. The operands range between�8
and7. Whenx + y < �8, two’s complement addition has a negative underflow, causing the sum to be
incremented by 16. When�8 � x+ y < 8, the addition yieldsx + y. Whenx + y � 8, the addition has
a positive overflow, causing the sum to be decremented by 16. Each of these three ranges forms a sloping
plane in the figure.

Equation 2.12 also lets us identify the cases where overflow has occurred. When bothx andy are negative,
but x +t

w y � 0, we have negative overflow. When bothx andy are positive, butx +t
w y < 0, we have

positive overflow.

Practice Problem 2.18:

2.3. INTEGER ARITHMETIC 59

-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4
6

-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4
6

-8

-6

-4

-2

0

2

4

6

8

Two's Complement Addition (4-bit word)

Normal

Positive
Overflow

Negative
Overflow

Normal

Positive
Overflow

Negative
Overflow

Figure 2.19:Two’s Complement Addition. With a four-bit word size, addition can have a negative overflow
whenx+ y < �8 and a positive overflow whenx+ y � 8.

60 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Fill in the following table in the style of Figure 2.18. Give the integer values of the 5-bit arguments,
the values of both their integer and two’s complement sums, the bit-level representation of the two’s
complement sum, and the case from the derivation of Equation 2.12.

x y x+ y x +t
4
y Case

[10000] [10101]

[10000] [10000]

[11000] [00111]

[11110] [00101]

[01000] [01000]

2.3.3 Two’s Complement Negation

We can see that every numberx in the range�2w�1 � x < 2w�1 has an additive inverse under+t
w

as follows. First, forx 6= �2w�1, we can see that its additive inverse is simply�x. That is, we have
�2w�1 < �x < 2w�1 and�x +t

w x = �x + x = 0. For x = �2w�1 = TMinw, on the other hand,
�x = 2w�1 cannot be represented as aw-bit number. We claim that this special value has itself as the
additive inverse under+t

w. The value of�2w+1 +t
w�2w+1 is given by the third case of Equation 2.12, since

�2w�1 + �2w�1 = �2w. This gives�2w+1 +t
w �2w+1 = �2w + 2w = 0. From this analysis we can

define the two’s complement negation operation- t
w for x in the range�22�1 � x < 2w�1 as:

- t
w x =

(
�2w�1; x = �2w�1

�x; x > �2w�1 (2.13)

Practice Problem 2.19:

We can represent a bit pattern of lengthw = 4 with a single hex digit. For a two’s complement in-
terpretation of these digits, fill in the following table to determine the additive inverses of the digits
shown.

x - t
4
x

Hex Decimal Decimal Hex
0
3
8
A
F

What do you observe about the bit patterns generated by two’s complement and unsigned (Problem 2.17)
negation.

2.3. INTEGER ARITHMETIC 61

A well-known technique for performing two’s complement negation at the bit level is to complement the
bits and then increment the result. In C, this can be written as˜x + 1 . To justify the correctness of this
technique, observe that for any single bitxi, we have˜ xi = 1 � xi. Let ~x be a bit vector of lengthw
andx :

= B2Tw(~x) be the two’s complement number it represents. By Equation 2.2, the complemented bit
vector˜ ~x has numeric value

B2Tw(˜ ~x) = �(1� xw�1)2
w�1 +

w�2X
i=0

(1� xi)2
i

=

"
�2w�1 +

w�2X
i=0

2i
#
�
"
�xw�12

w�1 +
w�2X
i=0

xi2
i

#

= [�2w�1 + 2w�1 � 1]� B2Tw(~x)

= �1� x

The key simplification in the above derivation is that
Pw�2

i=0 2i = 2w�1 � 1. It follows that by incrementing
˜ ~x we obtain�x.

To increment a numberx represented at the bit-level as~x :
= [xw�1; xw�2; : : : ; x0], define the operationincr

as follows. Letk be the position of the rightmost zero, such that~x is of the form[xw�1; xw�2; : : : ; xk+1; 0; 1; : : : ; 1].
We then defineincr(~x) to be[xw�1; xw�2; : : : ; xk+1; 1; 0; : : : ; 0]. For the special case where the bit-level
representation ofx is [1; 1; : : : ; 1], defineincr(~x) to be[0; : : : ; 0]. To show thatincr(~x) yields the bit-level
representation ofx +t

w 1, consider the following cases:

1. When~x = [1; 1; : : : ; 1], we havex = �1. The incremented valueincr(~x) :
= [0; : : : ; 0] has numeric

value0.

2. Whenk = w � 1, i.e.,~x = [0; 1; : : : ; 1], we havex = TMaxw. The incremented valueincr(~x) =
[1; 0; : : : ; 0] has numeric valueTMinw. From Equation 2.12, we can see thatTMaxw +t

w 1 is one of
the positive overflow cases, yieldingTMinw.

3. Whenk < w � 1, i.e.,x 6= TMaxw andx 6= �1, we can see that the low-orderk+1 bits of incr(~x)
has numeric value2k, while the low-orderk + 1 bits of~x has numeric value

Pk�1
i=0 2i = 2k � 1. The

high-orderw� k+ 1 bits have matching numeric values. Thus,incr(~x) has numeric valuex+ 1. In
addition, forx 6= TMaxw, adding 1 tox will not cause an overflow, and hencex +t

w 1 has numeric
valuex+ 1 as well.

As illustrations, Figure 2.20 shows how complementing and incrementing affect the numeric values of
several four-bit vectors.

2.3.4 Unsigned Multiplication

Integersx andy in the range0 � x; y � 2w � 1 can be represented asw-bit unsigned numbers, but their
productx � y can range between0 and(2w � 1)2 = 22w � 2w+1 +1. This could require as many as2w bits
to represent. Instead, unsigned multiplication in C is defined to yield thew-bit value given by the low-order

62 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

~x ˜ ~x incr(˜ ~x)
[0101] 5 [1010] �6 [1011] �5
[0111] 7 [1000] �8 [1001] �7
[1100] �4 [0011] 3 [0100] 4
[0000] 0 [1111] �1 [0000] 0
[1000] �8 [0111] 7 [1000] �8

Figure 2.20:Examples of Complementing and Incrementing four-bit numbers.The effect is to compute
the two’s value negation.

w bits of the2w-bit integer product. By Equation 2.7, this can be seen to be equivalent to computing the
product modulo2w. Thus, the effect of thew-bit unsigned multiplication operation* u

w is:

x * u
w y = (x � y) mod 2w (2.14)

It is well known that modular arithmetic forms a ring. We can therefore deduce that unsigned arithmetic
overw-bit numbers forms a ringhf0; : : : ; 2w � 1g;+u

w; *
u
w; -

u
w; 0; 1i.

2.3.5 Two’s Complement Multiplication

Integersx andy in the range�2w�1 � x; y � 2w�1 � 1 can be represented asw-bit two’s complement
numbers, but their productx � y can range between�2w�1 � (2w�1 � 1) = �22w�2 + 2w�1 and�2w�1 �
�2w�1 = 22w�2. This could require as many as2w bits to represent in two’s complement form—most
cases would fit into2w� 1 bits, but the special case of22w�2 requires the full2w bits (to include a sign bit
of 0). Instead, signed multiplication in C is generally performed by truncating the2w-bit product tow bits.
By Equation 2.8, the effect of thew-bit two’s complement multiplication operation* t

w is:

x * t
w y = U2Tw((x � y) mod 2w) (2.15)

We claim that the bit-level representation of the product operation is identical for both unsigned and two’s
complement multiplication. That is, given bit vectors~x and~y of lengthw, the bit-level representation of the
unsigned productB2Uw(~x)* u

wB2Uw(~y) is identical to the bit-level representation of the two’s complement
productB2Tw(~x) * t

w B2Tw(~x). This implies that the machine can use a single type of multiply instruction
to multiply both signed and unsigned integers.

To see this, letx = B2Tw(~x) andy = B2Tw(~y) be the two’s complement values denoted by these bit
patterns, and letx0 = B2Uw(~x) andy0 = B2Uw(~y) be the unsigned values. From Equation 2.3, we have
x0 = x+ xw�12

w, andy0 = y + yw�12
w. Computing the product of these values modulo2w gives:

(x0 � y0) mod 2w = [(x+ xw�12
w) � (y + yw�12

w)] mod 2w (2.16)

= [x � y + (xw�1y + yw�1x)2
w + xw�1yw�12

2w] mod 2w (2.17)

= (x � y) mod 2w (2.18)

Thus, the low-orderw bits ofx � y andx0 � y0 are identical.

2.3. INTEGER ARITHMETIC 63

Mode x y x � y Truncatedx � y
Unsigned 5 [101] 3 [011] 15 [001111] 7 [111]
Two’s Comp. �3 [101] 3 [011] �9 [110111] �1 [111]

Unsigned 4 [100] 7 [111] 28 [011100] 4 [100]
Two’s Comp. �4 [100] �1 [111] 4 [000100] �4 [100]

Unsigned 3 [011] 3 [011] 9 [001001] 1 [001]
Two’s Comp. 3 [011] 3 [011] 9 [001001] 1 [001]

Figure 2.21:3-Bit Unsigned and Two’s Complement Multiplication Examples. Although the bit-level
representations of the full products may differ, those of the truncated products are identical.

As illustrations, Figure 2.21 shows the results of multiplying different 3-bit numbers. For each pair of bit-
level operands, we perform both unsigned and two’s complement multiplication. Note that the unsigned,
truncated product always equalsx�y mod 8, and that the bit-level representations of both truncated products
are identical.

Practice Problem 2.20:

Fill in the following table showing the results of multiplying different 3-bit numbers, in the style of
Figure 2.21

Mode x y x � y Truncatedx � y
Unsigned [110] [010]

Two’s Comp. [110] [010]

Unsigned [001] [111]

Two’s Comp. [001] [111]

Unsigned [111] [111]

Two’s Comp. [111] [111]

We can see that unsigned arithmetic and two’s complement arithmetic overw-bit numbers are isomorphic—
the operations+u

w, - u
w, and* u

w have the exact same effect at the bit level as do+t
w, - t

w, and* t
w. From this

we can deduce that two’s complement arithmetic forms a ringhf�2w�1; : : : ; 2w�1 � 1g;+t
w; *

t
w; -

t
w; 0; 1i.

2.3.6 Multiplying by Powers of Two

On most machines, the integer multiply instruction is fairly slow—requiring 12 or more clock cycles—
whereas other integer operations such as addition, subtraction, bit-level operations, and shifting require
only one clock cycle. As a consequence, one important optimization used by compilers is to attempt to
replace multiplications by constant factors with combinations of shift and addition operations.

Let x be the unsigned integer represented by bit pattern[xw�1; xw�2; : : : ; x0]. Then for anyk � 0, we
claim the bit-level representation ofx2k is given by[xw�1; xw�2; : : : ; x0; 0; : : : ; 0], wherek 0s have been

64 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

added to the right. This property can be derived using Equation 2.1:

B2Uw+k([xw�1; xw�2; : : : ; x0; 0; : : : ; 0]) =
w�1X
i=0

xi2
i+k

=

"
w�1X
i=0

xi2
i

#
� 2k

= x2k

Fork < w, we can truncate the shifted bit vector to be of lengthw, giving [xw�k�1; xw�k�2; : : : ; x0; 0; : : : ; 0].
By Equation 2.7, this bit-vector has numeric valuex2k mod 2w = x * u

w 2k. Thus, for unsigned variable
x , the C expressionx << k is equivalent tox * pwr2k, where pwr2k equals2k . In particular, we can
computepwr2k as1U << k.

By similar reasoning, we can show that for a two’s complement numberx having bit pattern[xw�1; xw�2; : : : ; x0],
and anyk in the range0 � k < w, bit pattern[xw�k�1; : : : ; x0; 0; : : : ; 0] will be the two’s complement
representation ofx * t

w 2k. Therefore, for signed variablex , the C expressionx << k is equivalent to
x * pwr2k, where pwr2k equals2k .

Note that multiplying by a power of two can cause overflow with either unsigned or two’s complement
arithmetic. Our result shows that even then we will get the same effect by shifting.

Practice Problem 2.21:

As we will see in Chapter 3, theleal instruction on an Intel-compatible processor can perform com-
putations of the forma<<k + b , wherek is either 0, 1, or 2, andb is either 0 or some program value.
The compiler often uses this instruction to perform multiplications by constant factors. For example, we
can compute3*a asa<<1 + a .

What multiples ofa can be computed with this instruction?

2.3.7 Dividing by Powers of Two

Integer division on most machines is even slower than integer multiplication—requiring 30 or more clock
cycles. Dividing by a power of two can also be performed using shift operations, but we use a right shift
rather than a left shift. The two different shifts—logical and arithmetic—serves this purpose for unsigned
and two’s complement numbers, respectively.

Integer division always rounds toward zero. Forx � 0 andy > 0, the result should bebx=yc, where for any
real numbera, bac is defined to be the unique integera0 such thata0 � a < a0+1. As examplesb3:14c = 3,
b�3:14c = �4, andb3c = 3.

Consider the effect of performing a logical right shift on an unsigned number. Letx be the unsigned
integer represented by bit pattern[xw�1; xw�2; : : : ; x0], andk be in the range0 � k < w. Let x0 be the
unsigned number withw� k-bit representation[xw�1; xw�2; : : : ; xk], andx00 be the unsigned number with
k-bit representation[xk�1; : : : ; x0]. We claim thatx0 = bx=2kc. To see this, by Equation 2.1, we have
x =

Pw�1
i=0 xi2

i, x0 =
Pw�k�1

i=k xi2
i�k andx00 =

Pk�1
i=0 xi2

i. We can therefore writex asx = 2kx0 + x00.

2.3. INTEGER ARITHMETIC 65

Observe that0 � x00 �Pk�1
i=0 2i = 2k � 1, and hence0 � x00 < 2k, implying thatbx00=2kc = 0. Therefore

bx=2kc = bx0 + x00=2kc = x0 + bx00=2kc = x0.

Observe that performing a logical right shift of bit vector[xw�1; xw�2; : : : ; x0] by k yields bit vector

[0; :::; 0; xw�1; xw�2; : : : ; xk]:

This bit vector has numeric valuex0. That is, logically right shifting an unsigned number byk is equiv-
alent to dividing it by2k. Therefore, for unsigned variablex , the C expressionx >> k is equivalent to
x / pwr2k, where pwr2k equals2k .

Now consider the effect of performing an arithmetic right shift on a two’s complement number. Letx be the
two’s complement integer represented by bit pattern[xw�1; xw�2; : : : ; x0], andk be in the range0 � k < w.
Let x0 be the two’s complement number represented by thew � k bits [xw�1; xw�2; : : : ; xk], andx00 be the
unsignednumber represented by the low-orderk bits [xk�1; : : : ; x0]. By a similar analysis as the unsigned
case, we havex = 2kx0 + x00, and0 � x00 < 2k, giving x0 = bx=2kc. Furthermore, observe that shifting bit
vector[xw�1; xw�2; : : : ; x0] right arithmeticallyby k yields a bit vector

[xw�1; : : : ; xw�1; xw�1; xw�2; : : : ; xk];

which is the sign extension fromw � k bits tow bits of [xw�1; xw�2; : : : ; xk]. Thus, this shifted bit vector
is the two’s complement representation ofbx=yc.
For x � 0, our analysis shows that this shifted result is the desired value. Forx < 0 andy > 0, however,
the result of integer division should bedx=ye, where for any real numbera, dae is defined to be the unique
integera0 such thata0 � 1 < a � a0. That is, integer division should round negative results upward
toward zero. For example the C expression-5/2 yields -2. Thus, right shifting a negative number byk is
not equivalent to dividing it by2k when rounding occurs. For example, the four-bit representation of�5 is
[1011]. If we shift it right by one arithmetically we get[1101], which is the two’s complement representation
of �3.

We can correct for this improper rounding by “biasing” the value before shifting. This technique exploits
the property thatdx=ye = b(x+ y� 1)=yc for integersx andy such thaty > 0. Thus, forx < 0, if we first
add2k � 1 to x before right shifting, we will get a correctly rounded result. This analysis shows that for
a two’s complement machine using arithmetic right shifts, the C expression(x<0 ? (x + (1<<k)-
1) : x) >> k is equivalent tox/pwr2k, where pwr2k equals2k . For example, to divide�5 by 2, we
first add bias2 � 1 = 1 giving bit pattern[1100]. Right shifting this by one arithmetically gives bit pattern
[1110], which is the two’s complement representation of�2.

Practice Problem 2.22:
In the following code, we have omitted the definitions of constantsMandN:

#define M /* Mystery number 1 */
#define N /* Mystery number 2 */
int arith(int x, int y)
{

int result = 0;
result = x*M + y/N; /* M and N are mystery numbers. */
return result;

}

66 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

We compiled this code for particular values ofMandN. The compiler optimized the multiplication and
division using the methods we have discussed. The following is a translation of the generated machine
code back into C:

/* Translation of assembly code for arith */
int optarith(int x, int y)
{

int t = x;
x <<= 4;
x -= t;
if (y < 0) y += 3;
y >>= 2; /* Arithmetic shift */
return x+y;

}

What are the values ofMandN?

2.4 Floating Point

Floating-point representation encodes rational numbers of the formV = x� 2y. It is useful for performing
computations involving very large numbers (jV j � 0), numbers very close to 0 (jV j � 1), and more
generally as an approximation to real arithmetic.

Up until the 1980s, every computer manufacturer devised its own conventions for how floating-point num-
bers were represented and the details of the operations performed on them. In addition, they often did not
worry too much about the accuracy of the operations, viewing speed and ease of implementation as being
more critical than numerical precision.

All of this changed around 1985 with the advent of IEEE Standard 754, a carefully crafted standard for
representing floating-point numbers and the operations performed on them. This effort started in 1976
under Intel’s sponsorship with the design of the 8087, a chip that provided floating-point support for the
8086 processor. They hired William Kahan, a professor at the University of California, Berkeley, as a
consultant to help design a floating point standard for its future processors. They allowed Kahan to join
forces with a committee generating an industry-wide standard under the auspices of the Institute of Electrical
and Electronics Engineers (IEEE). The committee ultimately adopted a standard close to the one Kahan had
devised for Intel. Nowadays virtually all computers support what has become known asIEEE floating point.
This has greatly improved the portability of scientific application programs across different machines.

Aside: The IEEE
The Institute of Electrical and Electronic Engineers (IEEE—pronounced “I-Triple-E”) is a professional society that
encompasses all of electronic and computer technology. They publish journals, sponsor conferences, and set up
committees to define standards on topics ranging from power transmission to software engineering.End Aside.

In this section we will see how numbers are represented in the IEEE floating-point format. We will also
explore issues ofrounding, when a number cannot be represented exactly in the format and hence must be

2.4. FLOATING POINT 67

adjusted upward or downward. We will then explore the mathematical properties of addition, multiplication,
and relational operators. Many programmers consider floating point to be, at best, uninteresting and at worst,
arcane and incomprehensible. We will see that since the IEEE format is based on a small and consistent set
of principles, it is really quite elegant and understandable.

2.4.1 Fractional Binary Numbers

A first step in understanding floating-point numbers is to consider binary numbers having fractional values.

Let us first examine the more familiar decimal notation. Decimal notation uses a representation of the
form: dmdm�1 � � � d1d0:d�1d�2 � � � d�n, where each decimal digitdi ranges between 0 and 9. This notation
represents a number

d =
mX

i=�n

10i � di

The weighting of the digits is defined relative to the decimal point symbol ‘:’: digits to the left are weighted
by positive powers of ten, giving integral values, while digits to the right are weighted by negative powers
of ten, giving fractional values. For example,12:3410 represents the number1�101+2�100+3�10�1+
4� 10�2 = 12 34

100
.

By analogy, consider a notation of the formbmbm�1 � � � b1b0:b�1b�2 � � � b�n, where each binary digit, or bit,
bi ranges between 0 and 1. This notation represents a number

b =
mX

i=�n

2i � bi (2.19)

The symbol ‘:’ now becomes abinary point, with bits on the left being weighted by positive powers of
two, and those on the right being weighted by negative powers of two. For example,101:112 represents the
number1� 22 + 0� 21 + 1� 20 + 1� 2�1 + 1� 2�2 = 4 + 0 + 1 + 1

2
+ 1

4
= 53

4
,

One can readily see from Equation 2.19 that shifting the binary point one position to the left has the effect of
dividing the number by two. For example, while101:112 represents the number53

4
, 10:1112 represents the

number2 + 0+ 1
2
+ 1

4
+ 1

8
= 27

8
. Similarly, shifting the binary point one position to the right has the effect

of multiplying the number by two. For example,1011:12 represents the number8 + 0 + 2 + 1 + 1
2
= 111

2
.

Note that numbers of the form0:11 � � � 12 represent numbers just below1. For example,0:1111112 repre-
sents63

64
. We will use the shorthand notation1:0 � � to represent such values.

Assuming we consider only finite-length encodings, decimal notation cannot represent numbers such as1
3

and 5
7

exactly. Similarly, fractional binary notation can only represent numbers that can be writtenx � 2y.
Other values can only be approximated. For example, although the number1

5
can be approximated with

increasing accuracy by lengthening the binary representation, we cannot represent it exactly as a fractional
binary number:

68 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Representation Value Decimal

0:02 0 0:010
0:012

1
4

0:2510
0:0102

2
8

0:2510
0:00112

3
16

0:187510
0:001102

6
32

0:187510
0:0011012

13
64

0:20312510
0:00110102

26
128

0:20312510
0:001100112

51
256

0:1992187510

Practice Problem 2.23:

Fill in the missing information in the table below

Fractional Value Binary Rep. Decimal Rep.
1

4
0:01 0:25

3

8

23

16

10:1101

1:011

5:375

3:0625

Practice Problem 2.24:

The imprecision of floating point arithmetic can have disastrous effects, as shown by the following (true)
story. On February 25, 1991, during the Gulf War, an American Patriot Missile battery in Dharan, Saudi
Arabia, failed to intercept an incoming Iraqi Scud missile. The Scud struck an American Army barracks
and killed 28 soldiers. The U. S. General Accounting Office (GAO) conducted a detailed analysis of the
failure [49] and determined that the underlying cause was an imprecision in a numeric calculation. In
this exercise, you will reproduce part of the GAO’s analysis.

The Patriot system contains an internal clock, implemented as a counter that is incremented every 0.1
seconds. To determine the time in seconds, the program would multiply the value of this counter by a
24-bit quantity that was a fractional binary approximation to1

10
. In particular, the binary representation

of 1

10
is the nonterminating sequence:

0:000110011[0011] � � �2

where the portion in brackets is repeated indefinitely. The computer approximated0:1 using just the
leading bit plus the first 23 bits of this sequence to the right of the binary point. Let us call this number
x.

A. What is the binary representation ofx� 0:1?

B. What is the approximate decimal value ofx� 0:1?

2.4. FLOATING POINT 69

C. The clock starts at 0 when the system is first powered up and keeps counting up from there. In
this case, the system had been running for around 100 hours. What was the difference between the
time computed by the software and the actual time?

D. The system predicts where an incoming missile will appear based on its velocity and the time of
the last radar detection. Given that a Scud travels at around 2,000 meters per second, how far off
was its prediction?

Normally, a slight error in the absolute time reported by a clock reading would not affect a tracking
computation. Instead, it should depend on the relative time between two successive readings. The
problem was that the Patriot software had been upgraded to use a more accurate function for reading
time, but not all of the function calls had been replaced by the new code. As a result, the tracking
software used the accurate time for one reading and the inaccurate time for the other [67].

2.4.2 IEEE Floating-Point Representation

Positional notation such as considered in the previous section would be very inefficient for representing very
large numbers. For example, the representation of5� 2100 would consist of the bit pattern101 followed by
one hundred0’s. Instead, we would like to represent numbers in a formx � 2y by giving the values ofx
andy.

The IEEE floating point standard represents a number in a formV = (�1)s �M � 2E :

� Thesigns determines whether the number is negative (s = 1) or positive (s = 0), where the interpre-
tation of the sign bit for numeric value 0 is handled as a special case.

� ThesignificandM is a fractional binary number that ranges either between1 and2� � or between0
and1� �.

� TheexponentE weights the value by a (possibly negative) power of two.

The bit representation of a floating-point number is divided into three fields to encode these values:

� The single sign bits directly encodes the signs.

� Thek-bit exponent fieldexp = ek�1 � � � e1e0 encodes the exponentE.

� Then-bit fraction fieldfrac = fn�1 � � � f1f0 encodes the significandM , but the value encoded also
depends on whether or not the exponent field equals 0.

In the single-precision floating-point format (afloat in C), fieldss , exp, and frac are 1,k = 8, and
n = 23 bits each, yielding a 32-bit representation. In the double-precision floating-point format (adouble
in C), fieldss , exp, and frac are 1,k = 11, andn = 52 bits each, yielding a 64-bit representation.

The value encoded by a given bit representation can be divided into three different cases, depending on the
value ofexp.

70 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Normalized Values

This is the most common case. They occur when the bit pattern ofexp is neither all 0s (numeric value
0) or all 1s (numeric value 255 for single precision, 2047 for double). In this case, the exponent field is
interpreted as representing a signed integer inbiasedform. That is, the exponent value isE = e � Bias

wheree is the unsigned number having bit representationek�1 � � � e1e0, andBias is a bias value equal to
2k�1 � 1 (127 for single precision and 1023 for double). This yields exponent ranges from�126 to +127
for single precision and�1022 to +1023 for double precision.

The fraction fieldfrac is interpreted as representing the fractional valuef , where0 � f < 1, having
binary representation0:fn�1 � � � f1f0, that is, with the binary point to the left of the most significant bit.
The significand is defined to beM = 1 + f . This is sometimes called animplied leading 1representation,
because we can viewM to be the number with binary representation1:fn�1fn�2 � � � f0. This representation
is a trick for getting an additional bit of precision for free, since we can always adjust the exponentE so
that significandM is in the range1 �M < 2 (assuming there is no overflow). We therefore do not need to
explicitly represent the leading bit, since it always equals 1.

Denormalized Values

When the exponent field is all 0s, the represented number is indenormalizedform. In this case, the exponent
value isE = 1 � Bias , and the significand value isM = f , that is, the value of the fraction field without
an implied leading 1.

Aside: Why set the bias this way for denormlized values?
Having the exponent value be1�Bias rather than simply�Bias might seem counterintuitive. We will see shortly
that it provides for smooth transition from denormalized to normalized values.End Aside.

Denormalized numbers serve two purposes. First, they provide a way to represent numeric value 0, since
with a normalized number we must always haveM � 1, and hence we cannot represent 0. In fact the
floating-point representation of+0:0 has a bit pattern of all 0s: the sign bit is 0, the exponent field is all
0s (indicating a denormalized value), and the fraction field is all 0s, givingM = f = 0. Curiously, when
the sign bit is 1, but the other fields are all 0s, we get the value�0:0. With IEEE floating-point format, the
values�0:0 and+0:0 are considered different in some ways and the same in others.

A second function of denormalized numbers is to represent numbers that are very close to 0.0. They provide
a property known asgradual underflowin which possible numeric values are spaced evenly near 0.0.

Special Values

A final category of values occurs when the exponent field is all 1s. When the fraction field is all 0s, the
resulting values represent infinity, either+1 whens = 0, or �1 whens = 1. Infinity can represent
results thatoverflow, as when we multiply two very large numbers, or when we divide by zero. When the
fraction field is nonzero, the resulting value is called a “NaN ,” short for “Not a Number.” Such values are
returned as the result of an operation where the result cannot be given as a real number or as infinity, as when
computing

p�1 or1�1. They can also be useful in some applications for representing uninitialized data.

2.4. FLOATING POINT 71

A. Complete Range

�∞ �10 �5 0 +5 +10 +∞

Denormalized Normalized Infinity

�∞ �10 �5 0 +5 +10 +∞

Denormalized Normalized Infinity

B. Values between�1:0 and+1:0.

�1 �0.8 �0.6 �0.4 �0.2 0 +0.2 +0.4 +0.6 +0.8 +1

Denormalized Normalized Infinity

+0�0

�1 �0.8 �0.6 �0.4 �0.2 0 +0.2 +0.4 +0.6 +0.8 +1

Denormalized Normalized Infinity

+0�0

Figure 2.22:Representable Values for 6-Bit Floating-Point Format. There arek = 3 exponent bits and
n = 2 significand bits. The bias is 3.

2.4.3 Example Numbers

Figure 2.22 shows the set of values that can be represented in a hypothetical 6-bit format havingk = 3
exponent bits andn = 2 significand bits. The bias is23�1 � 1 = 3. Part A of the figure shows all
representable values (other thanNaN). The two infinities are at the extreme ends. The normalized numbers
with maximum magnitude are�14. The denormalized numbers are clustered around 0. These can be seen
more clearly in part B of the figure, where we show just the numbers between�1:0 and+1:0. The two
zeros are special cases of denormalized numbers. Observe that the representable numbers are not uniformly
distributed—they are denser nearer the origin.

Figure 2.23 shows some examples for a hypothetical eight-bit floating-point format havingk = 4 exponent
bits andn = 3 fraction bits. The bias is24�1 � 1 = 7. The figure is divided into three regions representing
the three classes of numbers. Closest to 0 are the denormalized numbers, starting with 0 itself. Denormalized
numbers in this format haveE = 1 � 7 = �6, giving a weight2E = 1

64
. The fractionsf range over the

values0; 1
8
; : : : ; 7

8
, giving numbersV in the range0 to 7

8�64
= 7

512
.

The smallest normalized numbers in this format also haveE = 1 � 7 = �6, and the fractions also range
over the values0; 1

8
; : : : 7

8
. However, the significands then range from1 + 0 = 1 to 1 + 7

8
= 15

8
, giving

numbersV in the range 8
512

to 15
512

.

Observe the smooth transition between the largest denormalized number7
512

and the smallest normalized
number 8

512
. This smoothness is due to our definition ofE for denormalized values. By making it1�Bias

rather than�Bias, we compensate for the fact that the significand of a denormalized number does not have
an implied leading 1.

As we increase the exponent, we get successively larger normalized values, passing through 1.0 and then to
the largest normalized number. This number has exponentE = 7, giving a weight2E = 128. The fraction
equals7

8
giving a significandM = 15

8
. Thus the numeric value isV = 240. Going beyond this overflows to

+1.

72 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Description Bit Rep. e E f M V

Zero 0 0000 000 0 �6 0 0 0

Smallest Pos. 0 0000 001 0 �6 1
8

1
8

1
512

0 0000 010 0 �6 2
8

2
8

2
512

0 0000 011 0 �6 3
8

3
8

3
512

� � �
0 0000 110 0 �6 6

8
6
8

6
512

Largest Denorm. 0 0000 111 0 �6 7
8

7
8

7
512

Smallest Norm. 0 0001 000 1 �6 0 8
8

8
512

0 0001 001 1 �6 1
8

9
8

9
512

� � �
0 0110 110 6 �1 6

8
14
8

14
16

0 0110 111 6 �1 7
8

15
8

15
16

One 0 0111 000 7 0 0 8
8

1

0 0111 001 7 0 1
8

9
8

9
8

0 0111 010 7 0 2
8

10
8

10
8

� � �
0 1110 110 14 7 6

8
14
8

224

Largest Norm. 0 1110 111 14 7 7
8

15
8

240

Infinity 0 1111 000 – – – – +1

Figure 2.23:Example Nonnegative Values for eight-bit Floating-Point Format.There arek = 4 expo-
nent bits andn = 3 significand bits. The bias is7.

2.4. FLOATING POINT 73

One interesting property of this representation is that if we interpret the bit representations of the values in
Figure 2.23 as unsigned integers, they occur in ascending order, as do the values they represent as floating-
point numbers. This is no accident—the IEEE format was designed so that floating-point numbers could
be sorted using an integer-sorting routine. A minor difficulty is in dealing with negative numbers, since
they have a leading one, and they occur in descending order, but this can be overcome without requiring
floating-point operations to perform comparisons (see Problem 2.47).

Practice Problem 2.25:

Consider a 5-bit floating-point representation based on the IEEE floating-point format, with one sign bit,
two exponent bits (k = 2), and two fraction bits (n = 2). The exponent bias is22�1 � 1 = 1.

The table below enumerates the entire nonnegative range for this 5-bit floating-point representation. Fill
in the blank table entries using the following directions:

e: The value represented by considering the exponent field to be an unsigned integer.

E: The value of the exponent after biasing.

f : The value of the fraction.

M : The value of the significand.

V : The numeric value represented.

Express the values off ,M andV as fractions of the formx
4
. You need not fill in entries marked “—”.

Bits e E f M V

0 00 00

0 00 01

0 00 10

0 00 11

0 01 00

0 01 01

0 01 10

0 01 11

0 10 00 2 1
0

4

4

4

8

4

0 10 01

0 10 10

0 10 11

0 11 00 — — — — +1

0 11 01 — — — — NaN

0 11 10 — — — — NaN

0 11 11 — — — — NaN

Figure 2.24 shows the representations and numeric values of some important single and double-precision
floating-point numbers. As with the eight-bit format shown in Figure 2.23 we can see some general proper-
ties for a floating-point representation with ak-bit exponent and ann-bit fraction:

74 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Description exp frac Single Precision Double Precision
Value Decimal Value Decimal

Zero 00 � � � 00 0 � � � 00 0 0:0 0 0:0
Smallest denorm. 00 � � � 00 0 � � � 01 2�23 � 2�126 1:4 � 10�45 2�52 � 2�1022 4:9 � 10�324

Largest denorm. 00 � � � 00 1 � � � 11 (1� �)� 2�126 1:2 � 10�38 (1� �)� 2�1022 2:2 � 10�308

Smallest norm. 00 � � � 01 0 � � � 00 1� 2�126 1:2 � 10�38 1� 2�1022 2:2 � 10�308

One 01 � � � 11 0 � � � 00 1� 20 1:0 1� 20 1:0
Largest norm. 11 � � � 10 1 � � � 11 (2� �)� 2127 3:4� 1038 (2� �)� 21023 1:8� 10308

Figure 2.24:Examples of Nonnegative Floating-Point Numbers.

� The value+0:0 always has a bit representation of all0’s.

� The smallest positive denormalized value has a bit representation consisting of a 1 in the least signif-
icant bit position and otherwise all 0s. It has a fraction (and significand) valueM = f = 2�n and an
exponent valueE = �2k�1 + 2. The numeric value is thereforeV = 2�n�2k�1+2.

� The largest denormalized value has a bit representation consisting of an exponent field of all 0s and
a fraction field of all 1s. It has a fraction (and significand) valueM = f = 1 � 2�n (which we
have written1 � �) and an exponent valueE = �2k�1 + 2. The numeric value is thereforeV =
(1� 2�n)� 2�2k�1+2, which is just slightly smaller than the smallest normalized value.

� The smallest positive normalized value has a bit representation with a 1 in the least significant bit
of the exponent field and otherwise all 0s. It has a significand valueM = 1 and an exponent value
E = �2k�1 + 2. The numeric value is thereforeV = 2�2k�1+2.

� The value1:0 has a bit representation with all but the most significant bit of the exponent field equal
to 1 and all other bits equal to 0. Its significand value isM = 1 and its exponent value isE = 0.

� The largest normalized value has a bit representation with a sign bit of 0, the least significant bit of
the exponent equal to 0, and all other bits equal to 1. It has a fraction value off = 1 � 2�n, giving
a significandM = 2 � 2�n (which we have written2� �). It has an exponent valueE = 2k�1 � 1,
giving a numeric valueV = (2� 2�n)� 22

k�1
�1 = (1� 2�n�1)� 22

k�1
.

Practice Problem 2.26:

A. For a floating-point format with ak-bit exponent and ann-bit fraction, give a formula for the
smallest positive integer that cannot be represented exactly (because it would require ann+ 1-bit
fraction to be exact).

B. What is the numeric value of this integer for single-precision format (k = 8, n = 23)?

2.4.4 Rounding

Floating-point arithmetic can only approximate real arithmetic, since the representation has limited range
and precision. Thus, for a valuex, we generally want a systematic method of finding the “closest” matching

2.4. FLOATING POINT 75

Mode $1.40 $1.60 $1.50 $2.50 $–1.50
Round-to-even $1 $2 $2 $2 $–2
Round-toward-zero $1 $1 $1 $2 $–1
Round-down $1 $1 $1 $2 $–2
Round-up $2 $2 $2 $3 $–1

Figure 2.25:Illustration of Rounding Modes for Dollar Rounding. The first rounds to a nearest value,
while the other three bound the result above or below.

valuex0 that can be represented in the desired floating-point format. This is the task of theroundingopera-
tion. The key problem is to define the direction to round a value that is halfway between two possibilities.
For example, if I have $1.50 and want to round it to the nearest dollar, should the result be $1 or $2? An
alternative approach is to maintain a lower and an upper bound on the actual number. For example, we
could determine representable valuesx� andx+ such that the valuex is guaranteed to lie between them:
x� � x � x+. The IEEE floating-point format defines four differentrounding modes. The default method
finds a closest match, while the other three can be used for computing upper and lower bounds.

Figure 2.25 illustrates the four rounding modes applied to the problem of rounding a monetary amount to
the nearest whole dollar. Round-to-even (also called round-to-nearest) is the default mode. It attempts to
find a closest match. Thus, it rounds $1.40 to $1 and $1.60 to $2, since these are the closest whole dollar
values. The only design decision is to determine the effect of rounding values that are halfway between
two possible results. Round-to-even mode adopts the convention that it rounds the number either upward or
downward such that the least significant digit of the result is even. Thus, it rounds both $1.50 and $2.50 to
$2.

The other three modes produce guaranteed bounds on the actual value. These can be useful in some nu-
merical applications. Round-toward-zero mode rounds positive numbers downward and negative numbers
upward, giving a valuêx such thatjx̂j � jxj. Round-down mode rounds both positive and negative numbers
downward, giving a valuex� such thatx� � x. Round-up mode rounds both positive and negative numbers
upward, giving a valuex+ such thatx � x+.

Round-to-even at first seems like it has a rather arbitrary goal—why is there any reason to prefer even
numbers? Why not consistently round values halfway between two representable values upward? The
problem with such a convention is that one can easily imagine scenarios in which rounding a set of data
values would then introduce a statistical bias into the computation of an average of the values. The average
of a set of numbers that we rounded by this means would be slightly higher than the average of the numbers
themselves. Conversely, if we always rounded numbers halfway between downward, the average of a set
of rounded numbers would be slightly lower than the average of the numbers themselves. Rounding toward
even numbers avoids this statistical bias in most real-life situations. It will round upward about 50% of the
time and round downward about 50% of the time.

Round-to-even rounding can be applied even when we are not rounding to a whole number. We simply
consider whether the least significant digit is even or odd. For example, suppose we want to round decimal
numbers to the nearest hundredth. We would round 1.2349999 to 1.23 and 1.2350001 to 1.24, regardless of
rounding mode, since they are not halfway between 1.23 and 1.24. On the other hand, we would round both
1.2350000 and 1.2450000 to 1.24, since four is even.

76 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Similarly, round-to-even rounding can be applied to binary fractional numbers. We consider least significant
bit value 0 to be even and 1 to be odd. In general, the rounding mode is only significant when we have a
bit pattern of the formXX � � �X:Y Y � � � Y 100 � � �, whereX andY denote arbitary bit values with the
rightmostY being the position to which we wish to round. Only bit patterns of this form denote values
that are halfway between two possible results. As examples, consider the problem of rounding values to
the nearest quarter (i.e., 2 bits to the right of the binary point). We would round10:000112 (2 3

32
) down

to 10:002 (2), and10:001102 (2 3
16

) up to10:012 (21
4
), because these values are not halfway between two

possible values. We would round10:111002 (27
8
) up to 11:002 (3) and10:101002 down to10:102 (21

2
),

since these values are halfway between two possible results, and we prefer to have the least significant bit
equal to zero.

2.4.5 Floating-Point Operations

The IEEE standard specifies a simple rule for determining the result of an arithmetic operation such as
addition or multiplication. Viewing floating-point valuesx andy as real numbers, and some operation�
defined over real numbers, the computation should yieldRound (x � y), the result of applying rounding
to the exact result of the real operation. In practice, there are clever tricks floating-point unit designers
use to avoid performing this exact computation, since the computation need only be sufficiently precise to
guarantee a correctly rounded result. When one of the arguments is a special value such as�0,1 orNaN ,
the standard specifies conventions that attempt to be reasonable. For example1=�0 is defined to yield�1,
while 1=+ 0 is defined to yield+1.

One strength of the IEEE standard’s method of specifying the behavior of floating-point operations is that
it is independent of any particular hardware or software realization. Thus, we can examine its abstract
mathematical properties without considering how it is actually implemented.

We saw earlier that integer addition, both unsigned and two’s complement, forms an Abelian group. Ad-
dition over real numbers also forms an Abelian group, but we must consider what effect rounding has on
these properties. Let us definex +f y to beRound(x + y). This operation is defined for all values ofx
andy, although it may yield infinity even when bothx andy are real numbers due to overflow. The op-
eration is commutative, withx +f y = y +f x for all values ofx andy. On the other hand, the operation
is not associative. For example, with single-precision floating point the expression(3.14+1e10)-1e10
would evaluate to0.0—the value 3.14 would be lost due to rounding. On the other hand, the expression
3.14+(1e10-1e10) would evaluate to3.14. As with an Abelian group, most values have inverses
under floating-point addition, that is,x +f �x = 0. The exceptions are infinities (since+1�1 = NaN),
andNaN ’s, sinceNaN +f x = NaN for anyx.

The lack of associativity in floating-point addition is the most important group property that is lacking. It has
important implications for scientific programmers and compiler writers. For example, suppose a compiler
is given the following code fragment:

x = a + b + c;
y = b + c + d;

The compiler might be tempted to save one floating-point addition by generating the code:

t = b + c;

2.4. FLOATING POINT 77

x = a + t;
y = t + d;

However, this computation might yield a different value forx than would the original, since it uses a different
association of the addition operations. In most applications, the difference would be so small as to be
inconsequential. Unfortunately, compilers have no way of knowing what trade-offs the user is willing to
make between efficiency and faithfulness to the exact behavior of the original program. As a result, they tend
to be very conservative, avoiding any optimizations that could have even the slightest effect on functionality.

On the other hand, floating-point addition satisfies the following monotonicity property: ifa � b then
x+ a � x+ b for any values ofa, b, andx other thanNaN . This property of real (and integer) addition is
not obeyed by unsigned or two’s complement addition.

Floating-point multiplication also obeys many of the properties one normally associates with multiplication,
namely those of a ring. Let us definex * f y to beRound (x � y). This operation is closed under multi-
plication (although possibly yielding infinity orNaN), it is commutative, and it has 1.0 as a multiplicative
identity. On the other hand, it is not associative due to the possibility of overflow or the loss of precision due
to rounding. For example, with single-precision floating point, the expression(1e20*1e20)*1e-20 will
evaluate to+1, while 1e20*(1e20*1e-20) will evaluate to1e20. In addition, floating-point multi-
plication does not distribute over addition. For example, with single-precision floating point, the expression
1e20*(1e20-1e20) will evaluate to0.0, while 1e20*1e20-1e20*1e20 will evaluate toNaN.

On the other hand, floating-point multiplication satisfies the following monotonicity properties for any val-
ues ofa, b, andc other thanNaN :

a � b and c � 0) a * f c � b * f c

a � b and c � 0) a * f c � b * f c

In addition, we are also guaranteed thata * f a � 0, as long asa 6= NaN . As we saw earlier, none of these
monotonicity properties hold for unsigned or two’s complement multiplication.

This lack of associativity and distributivity is of serious concern to scientific programmers and to compiler
writers. Even such a seemingly simple task as writing code to determine whether two lines intersect in
three-dimensional space can be a major challenge.

2.4.6 Floating Point in C

C provides two different floating-point data types:float anddouble. On machines that support IEEE
floating point, these data types correspond to single and double-precision floating point. In addition, the ma-
chines use the round-to-even rounding mode. Unfortunately, since the C standard does require the machine
use IEEE floating point, there are no standard methods to change the rounding mode or to get special values
such as�0, +1,�1, orNaN . Most systems provide a combination of include (‘.h’) files and procedure
libraries to provide access to these features, but the details vary from one system to another. For example,
the GNU compilerGCC defines macrosINFINITY (for +1) and NAN(for NaN) when the following
sequence occurs in the program file:

#define _GNU_SOURCE 1

78 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

#include <math.h>

Practice Problem 2.27:

Fill in the following macro definitions to generate the double-precision values+1,�1, and0.

#define POS_INFINITY
#define NEG_INFINITY
#define NEG_ZERO
#endif

You cannot use any include files (such asmath.h), but you can make use of the fact that the largest
finite number that can be represented with double precision is around1:8� 10

308.

When casting values betweenint, float, and double formats, the program changes the numeric values
and the bit representations as follows (assuming a 32-bitint):

� From int to float, the number cannot overflow, but it may be rounded.

� From int or float to double, the exact numeric value can be preserved becausedouble has
both greater range (i.e., the range of representable values), as well as greater precision (i.e., the number
of significant bits).

� Fromdouble to float, the value can overflow to +1 or�1, since the range is smaller. Otherwise
it may be rounded since the precision is smaller.

� From float or double to int the value will be truncated toward zero. For example1:999 will be
converted to1, while�1:999 will be converted to�1. Note that this behavior is very different from
rounding. Furthermore, the value may overflow. The C standard does not specify a fixed result for
this case, but on most machines the result will either beTMaxw or TMinw, wherew is the number
of bits in anint.

Aside: Ariane 5: the high cost of floating-point overflow
Converting large floating-point numbers to integers is a common source of programming errors. Such an error had
particularly disastrous consequences for the maiden voyage of the Ariane 5 rocket, on June 4, 1996. Just 37 seconds
after lift-off, the rocket veered off its flight path, broke up, and exploded. On board the rocket were communication
satellites, valued at $500 million.

A later investigation [46] showed that the computer controlling the inertial navigation system had sent invalid data to
the computer controlling the engine nozzles. Instead of sending flight control information, it had sent a diagnostic
bit pattern indicating that, in an effort to convert a 64-bit floating point number into a 16-bit signed integer, an
overflow had been encountered.

The value that overflowed measured the horizontal velocity of the rocket, which could be more than five times
higher than that achieved by the earlier Ariane 4 rocket. In the design of the Ariane 4 software, they had carefully
analyzed the numeric values and determined that the horizontal velocity would never overflow a 16-bit number.
Unfortunately, they simply reused this part of the software in the Ariane 5 without checking the assumptions on
which it had been based.End Aside.

2.5. SUMMARY 79

Practice Problem 2.28:

Assume variablesx , f , andd are of typeint , float , anddouble , respectively. Their values are
arbitrary, except that neitherf nord equals+1,�1, orNaN . For each of the following C expressions,
either argue that it will always be true (i.e., evaluate to 1) or give a value for the variables such that it is
not true (i.e., evaluates to 0).

A. x == (int)(float) x

B. x == (int)(double) x

C. f == (float)(double) f

D. d == (float) d

E. f == -(-f)

F. 2/3 == 2/3.0

G. (d >= 0.0) || ((d*2) < 0.0)

H. (d+f)-d == f

2.5 Summary

Computers encode information as bits, generally organized as sequences of bytes. Different encodings
are used for representing integers, real numbers, and character strings. Different models of computers use
different conventions for encoding numbers and for ordering the bytes within multibyte data.

The C language is designed to accomodate a wide range of different implementations in terms of word
sizes and numeric encodings. Most current machines have 32-bit word sizes, although high-end machines
increasingly have 64-bit words. Most machines use two’s complement encoding of integers and IEEE en-
coding of floating point. Understanding these encodings at the bit level, and the mathematical characteristics
of the arithmetic operations is important for writing programs that operate correctly over the full range of
numeric values.

The C standard dictates that when casting between signed and unsigned integers, the underlying bit pattern
should not change. On a two’s complement machine, this behavior is characterized by functionsT2Uw and
U2Tw, for aw-bit value. The implicit casting of C gives results that many programmers do not anticipate,
often leading to program bugs.

Due to the finite lengths of the encodings, computer arithmetic has properties quite different from conven-
tional integer and real arithmetic. The finite length can cause numbers to overflow, when they exceed the
range of the representation. Floating point values can also underflow, when they are so close to0:0 that they
are changed to zero.

The finite integer arithmetic implemented by C, as well as most other programming languages, has some
peculiar properties compared to true integer arithmetic. For example, the expressionx*x can evaluate to
a negative number due to overflow. Nonetheless, both unsigned and two’s complement arithmetic satisfies
the properties of a ring. This allows compilers to do many optimizations. For example, in replacing the
expression7*x by (x<<3)-x, we make use of the associative, commutative and distributive properties,
along with the relationship between shifting and multiplying by powers of two.

80 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

We have seen several clever ways to exploit combinations bit-level operations and arithmetic operations. For
example, we saw that with two’s complement arithmetic,˜x+1 is equivalent to-x. As another example,
suppose we want a bit pattern of the form[0; : : : ; 0; 1; : : : ; 1], consisting ofw�k 0s followed byk 1s. Such
bit patterns are useful for masking operations. This pattern can be generated by the C expression(1<<k)-
1, exploiting the property that the desired bit pattern has numeric value2k� 1. For example, the expression
(1<<8)-1 will generate the bit pattern0xFF.

Floating point representations approximate real numbers by encoding numbers of the formx�2y. The most
common floating point representation was defined by IEEE Standard 754. It provides for several different
precisions, with the most common being single (32 bits) and double (64 bits). IEEE floating point also has
representations for special values1 and not-a-number.

Floating point arithmetic must be used very carefully, since it has only limited range and precision, and
since it does not obey common mathematical properties such as associativity.

Bibliographic Notes

Reference books on C [37, 30] discuss properties of the different data types and operations. The C standard
does not specify details such as precise word sizes or numeric encodings. Such details are intentionally
omitted to make it possible to implement C on a wide range of different machines. Several books have been
written giving advice to C programmers [38, 47] that warn about problems with overflow, implicit casting
to unsigned, and some of the other pitfalls we have covered in this chapter. These books also provide
helpful advice on variable naming, coding styles, and code testing. Books on Java (we recommend the
one coauthored by James Gosling, the creator of the language [1]) describe the data formats and arithmetic
operations supported by Java.

Most books on logic design [82, 36] have a section on encodings and arithmetic operations. Such books
describe different ways of implementing arithmetic circuits. Appendix A of Hennessy and Patterson’s com-
puter architecture textbook [31] does a particularly good job of describing different encodings (including
IEEE floating point) as well as different implementation techniques.

Overton’s book on IEEE floating point [53] provides a detailed description of the format as well as the
properties from the perspective of a numerical applications programmer.

Homework Problems

Homework Problem 2.29[Category 1]:

Compile and run the sample code that usesshow bytes (file show-bytes.c) on different machines to
which you have access. Determine the byte orderings used by these machines.

Homework Problem 2.30[Category 1]:

Try running the code forshow bytes for different sample values.

Homework Problem 2.31[Category 1]:

Write proceduresshow_short, show_long, and show_double that print the byte representations of

2.5. SUMMARY 81

C objects of typesshort int, long int, and double respectively. Try these out on several machines.

Homework Problem 2.32[Category 2]:

Write a procedureis_little_endian that will return 1 when compiled and run on a little-endian ma-
chine, and will return 0 when compiled and run on a big-endian machine. This program should run on any
machine, regardless of its word size.

Homework Problem 2.33[Category 2]:

Write a C expression that will yield a word consisting of the least significant byte ofx , and the remaining
bytes ofy . For operandsx = 0x89ABCDEFandy = 0x76543210, this would give 0x765432EF.

Homework Problem 2.34[Category 2]:

Using only bit-level and logical operations, write C expressions that yield 1 for the described condition and
0 otherwise. Your code should work on a machine with any word size. Assumex is an integer.

A. Any bit of x equals 1.

B. Any bit of x equals 0.

C. Any bit in the least significant byte ofx equals 1.

D. Any bit in the least significant byte ofx equals 0.

Homework Problem 2.35[Category 3]:

Write a procedureint_shifts_are_arithmetic() that yields 1 when run a machine that uses arith-
metic right shifts forint’s and 0 otherwise. Your code should work on a machine with any word size. Test
your code on several machines. Write and test a procedureunsigned_shifts_are_arithmetic()
that determines the form of shifts used forunsigned int’s.

Homework Problem 2.36[Category 2]:

You are given the task of writing a procedureint_size_is_32() that yields 1 when run on a machine
for which anint is 32 bits, and yields 0 otherwise. Here is a first attempt:

1 /* The following code does not run properly on some machines */
2 int bad_int_size_is_32()
3 {
4 /* Set most significant bit (msb) of 32-bit machine */
5 int set_msb = 1 << 31;
6 /* Shift past msb of 32-bit word */
7 int beyond_msb = 1 << 32;
8

9 /* set_msb is nonzero when word size >= 32
10 beyond_msb is zero when word size <= 32 */
11 return set_msb && !beyond_msb;
12 }

82 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

When compiled and run on a 32-bit SUN SPARC, however, this procedure returns 0. The following compiler
message gives us an indication of the problem:

warning: left shift count >= width of type

A. In what way does our code fail to comply with the C standard?

B. Modify the code to run properly on any machine for whichint’s are at least 32 bits.

C. Modify the code to run properly on any machine for whichint’s are at least 16 bits.

Homework Problem 2.37[Category 1]:

You just started working for a company that is implementing a set of procedures to operate on a data structure
where four signed bytes are packed into a 32-bitunsigned. Bytes within the word are numbered from 0
(least significant) to 3 (most significant). You have been assigned the task of implementing a function for a
machine using two’s complement arithmetic and arithmetic right shifts with the following prototype:

/* Declaration of data type where 4 bytes are packed
into an unsigned */

typedef unsigned packed_t;

/* Extract byte from word. Return as signed integer */
int xbyte(packed_t word, int bytenum);

That is, the function will extract the designated byte and sign extend it to be a 32-bitint.

Your predecessor (who was fired for his incompetence) wrote the following code:

/* Failed attempt at xbyte */
int xbyte(packed_t word, int bytenum)
{

return
(word >> (bytenum << 3)) & 0xFF;

}

A. What is wrong with this code?

B. Give a correct implementation of the function that uses only left and right shifts, along with one
subtraction.

Homework Problem 2.38[Category 1]:

Fill in the following table showing the effects of complementing and incrementing several 5-bit vectors, in
the style of Figure 2.20. Show both the bit vectors and the numeric values.

2.5. SUMMARY 83

~x ˜ ~x incr(˜ ~x)
[01101]

[01111]

[11000]

[11111]

[10000]

Homework Problem 2.39[Category 2]:

Show that first decrementing and then complementing is equivalent to complementing and then increment-
ing. That is, for any signed valuex , the C expressions-x, ˜x+1, and ˜(x-1) yield identical results. What
mathematical properties of two’s complement addition does your derivation rely on?

Homework Problem 2.40[Category 3]:

Suppose we want to compute the complete2w-bit representation ofx � y, where bothx andy are unsigned,
on a machine for which data typeunsigned isw bits. The low-orderw bits of the product can be computed
with the expressionx*y, so we only require a procedure with prototype

unsigned int unsigned_high_prod(unsigned x, unsigned y);

that computes the high-orderw bits ofx � y for unsigned variables.

We have access to a library function with prototype:

int signed_high_prod(int x, int y);

that computes the high-orderw bits ofx � y for the case wherex andy are in two’s complement form. Write
code calling this procedure to implement the function for unsigned arguments. Justify the correctness of
your solution.

[Hint:] Look at the relationship between the signed productx � y and the unsigned productx0 � y0 in the
derivation of Equation 2.18.

Homework Problem 2.41[Category 2]:

Suppose we are given the task of generating code to multiply integer variablex by various different constant
factorsK. To be efficient we want to use only the operations+, - , and<<. For the following values ofK,
write C expressions to perform the multiplication using at most three operations per expression.

A. K = 5:

B. K = 9:

C. K = 14:

D. K = �56:

84 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

Homework Problem 2.42[Category 2]:

Write C expressions to generate the following bit patterns, whereak representsk repetitions of symbola.
Assume aw-bit data type. Your code may contain references to parametersj andk , representing the values
of j andk, but not a parameter representingw.

A. 1w�k0k.

B. 0w�k�j1k0j .

Homework Problem 2.43[Category 2]:

Suppose we number the bytes in aw-bit word from 0 (least significant) tow=8�1 (most significant). Write
code for the following C function, that will return an unsigned value in which bytei of argumentx has
been replaced by byteb.

unsigned replace_byte (unsigned x, int i, unsigned char b);

Here are some examples showing how the function should work

replace_byte(0x12345678, 2, 0xAB) --> 0x12AB5678
replace_byte(0x12345678, 0, 0xAB) --> 0x123456AB

Homework Problem 2.44[Category 3]:

Fill in code for the following C functions. Functionsrl performs a logical right shift using an arithmetic
right shift (given by valuexsra), followed by other operations not including right shifts or division. Func-
tion sra performs an arithmetic right shift using a logical right shift (given by valuexsrl), followed by
other operations not including right shifts or division. You may assume thatint’s are 32-bits long. The
shift amountk can range from 0 to 31.

unsigned srl(unsigned x, int k)
{

/* Perform shift arithmetically */
unsigned xsra = (int) x >> k;

/* ... */

}

int sra(int x, int k)
{

/* Perform shift logically */
int xsrl = (unsigned) x >> k;

2.5. SUMMARY 85

/* ... */

}

Homework Problem 2.45[Category 2]:

Assume we are running code on a 32-bit machine using two’s complement arithmetic for signed variables.
The variables are declared and initialized as follows:

int x = foo(); /* Arbitrary value */
int y = bar(); /* Arbitrary value */

unsigned ux = x;
unsigned uy = y;

For each of the following C expressions, either (1) argue that it is true (i.e., evaluates to 1) for all values of
x andy , or (2) give example values ofx andy for which it is false (i.e., evaluates to 0.)

A. (x >= 0) || ((2*x) < 0)

B. (x & 7) != 7 || (x<<30 < 0)

C. (x * x) >= 0

D. x < 0 || -x <= 0

E. x > 0 || -x >= 0

F. x*y == ux*uy

G. ˜x*y + uy*ux == -y

Homework Problem 2.46[Category 2]:

Consider numbers having a binary representation consisting of an infinite string of the form0:y y y y y y � � �,
wherey is ak-bit sequence. For example, the binary representation of1

3
is 0:01010101 � � � (y = 01), while

the representation of1
5

is 0:001100110011 � � � (y = 0011).

A. Let Y = B2U k(y), that is, the number having binary representationy. Give a formula in terms ofY
andk for the value represented by the infinite string. [Hint: Consider the effect of shifting the binary
point k positions to the right.]

B. What is the numeric value of the string for the following values ofy?

(a) 001

86 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

(b) 1001

(c) 000111

Homework Problem 2.47[Category 1]:

Fill in the return value for the following procedure that tests whether its first argument is greater than or
equal to its second. Assume the functionf2u returns an unsigned 32-bit number having the same bit
representation as its floating-point argument. You can assume that neither argument isNaN . The two
flavors of zero:+0 and�0 are considered equal.

int float_ge(float x, float y)
{

unsigned ux = f2u(x);
unsigned uy = f2u(y);

/* Get the sign bits */
unsigned sx = ux >> 31;
unsigned sy = uy >> 31;

/* Give an expression using only ux, uy, sx, and sy */
return /* ... */ ;

}

Homework Problem 2.48[Category 1]:

Given a floating-point format with ak-bit exponent and ann-bit fraction, give formulas for the exponent
E, significandM , the fractionf , and the valueV for the following quantities. In addition, describe the bit
representation.

A. The number5:0.

B. The largest odd integer that can be represented exactly.

C. The reciprocal of the smallest positive normalized value.

Homework Problem 2.49[Category 1]:

Intel-compatible processors also support an “extended precision” floating-point format with an 80-bit word
divided into a sign bit,k = 15 exponent bits, a singleintegerbit, andn = 63 fraction bits. The integer
bit is an explicit copy of the implied bit in the IEEE floating-point representation. That is, it equals 1 for
normalized values and 0 for denormalized values. Fill in the following table giving the approximate values
of some “interesting” numbers in this format:

2.5. SUMMARY 87

Description Extended Precision

Value Decimal

Smallest denormalized

Smallest normalized

Largest normalized

Homework Problem 2.50[Category 1]:

Consider a 16-bit floating-point representation based on the IEEE floating-point format, with one sign bit,
seven exponent bits (k = 7), and eight fraction bits (n = 8). The exponent bias is27�1 � 1 = 63.

Fill in the table below for the following numbers, with the following instructions for each column:

Hex: The four hexadecimal digits describing the encoded form.

M : The value of the significand. This should be a number of the formx or x
y
, wherex is an integer,

andy is an integral power of 2. Examples include: 0,67
64

, and 1
256

.

E: The integer value of the exponent.

V : The numeric value represented. Use the notationx or x� 2z, wherex andz are integers.

As an example, to represent the number7
2
, we would haves = 0, M = 7

4
, andE = 1. Our number would

therefore have an exponent field of0x40 (decimal value63+1 = 64) and a significand field0xC0 (binary
110000002), giving a hex representation40C0.

You need not fill in entries marked “—”.

Description Hex M E V

�0 —

Smallest value> 1

256 —-

Largest Denormalized

�1 — — —

Number with hex representation3AA0 —

Homework Problem 2.51[Category 1]:

You have been assigned the task of writing a C function to compute a floating-point representation of2x.
You realize that the best way to do this is to directly construct the IEEE single-precision representation of
the result. Whenx is too small, your routine will return0:0. Whenx is too large, it will return+1. Fill in
the blank portions of the following code to compute the correct result. Assume the functionu2f returns a
floating-point value having an identical bit representation as its unsigned argument.

88 CHAPTER 2. REPRESENTING AND MANIPULATING INFORMATION

float fpwr2(int x)

/* Result exponent and significand */
unsigned exp, sig;
unsigned u;

if (x < ______)
/* Too small. Return 0.0 */
exp = ____________;
sig = ____________;

else if (x < ______)
/* Denormalized result */
exp = ____________;
sig = ____________;

else if (x < ______)
/* Normalized result. */
exp = ____________;
sig = ____________;

else
/* Too big. Return +oo */
exp = ____________;
sig = ____________;

/* Pack exp and sig into 32 bits */
u = exp << 23 | sig;
/* Return as float */
return u2f(u);

Homework Problem 2.52[Category 1]:

Around 250 B.C., the Greek mathematician Archimedes proved that223
71

< � < 22
7

. Had he had access
to a computer and the standard library<math.h>, he would have been able to determine that the single-
precision floating-point approximation of� has the hexadecimal representation0x40490FDB. Of course,
all of these are just approximations, since� is not rational.

A. What is the fractional binary number denoted by this floating-point value?

B. What is the fractional binary representation of22
7

? [Hint: See Problem 2.46].

C. At what bit position (relative to the binary point) do these two approximations to� diverge?

Chapter 3

Machine-Level Representation of C
Programs

When programming in a high-level language, such as C, we are shielded from the detailed, machine-level
implementation of our program. In contrast, when writing programs in assembly code, a programmer must
specify exactly how the program manages memory and the low-level instructions the program uses to carry
out the computation. Most of the time, it is much more productive and reliable to work at the higher level
of abstraction provided by a high-level language. The type checking provided by a compiler helps detect
many program errors and makes sure we reference and manipulate data in consistent ways. With modern,
optimizing compilers, the generated code is usually at least as efficient as what a skilled, assembly-language
programmer would write by hand. Best of all, a program written in a high-level language can be compiled
and executed on a number of different machines, whereas assembly code is highly machine specific.

Even though optimizing compilers are available, being able to read and understand assembly code is an
important skill for serious programmers. By invoking the compiler with appropriate flags, the compiler will
generate a file showing its output in assembly code. Assembly code is very close to the actual machine code
that computers execute. Its main feature is that it is in a more readable textual format, compared to the binary
format of object code. By reading this assembly code, we can understand the optimization capabilities of
the compiler and analyze the underlying inefficiencies in the code. As we will experience in Chapter 5,
programmers seeking to maximize the performance of a critical section of code often try different variations
of the source code, each time compiling and examining the generated assembly code to get a sense of how
efficiently the program will run. Furthermore, there are times when the layer of abstraction provided by a
high-level language hides information about the run-time behavior of a program that we need to understand.
For example, when writing concurrent programs using a thread package, as covered in Chapter 11, it is
important to know what type of storage is used to hold the different program variables. This information
is visible at the assembly code level. The need for programmers to learn assembly code has shifted over
the years from one of being able to write programs directly in assembly to one of being able to read and
understand the code generated by optimizing compilers.

In this chapter, we will learn the details of a particular assembly language and see how C programs get
compiled into this form of machine code. Reading the assembly code generated by a compiler involves a
different set of skills than writing assembly code by hand. We must understand the transformations typical

89

90 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

compilers make in converting the constructs of C into machine code. Relative to the computations expressed
in the C code, optimizing compilers can rearrange execution order, eliminate unneeded computations, re-
place slow operations such as multiplication by shifts and adds, and even change recursive computations
into iterative ones. Understanding the relation between source code and the generated assembly can of-
ten be a challenge—much like putting together a puzzle having a slightly different design than the picture
on the box. It is a form ofreverse engineering—trying to understand the process by which a system was
created by studying the system and working backward. In this case, the system is a machine-generated,
assembly-language program, rather than something designed by a human. This simplifies the task of re-
verse engineering, because the generated code follows fairly regular patterns, and we can run experiments,
having the compiler generate code for many different programs. In our presentation, we give many exam-
ples and provide a number of exercises illustrating different aspects of assembly language and compilers.
This is a subject matter where mastering the details is a prerequisite to understanding the deeper and more
fundamental concepts. Spending time studying the examples and working through the exercises will be well
worthwhile.

We give a brief history of the Intel architecture. Intel processors have grown from rather primitive 16-bit
processors in 1978 to the mainstream machines for today’s desktop computers. The architecture has grown
correspondingly with new features added and the 16-bit architecture transformed to support 32-bit data and
addresses. The result is a rather peculiar design with features that make sense only when viewed from a
historical perspective. It is also laden with features providing backward compatibility that are not used by
modern compilers and operating systems. We will focus on the subset of the features used byGCC and
Linux. This allows us to avoid much of the complexity and arcane features of IA32.

Our technical presentation starts a quick tour to show the relation between C, assembly code, and object
code. We then proceed to the details of IA32, starting with the representation and manipulation of data
and the implementation of control. We see how control constructs in C, such asif, while, and switch
statements, are implemented. We then cover the implementation of procedures, including how the run-time
stack supports the passing of data and control between procedures, as well as storage for local variables.
Next, we consider how data structures such as arrays, structures, and unions are implemented at the machine
level. With this background in machine-level programming, we can examine the problems of out of bounds
memory references and the vulnerability of systems to buffer overflow attacks. We finish this part of the
presentation with some tips on using theGDB debugger for examining the runtime behavior of a machine-
level program.

We then move into material that is marked with a “*” and is intended for the truly dedicated machine-
language enthusiasts. We give a presentation of IA32 support for floating-point code. This is a particularly
arcane feature of IA32, and so we advise that only people determined to work with floating-point code
attempt to study this section. We give a brief presentation ofGCC’s support for embedding assembly code
within C programs. In some applications, the programmer must drop down to assembly code to access
low-level features of the machine. Embedded assembly is the best way to do this.

3.1 A Historical Perspective

The Intel processor line has a long, evolutionary development. It started with one of the first single-chip, 16-
bit microprocessors, where many compromises had to be made due to the limited capabilities of integrated

3.1. A HISTORICAL PERSPECTIVE 91

circuit technology at the time. Since then it has grown to take advantage of technology improvements as
well as to satisfy the demands for higher performance and for supporting more advanced operating systems.

The following list shows the successive models of Intel processors, and some of their key features. We use
the number of transistors required to implement the processors as an indication of how they have evolved in
complexity (‘K’ denotes 1,000, and ‘M’ denotes 1,000,000).

8086: (1978, 29 K transistors). One of the first single-chip, 16-bit microprocessors. The 8088, a version
of the 8086 with an 8-bit external bus, formed the heart of the original IBM personal computers.
IBM contracted with then-tiny Microsoft to develop the MS-DOS operating system. The original
models came with 32,768 bytes of memory and two floppy drives (no hard drive). Architecturally, the
machines were limited to a 655,360-byte address space—addresses were only 20 bits long (1,048,576
bytes addressable), and the operating system reserved 393,216 bytes for its own use.

80286: (1982, 134 K transistors). Added more (and now obsolete) addressing modes. Formed the basis of
the IBM PC-AT personal computer, the original platform for MS Windows.

i386: (1985, 275 K transistors). Expanded the architecture to 32 bits. Added the flat addressing model used
by Linux and recent versions of the Windows family of operating system. This was the first machine
in the series that could support a Unix operating system.

i486: (1989, 1.9 M transistors). Improved performance and integrated the floating-point unit onto the pro-
cessor chip but did not change the instruction set.

Pentium: (1993, 3.1 M transistors). Improved performance, but only added minor extensions to the in-
struction set.

PentiumPro: (1995, 6.5 M transistors). Introduced a radically new processor design, internally known as
theP6microarchitecture. Added a class of “conditional move” instructions to the instruction set.

Pentium/MMX: (1997, 4.5 M transistors). Added new class of instructions to the Pentium processor for
manipulating vectors of integers. Each datum can be 1, 2, or 4-bytes long. Each vector totals 64 bits.

Pentium II: (1997, 7 M transistors). Merged the previously separate PentiumPro and Pentium/MMX lines
by implementing the MMX instructions within the P6 microarchitecture.

Pentium III: (1999, 8.2 M transistors). Introduced yet another class of instructions for manipulating vec-
tors of integer or floating-point data. Each datum can be 1, 2, or 4 bytes, packed into vectors of 128
bits. Later versions of this chip went up to 24 M transistors, due to the incorporation of the level-2
cache on chip.

Pentium 4: (2001, 42 M transistors). Added 8-byte integer and floating-point formats to the vector instruc-
tions, along with 144 new instructions for these formats. Intel shifted away from Roman numerals in
their numbering convention.

Each successive processor has been designed to be backward compatible—able to run code compiled for any
earlier version. As we will see, there are many strange artifacts in the instruction set due to this evolutionary
heritage. Intel now calls its instruction setIA32, for “Intel Architecture 32-bit.” The processor line is also
referred to by the colloquial name “x86,” reflecting the processor naming conventions up through the i486.

92 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Aside: Why not the i586?
Intel discontinued their numeric naming convention, because they were not able to obtain trademark protection for
their CPU numbers. The U. S. Trademark office does not allow numbers to be trademarked. Instead, they coined the
name “Pentium” using the the Greek root wordpentaas an indication that this was their fifth generation machine.
Since then, they have used variants of this name, even though the PentiumPro is a sixth generation machine (hence
the internal name P6), and the Pentium 4 is a seventh generation machine. Each new generation involves a major
change in the processor design.End Aside.

Over the years, several companies have produced processors that are compatible with Intel processors, ca-
pable of running the exact same machine-level programs. Chief among these is AMD. For years, AMD’s
strategy was to run just behind Intel in technology, producing processors that were less expensive although
somewhat lower in performance. More recently, AMD has produced some of the highest performing pro-
cessors for IA32. They were the first to the break the 1-gigahertz clock speed barrier for a commercially
available microprocessor. Although we will talk about Intel processors, our presentation holds just as well
for the compatible processors produced by Intel’s rivals.

Much of the complexity of IA32 is not of concern to those interested in programs for the Linux operating
system as generated by theGCC compiler. The memory model provided in the original 8086 and its exten-
sions in the 80286 are obsolete. Instead, Linux uses what is referred to asflat addressing, where the entire
memory space is viewed by the programmer as a large array of bytes.

As we can see in the list of developments, a number of formats and instructions have been added to IA32
for manipulating vectors of small integers and floating-point numbers. These features were added to allow
improved performance on multimedia applications, such as image processing, audio and video encoding
and decoding, and three-dimensional computer graphics. Unfortunately, current versions ofGCC will not
generate any code that uses these new features. In fact, in its default invocationsGCCassumes it is generating
code for an i386. The compiler makes no attempt to exploit the many extensions added to what is now
considered a very old architecture.

3.2 Program Encodings

Suppose we write a C program as two filesp1.c andp2.c. We would then compile this code using a Unix
command line:

unix> gcc -O2 -o p p1.c p2.c

The commandgcc indicates the GNU C compilerGCC. Since this is the default compiler on Linux, we
could also invoke it as simplycc. The flag -O2 instructs the compiler to apply level-two optimizations. In
general, increasing the level of optimization makes the final program run faster, but at a risk of increased
compilation time and difficulties running debugging tools on the code. Level-two optimization is a good
compromise between optimized performance and ease of use. All code in this book was compiled with this
optimization level.

This command actually invokes a sequence of programs to turn the source code into executable code. First,
the Cpreprocessorexpands the source code to include any files specified with#include commands and
to expand any macros. Second, thecompilergenerates assembly code versions of the two source files having
namesp1.s andp2.s. Next, the assemblerconverts the assembly code into binary object code filesp1.o

3.2. PROGRAM ENCODINGS 93

andp2.o. Finally, the linker merges these two object files along with code implementing standard Unix
library functions (e.g.,printf) and generates the final executable file. Linking is described in more detail
in Chapter 7.

3.2.1 Machine-Level Code

The compiler does most of the work in the overall compilation sequence, transforming programs expressed
in the relatively abstract execution model provided by C into the very elementary instructions that the pro-
cessor executes. The assembly code-representation is very close to machine code. Its main feature is that it
is in a more readable textual format, as compared to the binary format of object code. Being able to under-
stand assembly code and how it relates to the original C code is a key step in understanding how computers
execute programs.

The assembly programmer’s view of the machine differs significantly from that of a C programmer. Parts
of the processor state are visible that are normally hidden from the C programmer:

� The program counter (called%eip) indicates the address in memory of the next instruction to be
executed.

� The integer register file contains eight named locations storing 32-bit values. These registers can
hold addresses (corresponding to C pointers) or integer data. Some registers are used to keep track
of critical parts of the program state, while others are used to hold temporary data, such as the local
variables of a procedure.

� The condition code registers hold status information about the most recently executed arithmetic
instruction. These are used to implement conditional changes in the control flow, such as is required
to implementif or while statements.

� The floating-point register file contains eight locations for storing floating-point data.

Whereas C provides a model where objects of different data types can be declared and allocated in memory,
assembly code views the memory as simply a large, byte-addressable array. Aggregate data types in C such
as arrays and structures are represented in assembly code as contiguous collections of bytes. Even for scalar
data types, assembly code makes no distinctions between signed or unsigned integers, between different
types of pointers, or even between pointers and integers.

The program memory contains the object code for the program, some information required by the operating
system, a run-time stack for managing procedure calls and returns, and blocks of memory allocated by the
user, (for example, by using themalloc library procedure).

The program memory is addressed usingvirtual addresses. At any given time, only limited subranges
of virtual addresses are considered valid. For example, although the 32-bit addresses of IA32 potentially
span a 4-gigabyte range of address values, a typical program will only have access to a few megabytes. The
operating system manages this virtual address space, translating virtual addresses into the physical addresses
of values in the actual processor memory.

A single machine instruction performs only a very elementary operation. For example, it might add two
numbers stored in registers, transfer data between memory and a register, or conditionally branch to a new

94 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

instruction address. The compiler must generate sequences of such instructions to implement program
constructs such as arithmetic expression evaluation, loops, or procedure calls and returns.

3.2.2 Code Examples

Suppose we write a C code filecode.c containing the following procedure definition:

1 int accum = 0;
2

3 int sum(int x, int y)
4 {
5 int t = x + y;
6 accum += t;
7 return t;
8 }

To see the assembly code generated by the C compiler, we can use the “-S” option on the command line:

unix> gcc -O2 -S code.c

This will cause the compiler to generate an assembly filecode.s and go no further. (Normally it would
then invoke the assembler to generate an object code file). The assembly-code file contains various declara-
tions including the set of lines:

sum:
pushl %ebp
movl %esp,%ebp
movl 12(%ebp),%eax
addl 8(%ebp),%eax
addl %eax,accum
movl %ebp,%esp
popl %ebp
ret

Each indented line in the above code corresponds to a single machine instruction. For example, thepushl
instruction indicates that the contents of register%ebp should be pushed onto the program stack. All
information about local variable names or data types has been stripped away. We still see a reference to the
global variableaccum, since the compiler has not yet determined where in memory this variable will be
stored.

If we use the ’-c’ command line option,GCC will both compile and assemble the code:

unix> gcc -O2 -c code.c

This will generate an object code filecode.o that is in binary format and hence cannot be viewed directly.
Embedded within the 852 bytes of the filecode.o is a 19 byte sequence having hexadecimal representation:

55 89 e5 8b 45 0c 03 45 08 01 05 00 00 00 00 89 ec 5d c3

3.2. PROGRAM ENCODINGS 95

This is the object code corresponding to the assembly instructions listed above. A key lesson to learn from
this is that the program actually executed by the machine is simply a sequence of bytes encoding a series of
instructions. The machine has very little information about the source code from which these instructions
were generated.

Aside: How do I find the byte representation of a program?
First we used a disassembler (to be described shortly) to determine that the code forsum is 19 bytes long. Then we
ran the GNU debugging toolGDB on filecode.o and gave it the command:

(gdb) x/19xb sum

telling it to examine (abbreviated ‘x’) 19 hex-formatted (also abbreviated ‘x’) bytes (abbreviated ‘b’). You will find
thatGDB has many useful features for analyzing machine-level programs, as will be discussed in Section 3.12.End
Aside.

To inspect the contents of object code files, a class of programs known asdisassemblerscan be invaluable.
These programs generate a format similar to assembly code from the object code. With Linux systems, the
programOBJDUMP(for “object dump”) can serve this role given the ‘-d’ command line flag:

unix> objdump -d code.o

The result is (where we have added line numbers on the left and annotations on the right):

Disassembly of function sum in file code.o

1 00000000 <sum>:
Offset Bytes Equivalent assembly language

2 0: 55 push %ebp
3 1: 89 e5 mov %esp,%ebp
4 3: 8b 45 0c mov 0xc(%ebp),%eax
5 6: 03 45 08 add 0x8(%ebp),%eax
6 9: 01 05 00 00 00 00 add %eax,0x0
7 f: 89 ec mov %ebp,%esp
8 11: 5d pop %ebp
9 12: c3 ret

10 13: 90 nop

On the left we see the 19 hexadecimal byte values listed in the byte sequence earlier, partitioned into groups
of 1 to 5 bytes each. Each of these groups is a single instruction, with the assembly language equivalent
shown on the right. Several features are worth noting:

� IA32 instructions can range in length from 1 to 15 bytes. The instruction encoding is designed so that
commonly used instructions and ones with fewer operands require a smaller number of bytes than do
less common ones or ones with more operands.

� The instruction format is designed in such a way that from a given starting position, there is a unique
decoding of the bytes into machine instructions. For example, only the instructionpushl %ebp can
start with byte value55.

96 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

� The disassembler determines the assembly code based purely on the byte sequences in the object file.
It does not require access to the source or assembly-code versions of the program.

� The disassembler uses a slightly different naming convention for the instructions than doesGAS. In
our example, it has omitted the suffix ‘l’ from many of the instructions.

� Compared to the assembly code incode.s we also see an additionalnop instruction at the end.
This instruction will never be executed (it comes after the procedure return instruction), nor would it
have any effect if it were (hence the namenop, short for “no operation” and commonly spoken as
“no op”). The compiler inserted this instruction as a way to pad the space used to store the procedure.

Generating the actual executable code requires running a linker on the set of object code files, one of which
must contain a functionmain. Suppose in filemain.c we had the function:

1 int main()
2 {
3 return sum(1, 3);
4 }

Then we could generate an executable programtest as follows:

unix> gcc -O2 -o prog code.o main.c

The fileprog has grown to 11,667 bytes, since it contains not just the code for our two procedures but also
information used to start and terminate the program as well as to interact with the operating system. We can
also disassemble the fileprog:

unix> objdump -d prog

The disassembler will extract various code sequences, including the following:

Disassembly of function sum in executable file prog

1 080483b4 <sum>:
2 80483b4: 55 push %ebp
3 80483b5: 89 e5 mov %esp,%ebp
4 80483b7: 8b 45 0c mov 0xc(%ebp),%eax
5 80483ba: 03 45 08 add 0x8(%ebp),%eax
6 80483bd: 01 05 64 94 04 08 add %eax,0x8049464
7 80483c3: 89 ec mov %ebp,%esp
8 80483c5: 5d pop %ebp
9 80483c6: c3 ret

10 80483c7: 90 nop

Note that this code is almost identical to that generated by the disassembly ofcode.c. One main difference
is that the addresses listed along the left are different—the linker has shifted the location of this code to a
different range of addresses. A second difference is that the linker has finally determined the location for
storing global variableaccum. On line 5 of the disassembly forcode.o the address ofaccum was still
listed as0. In the disassembly ofprog, the address has been set to0x8049444. This is shown in the
assembly code rendition of the instruction. It can also be seen in the last four bytes of the instruction, listed
from least-significant to most as44 94 04 08.

3.2. PROGRAM ENCODINGS 97

3.2.3 A Note on Formatting

The assembly code generated byGCCis somewhat difficult to read. It contains some information with which
we need not be concerned. On the other hand, it does not provide any description of the program or how it
works. For example, suppose filesimple.c contains the code:

1 int simple(int *xp, int y)
2 {
3 int t = *xp + y;
4 *xp = t;
5 return t;
6 }

whenGCC is run with the ‘-S’ flag it generates the following file forsimple.s.

.file "simple.c"

.version "01.01"
gcc2_compiled.:
.text

.align 4
.globl simple

.type simple,@function
simple:

pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl (%eax),%edx
addl 12(%ebp),%edx
movl %edx,(%eax)
movl %edx,%eax
movl %ebp,%esp
popl %ebp
ret

.Lfe1:
.size simple,.Lfe1-simple
.ident "GCC: (GNU) 2.95.3 20010315 (release)"

The file contains more information than we really require. All of the lines beginning with ‘. ’ are directives
to guide the assembler and linker. We can generally ignore these. On the other hand, there are no explanatory
remarks about what the instructions do or how they relate to the source code.

To provide a clearer presentation of assembly code, we will show it in a form that includes line numbers and
explanatory annotations. For our example, an annotated version would appear as follows:

1 simple:
2 pushl %ebp Save frame pointer

3 movl %esp,%ebp Create new frame pointer

4 movl 8(%ebp),%eax Get xp

98 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

C declaration Intel Data Type GAS suffix Size (Bytes)
char Byte b 1
short Word w 2
int Double Word l 4
unsigned Double Word l 4
long int Double Word l 4
unsigned long Double Word l 4
char * Double Word l 4
float Single Precision s 4
double Double Precision l 8
long double Extended Precision t 10/12

Figure 3.1: Sizes of standard data types

5 movl (%eax),%edx Retrieve *xp

6 addl 12(%ebp),%edx Add y to get t

7 movl %edx,(%eax) Store t at *xp

8 movl %edx,%eax Set t as return value

9 movl %ebp,%esp Reset stack pointer

10 popl %ebp Reset frame pointer

11 ret Return

We typically show only the lines of code relevant to the point being discussed. Each line is numbered on the
left for reference and annotated on the right by a brief description of the effect of the instruction and how it
relates to the computations of the original C code. This is a stylized version of the way assembly-language
programmers format their code.

3.3 Data Formats

Due to its origins as a 16-bit architecture that expanded into a 32-bit one, Intel uses the term “word” to refer
to a 16-bit data type. Based on this, they refer to 32-bit quantities as “double words.” They refer to 64-bit
quantities as “quad words.” Most instructions we will encounter operate on bytes or double words.

Figure 3.1 shows the machine representations used for the primitive data types of C. Note that most of the
common data types are stored as double words. This includes both regular and longint’s, whether or
not they are signed. In addition, all pointers (shown here aschar *) are stored as 4-byte double words.
Bytes are commonly used when manipulating string data. Floating-point numbers come in three different
forms: single-precision (4-byte) values, corresponding to C data typefloat; double-precision (8-byte)
values, corresponding to C data typedouble; and extended-precision (10-byte) values. GCC uses the
data typelong double to refer to extended-precision floating-point values. It also stores them as 12-
byte quantities to improve memory system performance, as will be discussed later. Although the ANSI C
standard includeslong double as a data type, they are implemented for most combinations of compiler
and machine using the same 8-byte format as ordinarydouble. The support for extended precision is

3.4. ACCESSING INFORMATION 99

31 15 8 7 0

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %ax %bh %bl

%esi %si

%edi %di

Stack Pointer%esp %sp

Frame Pointer%ebp %bp

Figure 3.2:Integer Registers.All eight registers can be accessed as either 16 bits (word) or 32 bits (double
word). The two low-order bytes of the first four registers can be accessed independently.

unique to the combination ofGCC and IA32.

As the table indicates, every operation inGAS has a single-character suffix denoting the size of the operand.
For example, themov (move data) instruction has 3 variants:movb (move byte),movw (move word),
andmovl (move double word). The suffix ‘l ’ is used for double words, since on many machines 32-bit
quantities are referred to as “long words,” a holdover from an era when 16-bit word sizes were standard.
Note thatGAS uses the suffix ‘l ’ to denote both a 4-byte integer as well as an 8-byte double-precision
floating-point number. This causes no ambiguity, since floating point involves an entirely different set of
instructions and registers.

3.4 Accessing Information

An IA32 central processing unit (CPU) contains a set of eightregistersstoring 32-bit values. These registers
are used to store integer data as well as pointers. Figure 3.2 diagrams the eight registers. Their names all
begin with%e, but otherwise they have peculiar names. With the original 8086, the registers were 16-bits
and each had a specific purpose. The names were chosen to reflect these different purposes. With flat
addressing, the need for specialized registers is greatly reduced. For the most part, the first 6 registers can
be considered general-purpose registers with no restrictions placed on their use. We said “for the most part,”
because some instructions use fixed registers as sources and/or destinations. In addition, within procedures
there are different conventions for saving and restoring the first three registers (%eax, %ecx, and%edx),
than for the next three (%ebx, %edi, and %esi). This will be discussed in Section 3.7. The final two

100 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Type Form Operand Value Name
Immediate $Imm Imm Immediate
Register Ea Reg [Ea] Register
Memory Imm Mem[Imm] Absolute
Memory (Ea) Mem[Reg [Ea]] Indirect
Memory Imm(Eb) Mem[Imm + Reg [Eb]] Base + Displacement
Memory (Eb, Ei) Mem[Reg [Eb] + Reg [Ei]] Indexed
Memory Imm(Eb, Ei) Mem[Imm + Reg [Eb] + Reg [Ei]] Indexed
Memory (, Ei, s) Mem[Reg [Ei] � s] Scaled Indexed
Memory Imm(, Ei, s) Mem[Imm + Reg [Ei] � s] Scaled Indexed
Memory (Eb, Ei, s) Mem[Reg [Eb] + Reg [Ei] � s] Scaled Indexed
Memory Imm(Eb, Ei, s) Mem[Imm + Reg [Eb] + Reg [Ei] � s] Scaled Indexed

Figure 3.3:Operand Forms. Operands can denote immediate (constant) values, register values, or values
from memory. The scaling factors must be either 1, 2, 4, or 8.

registers (%ebpand%esp) contain pointers to important places in the program stack. They should only be
altered according to the set of standard conventions for stack management.

As indicated in Figure 3.2, the low-order two bytes of the first four registers can be independently read or
written by the byte operation instructions. This feature was provided in the 8086 to allow backward com-
patibility to the 8008 and 8080—two 8-bit microprocessors that date back to 1974. When a byte instruction
updates one of these single-byte “register elements,” the remaining three bytes of the register do not change.
Similarly, the low-order 16 bits of each register can be read or written by word operation instructions. This
feature stems from IA32’s evolutionary heritage as a 16-bit microprocessor.

3.4.1 Operand Specifiers

Most instructions have one or moreoperands, specifying the source values to reference in performing an
operation and the destination location into which to place the result. IA32 supports a number of operand
forms (Figure 3.3). Source values can be given as constants or read from registers or memory. Results can
be stored in either registers or memory. Thus, the different operand possibilities can be classified into three
types. The first type,immediate, is for constant values. WithGAS, these are written with a ‘$’ followed
by an integer using standard C notation, such as,$-577 or $0x1F. Any value that fits in a 32-bit word
can be used, although the assembler will use one or two-byte encodings when possible. The second type,
register, denotes the contents of one of the registers, either one of the eight 32-bit registers (e.g.,%eax) for a
double-word operation, or one of the eight single-byte register elements (e.g.,%al) for a byte operation. In
our figure, we use the notationEa to denote an arbitrary registera, and indicate its value with the reference
Reg [Ea], viewing the set of registers as an arrayReg indexed by register identifiers.

The third type of operand is amemoryreference, in which we access some memory location according to a
computed address, often called theeffective address. As the table shows, there are many differentaddressing
modesallowing different forms of memory references. The most general form is shown at the bottom of the
table with syntaxImm(Eb, Ei, s) . Such a reference has four components: an immediate offsetImm , a base

3.4. ACCESSING INFORMATION 101

Instruction Effect Description
movl S, D D S Move Double Word
movw S, D D S Move Word
movb S, D D S Move Byte
movsbl S, D D SignExtend(S) Move Sign-Extended Byte
movzbl S, D D ZeroExtend (S) Move Zero-Extended Byte
pushl S Reg [%esp] Reg [%esp]� 4; Push

Mem[Reg [%esp]] S

popl D D Mem[Reg [%esp]]; Pop
Reg [%esp] Reg [%esp] + 4

Figure 3.4:Data Movement Instructions.

registerEb, an index registerEi, and a scale factors, wheres must be 1, 2, 4, or 8. The effective address is
then computed asImm +Reg [Eb] +Reg [Ei] � s: This general form is often seen when referencing elements
of arrays. The other forms are simply special cases of this general form where some of the components
are omitted. As we will see, the more complex addressing modes are useful when referencing array and
structure elements.

Practice Problem 3.1:

Assume the following values are stored at the indicated memory addresses and registers:

Address Value Register Value
0x100 0xFF %eax 0x100
0x104 0xAB %ecx 0x1
0x108 0x13 %edx 0x3
0x10C 0x11

Fill in the following table showing the values for the indicated operands

Operand Value
%eax
0x104
$0x108
(%eax)
4(%eax)
9(%eax,%edx)
260(%ecx,%edx)
0xFC(,%ecx,4)
(%eax,%edx,4)

102 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

3.4.2 Data Movement Instructions

Among the most heavily used instructions are those that perform data movement. The generality of the
operand notation allows a simple move instruction to perform what in many machines would require a
number of instructions. Figure 3.4 lists the important data movement instructions. The most common is the
movl instruction for moving double words. The source operand designates a value that is immediate, stored
in a register, or stored in memory. The destination operand designates a location that is either a register or
a memory address. IA32 imposes the restriction that a move instruction cannot have both operands refer to
memory locations. Copying a value from one memory location to another requires two instructions—the
first to load the source value into a register, and the second to write this register value to the destination.

The following are some examples ofmovl instructions showing the five possible combinations of source
and destination types. Recall that the source operand comes first and the destination second.

1 movl $0x4050,%eax Immediate--Register

2 movl %ebp,%esp Register--Register

3 movl (%edi,%ecx),%eax Memory--Register

4 movl $-17,(%esp) Immediate--Memory

5 movl %eax,-12(%ebp) Register--Memory

The movb instruction is similar, except that it moves just a single byte. When one of the operands is a
register, it must be one of the eight single-byte register elements illustrated in Figure 3.2. Similarly, the
movw instruction moves two bytes. When one of its operands is a register, it must be one of the eight
two-byte register elements shown in Figure 3.2.

Both themovsbl and themovzbl instruction serve to copy a byte and to set the remaining bits in the
destination. Themovsbl instruction takes a single-byte source operand, performs a sign extension to 32
bits (i.e., it sets the high-order 24 bits to the most significant bit of the source byte), and copies this to a
double-word destination. Similarly, themovzbl instruction takes a single-byte source operand, expands it
to 32 bits by adding 24 leading zeros, and copies this to a double-word destination.

Aside: Comparing byte movement instructions.
Observe that the three byte movement instructionsmovb, movsbl , andmovzbl differ from each other in subtle
ways. Here is an example:

Assume initially that %dh = 8D, %eax = 98765432

1 movb %dh,%al %eax = 9876548D

2 movsbl %dh,%eax %eax = FFFFFF8D

3 movzbl %dh,%eax %eax = 0000008D

In these examples, all set the low-order byte of register%eax to the second byte of%edx. Themovb instruction
does not change the other three bytes. Themovsbl instruction sets the other three bytes to either all ones or all
zeros depending on the high-order bit of the source byte. Themovzbl instruction sets the other three bytes to all
zeros in any case.End Aside.

The final two data movement operations are used to push data onto and pop data from the program stack. As
we will see, the stack plays a vital role in the handling of procedure calls. Both thepushl and thepopl
instructions take a single operand—the data source for pushing and the data destination for popping. The

3.4. ACCESSING INFORMATION 103

code/asm/exchange.c

1 int exchange(int *xp, int y)
2 {
3 int x = *xp;
4

5 *xp = y;
6 return x;
7 }

code/asm/exchange.c

1 movl 8(%ebp),%eax Get xp

2 movl 12(%ebp),%edx Get y

3 movl (%eax),%ecx Get x at *xp

4 movl %edx,(%eax) Store y at *xp

5 movl %ecx,%eax Set x as return value

(a) C code (b) Assembly code

Figure 3.5:C and Assembly Code for Exchange Routine Body.The stack set-up and completion portions
have been omitted.

program stack is stored in some region of memory. The stack grows downward such that the top element
of the stack has the lowest address of all stack elements. The stack pointer%esp holds the address of this
lowest stack element. Pushing a double-word value onto the stack therefore involves first decrementing the
stack pointer by 4 and then writing the value at the new top of stack address. Therefore, the instruction
pushl %ebp has equivalent behavior to the following pair of instructions:

subl $4,%esp
movl %ebp,(%esp)

except that thepushl instruction is encoded in the object code as a single byte, whereas the pair of instruc-
tion shown above requires a total of 6 bytes. Popping a double word involves reading from the top of stack
location and then incrementing the stack pointer by 4. Therefore the instructionpopl %eax is equivalent
to the following pair of instructions:

movl (%esp),%eax
addl $4,%esp

3.4.3 Data Movement Example

New to C?
Functionexchange (Figure 3.5) provides a good illustration of the use of pointers in C. Argumentxp is a pointer
to an integer, whiley is an integer itself. The statement

int x = *xp;

indicates that we should read the value stored in the location designated byxp and store it as a local variable named
x . This read operation is known as pointerdereferencing. The C operator* performs pointer dereferencing.

The statement

*xp = y;

104 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

does the reverse—it writes the value of parametery at the location designated byxp . This also a form of pointer
dereferencing (and hence the operator*), but it indicates a write operation since it is on the left hand side of the
assignment statement.

Here is an example ofexchange in action:

int a = 4;
int b = exchange(&a, 3);
printf("a = %d, b = %d\n", a, b);

This code will print

a = 3, b = 4

The C operator (called the “address of” operator)& createsa pointer, in this case to the location holding local
variablea. Functionexchange then overwrote the value stored ina with 3 but returned 4 as the function value.
Observe how by passing a pointer toexchange , it could modify data held at some remote location.End

As an example of code that uses data movement instructions, consider the data exchange routine shown in
Figure 3.5, both as C code and as assembly code generated byGCC. We omit the portion of the assembly
code that allocates space on the run-time stack on procedure entry and deallocates it prior to return. The
details of this set-up and completion code will be covered when we discuss procedure linkage. The code we
are left with is called the “body.”

When the body of the procedure starts execution, procedure parametersxp andy are stored at offsets 8 and
12 relative to the address in register%ebp. Instructions 1 and 2 then move these parameters into registers
%eax and%edx. Instruction 3 dereferencesxp and stores the value in register%ecx, corresponding to
program valuex . Instruction 4 storesy at xp. Instruction 5 movesx to register%eax. By convention,
any function returning an integer or pointer value does so by placing the result in register%eax, and so this
instruction implements line 6 of the C code. This example illustrates how themovl instruction can be used
to read from memory to a register (instructions 1 to 3), to write from a register to memory (instruction 4),
and to copy from one register to another (instruction 5).

Two features about this assembly code are worth noting. First, we see that what we call “pointers” in C
are simply addresses. Dereferencing a pointer involves putting that pointer in a register, and then using this
register in an indirect memory reference. Second, local variables such asx are often kept in registers rather
than stored in memory locations. Register access is much faster than memory access.

Practice Problem 3.2:

You are given the following information. A function with prototype

void decode1(int *xp, int *yp, int *zp);

is compiled into assembly code. The body of the code is as follows:

1 movl 8(%ebp),%edi
2 movl 12(%ebp),%ebx
3 movl 16(%ebp),%esi

3.5. ARITHMETIC AND LOGICAL OPERATIONS 105

Instruction Effect Description
leal S,D D &S Load Effective Address
incl D D D + 1 Increment
decl D D D - 1 Decrement
negl D D - D Negate
notl D D ˜ D Complement
addl S,D D D + S Add
subl S,D D D - S Subtract
imull S,D D D * S Multiply
xorl S,D D D ˆ S Exclusive-Or
orl S,D D D | S Or
andl S,D D D & S And
sall k,D D D << k Left Shift
shll k,D D D << k Left Shift (same assall)
sarl k,D D D >> k Arithmetic Right Shift
shrl k,D D D >> k Logical Right Shift

Figure 3.6: Integer Arithmetic Operations. The Load Effective Addressleal is commonly used to
perform simple arithmetic. The remaining ones are more standard unary or binary operations. Note the
nonintuitive ordering of the operands withGAS.

4 movl (%edi),%eax
5 movl (%ebx),%edx
6 movl (%esi),%ecx
7 movl %eax,(%ebx)
8 movl %edx,(%esi)
9 movl %ecx,(%edi)

Parametersxp , yp , andzp are stored at memory locations with offsets 8, 12, and 16, respectively,
relative to the address in register%ebp.

Write C code fordecode1 that will have an effect equivalent to the assembly code above. You can
test your answer by compiling your code with the-S switch. Your compiler may generate code that
differs in the usage of registers or the ordering of memory references, but it should still be functionally
equivalent.

3.5 Arithmetic and Logical Operations

Figure 3.6 lists some of the double-word integer operations, divided into four groups.Binary operations
have two operands, whileunaryoperations have one operand. These operands are specified using the same
notation as described in Section 3.4. With the exception ofleal, each of these instructions has a counterpart
that operates on words (16 bits) and on bytes. The suffix ‘l ’ is replaced by ‘w’ for word operations and ‘b’
for the byte operations. For example,addl becomesaddw or addb.

106 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

3.5.1 Load Effective Address

The Load Effective Addressleal instruction is actually a variant of themovl instruction. Its first operand
appears to be a memory reference, but instead of reading from the designated location, the instruction copies
the effective address to the destination. We indicate this computation in Figure 3.6 using the C address
operator&S. This instruction can be used to generate pointers for later memory references. In addition, it
can be used to compactly describe common arithmetic operations. For example, if register%edx contains
valuex, then the instructionleal 7(%edx,%edx,4), %eax will set register%eax to 5x + 7. The
destination operand must be a register.

Practice Problem 3.3:

Suppose register%eax holds valuex and%ecx holds valuey. Fill in the table below with formu-
las indicating the value that will be stored in register%edx for each of the following assembly code
instructions.

Expression Result
leal 6(%eax), %edx
leal (%eax,%ecx), %edx
leal (%eax,%ecx,4), %edx
leal 7(%eax,%eax,8), %edx
leal 0xA(,$ecx,4), %edx
leal 9(%eax,%ecx,2), %edx

3.5.2 Unary and Binary Operations

Operations in the second group are unary operations, with the single operand serving as both source and
destination. This operand can be either a register or a memory location. For example, the instructionincl
(%esp) causes the element on the top of the stack to be incremented. This syntax is reminiscent of the C
increment (++) and decrement operators (--).

The third group consists of binary operations, where the second operand is used as both a source and a
destination. This syntax is reminiscent of the C assignment operators such as+=. Observe, however,
that the source operand is given first and the destination second. This looks peculiar for noncommutative
operations. For example, the instructionsubl %eax,%edx decrements register%edx by the value in
%eax. The first operand can be either an immediate value, a register, or a memory location. The second can
be either a register or a memory location. As with themovl instruction, however, the two operands cannot
both be memory locations.

Practice Problem 3.4:

Assume the following values are stored at the indicated memory addresses and registers:

Address Value Register Value
0x100 0xFF %eax 0x100
0x104 0xAB %ecx 0x1
0x108 0x13 %edx 0x3
0x10C 0x11

3.5. ARITHMETIC AND LOGICAL OPERATIONS 107

Fill in the following table showing the effects of the following instructions, both in terms of the register
or memory location that will be updated and the resulting value.

Instruction Destination Value
addl %ecx,(%eax)
subl %edx,4(%eax)
imull $16,(%eax,%edx,4)
incl 8(%eax)
decl %ecx
subl %edx,%eax

3.5.3 Shift Operations

The final group consists of shift operations, where the shift amount is given first, and the value to shift
is given second. Both arithmetic and logical right shifts are possible. The shift amount is encoded as a
single byte, since only shifts amounts between 0 and 31 are allowed. The shift amount is given either as an
immediate or in the single-byte register element%cl. As Figure 3.6 indicates, there are two names for the
left shift instruction:sall andshll. Both have the same effect, filling from the right with 0s. The right
shift instructions differ in thatsarl performs an arithmetic shift (fill with copies of the sign bit), whereas
shrl performs a logical shift (fill with 0s).

Practice Problem 3.5:

Suppose we want to generate assembly code for the following C function:

int shift_left2_rightn(int x, int n)
{

x <<= 2;
x >>= n;
return x;

}

The following is a portion of the assembly code that performs the actual shifts and leaves the final value
in register%eax. Two key instructions have been omitted. Parametersx andn are stored at memory
locations with offsets 8 and 12, respectively, relative to the address in register%ebp.

1 movl 12(%ebp),%ecx Get x

2 movl 8(%ebp),%eax Get n

3 _____________ x <<= 2

4 _____________ x >>= n

Fill in the missing instructions, following the annotations on the right. The right shift should be per-
formed arithmetically.

108 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

code/asm/arith.c

1 int arith(int x,
2 int y,
3 int z)
4 {
5 int t1 = x+y;
6 int t2 = z*48;
7 int t3 = t1 & 0xFFFF;
8 int t4 = t2 * t3;
9

10 return t4;
11 }

code/asm/arith.c

1 movl 12(%ebp),%eax Get y

2 movl 16(%ebp),%edx Get z

3 addl 8(%ebp),%eax Compute t1 = x+y

4 leal (%edx,%edx,2),%edx Compute z*3

5 sall $4,%edx Compute t2 = z*48

6 andl $65535,%eax Compute t3 = t1&0xFFFF

7 imull %eax,%edx Compute t4 = t2*t3

8 movl %edx,%eax Set t4 as return val

(a) C code (b) Assembly code

Figure 3.7:C and Assembly Code for Arithmetic Routine Body.The stack set-up and completion portions
have been omitted.

3.5.4 Discussion

With the exception of the right shift operations, none of the instructions distinguish between signed and
unsigned operands. Two’s complement arithmetic has the same bit-level behavior as unsigned arithmetic
for all of the instructions listed.

Figure 3.7 shows an example of a function that performs arithmetic operations and its translation into as-
sembly. As before, we have omitted the stack set-up and completion portions. Function argumentsx , y ,
andz are stored in memory at offsets 8, 12, and 16 relative to the address in register%ebp, respectively.

Instruction 3 implements the expressionx+y, getting one operandy from register%eax(which was fetched
by instruction 1) and the other directly from memory. Instructions 4 and 5 perform the computationz*48,
first using theleal instruction with a scaled-indexed addressing mode operand to compute(z+2z) = 3z,
and then shifting this value left 4 bits to compute24�3z = 48z. The C compiler often generates combinations
of add and shift instructions to perform multiplications by constant factors, as was discussed in Section 2.3.6
(page 63). Instruction 6 performs theAND operation and instruction 7 performs the final multiplication.
Then instruction 8 moves the return value into register%eax.

In the assembly code of Figure 3.7, the sequence of values in register%eax correspond to program values
y , t1, t3, and t4 (as the return value). In general, compilers generate code that uses individual registers
for multiple program values and that move program values among the registers.

Practice Problem 3.6:

In the compilation of the following loop:

for (i = 0; i < n; i++)
v += i;

we find the following assembly code line:

3.5. ARITHMETIC AND LOGICAL OPERATIONS 109

Instruction Effect Description
imull S Reg [%edx]:Reg [%eax] S � Reg [%eax] Signed Full Multiply
mull S Reg [%edx]:Reg [%eax] S � Reg [%eax] Unsigned Full Multiply
cltd Reg [%edx]:Reg [%eax] SignExtend(Reg [%eax]) Convert to Quad Word
idivl S Reg [%edx] Reg [%edx]:Reg [%eax] mod S; Signed Divide

Reg [%eax] Reg [%edx]:Reg [%eax]� S

divl S Reg [%edx] Reg [%edx]:Reg [%eax] mod S; Unsigned Divide
Reg [%eax] Reg [%edx]:Reg [%eax]� S

Figure 3.8:Special Arithmetic Operations. These operations provide full 64-bit multiplication and divi-
sion, for both signed and unsigned numbers. The pair of registers%edxand%eaxare viewed as forming a
single 64-bit quad word.

xorl %edx,%edx

Explain why this instruction would be there, even though there are noEXCLUSIVE-OR operators in our
C code. What operation in the C program does this instruction implement?

3.5.5 Special Arithmetic Operations

Figure 3.8 describes instructions that support generating the full 64-bit product of two 32-bit numbers, as
well as integer division.

The imull instruction listed in Figure 3.6 is known as the “two-operand” multiply instruction. It gen-
erates a 32-bit product from two 32-bit operands, implementing the operations* u

32 and * t
32 described in

Sections 2.3.4 and 2.3.5 (pages 61 and 62). Recall that when truncating the product to 32 bits, both un-
signed multiply and two’s complement multiply have the same bit-level behavior. IA32 also provides two
different “one-operand” multiply instructions to compute the full 64-bit product of two 32-bit values—one
for unsigned (mull), and one for two’s complement (imull) multiplication. For both of these, one argu-
ment must be in register%eax, and the other is given as the instruction source operand. The product is then
stored in registers%edx (high-order 32 bits) and%eax (low-order 32 bits). Note that although the name
imull is used for two distinct multiplication operations, the assembler can tell which one is intended by
counting the number of operands.

As an example, suppose we have signed numbersx andy stored at positions8 and12 relative to%ebp, and
we want to store their full 64-bit product as 8 bytes on top of the stack. The code would proceed as follows:

x at %ebp+8, y at %ebp+12

1 movl 8(%ebp),%eax Put x in %eax

2 imull 12(%ebp) Multiply by y

3 pushl %edx Push high-order 32 bits

4 pushl %eax Push low-order 32 bits

Observe that the order in which we push the two registers is correct for a little-endian machine in which the
stack grows toward lower addresses, i.e., the low-order bytes of the product will have lower addresses than
the high-order bytes.

110 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Our earlier table of arithmetic operations (Figure 3.6) does not list any division or modulus operations. These
operations are provided by the single-operand divide instructions similar to the single-operand multiply
instructions. The signed division instructionidivl takes as dividend the 64-bit quantity in registers%edx
(high-order 32 bits) and%eax (low-order 32 bits). The divisor is given as the instruction operand. The
instructions store the quotient in register%eaxand the remainder in register%edx. Thecltd 1 instruction
can be used to form the 64-bit dividend from a 32-bit value stored in register%eax. This instruction sign
extends%eax into %edx.

As an example, suppose we have signed numbersx andy stored in positions8 and12 relative to%ebp, and
we want to store valuesx/y andx%y on the stack. The code would proceed as follows:

x at %ebp+8, y at %ebp+12

1 movl 8(%ebp),%eax Put x in %eax

2 cltd Sign extend into %edx

3 idivl 12(%ebp) Divide by y

4 pushl %eax Push x / y

5 pushl %edx Push x % y

Thedivl instruction performs unsigned division. Typically register%edx is set to 0 beforehand.

3.6 Control

Up to this point, we have considered ways to access and operate on data. Another important part of program
execution is to control the sequence of operations that are performed. The default for statements in C as
well as for assembly code is to have control flow sequentially, with statements or instructions executed in
the order they appear in the program. Some constructs in C, such as conditionals, loops, and switches, allow
the control to flow in nonsequential order, with the exact sequence depending on the values of program data.

Assembly code provides lower-level mechanisms for implementing nonsequential control flow. The basic
operation is to jump to a different part of the program, possibly contingent on the result of some test. The
compiler must generate instruction sequences that build upon these low-level mechanisms to implement the
control constructs of C.

In our presentation, we first cover the machine-level mechanisms and then show how the different control
constructs of C are implemented with them.

3.6.1 Condition Codes

In addition to the integer registers, the CPU maintains a set of single-bitcondition coderegisters describing
attributes of the most recent arithmetic or logical operation. These registers can then be tested to perform
conditional branches. The most useful condition codes are:

CF: Carry Flag. The most recent operation generated a carry out of the most significant bit. Used to detect
overflow for unsigned operations.

1This instruction is calledcdq in the Intel documentation, one of the few cases where theGAS name for an instruction bears no
relation to the Intel name.

3.6. CONTROL 111

ZF: Zero Flag. The most recent operation yielded zero.

SF: Sign Flag. The most recent operation yielded a negative value.

OF: Overflow Flag. The most recent operation caused a two’s complement overflow—either negative or
positive.

For example, suppose we used theaddl instruction to perform the equivalent of the C expressiont=a+b,
where variablesa, b, and t are of typeint. Then the condition codes would be set according to the
following C expressions:

CF: (unsigned t) < (unsigned a) Unsigned overflow
ZF: (t == 0) Zero
SF: (t < 0) Negative
OF: (a < 0 == b < 0) && (t < 0 != a < 0) Signed overflow

The leal instruction does not alter any condition codes, since it is intended to be used in address compu-
tations. Otherwise, all of the instructions listed in Figure 3.6 cause the condition codes to be set. For the
logical operations, such asxorl, the carry and overflow flags are set to 0. For the shift operations, the carry
flag is set to the last bit shifted out, while the overflow flag is set to 0.

In addition to the operations of Figure 3.6, two operations (having 8, 16, and 32-bit forms) set conditions
codes without altering any other registers:

Instruction Based on Description
cmpb S2, S1 S1 - S2 Compare bytes
testb S2, S1 S1 & S2 Test byte
cmpw S2, S1 S1 - S2 Compare words
testw S2, S1 S1 & S2 Test word
cmpl S2, S1 S1 - S2 Compare double words
testl S2, S1 S1 & S2 Test double word

Thecmpb, cmpw, andcmpl instructions set the condition codes according to the difference of their two
operands. WithGAS format, the operands are listed in reverse order, making the code difficult to read. These
instructions set the zero flag if the two operands are equal. The other flags can be used to determine ordering
relations between the two operands.

The testb, testw, and testl instructions set the zero and negative flags based on theAND of their
two operands. Typically, the same operand is repeated (e.g.,testl %eax,%eax to see whether%eax is
negative, zero, or positive), or one of the operands is a mask indicating which bits should be tested.

3.6.2 Accessing the Condition Codes

Rather than reading the condition codes directly, the two most common methods of accessing them are to
set an integer register or to perform a conditional branch based on some combination of condition codes.

The differentset instructions described in Figure 3.9 set a single byte to 0 or to 1 depending on some
combination of the conditions codes. The destination operand is either one of the eight single-byte register

112 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Instruction Synonym Effect Set Condition
sete D setz D ZF Equal / Zero
setne D setnz D ˜ ZF Not Equal / Not Zero
sets D D SF Negative
setns D D ˜ SF Nonnegative
setg D setnle D ˜ (SF ˆ OF) & ˜ZF Greater (Signed>)
setge D setnl D ˜ (SF ˆ OF) Greater or Equal (Signed>=)
setl D setnge D SF ˆ OF Less (Signed<)
setle D setng D (SF ˆ OF) | ZF Less or Equal (Signed<=)
seta D setnbe D ˜ CF & ˜ZF Above (Unsigned>)
setae D setnb D ˜ CF Above or Equal (Unsigned>=)
setb D setnae D CF Below (Unsigned<)
setbe D setna D CF & ˜ZF Below or Equal (Unsigned<=)

Figure 3.9:The set Instructions. Each instruction sets a single byte to 0 or 1 based on some combination
of the condition codes. Some instructions have “synonyms,” i.e., alternate names for the same machine
instruction.

elements (Figure 3.2) or a memory location where the single byte is to be stored. To generate a 32-bit result,
we must also clear the high-order 24 bits. A typical instruction sequence for a C predicate such asa<b is
therefore as follows

Note: a is in %edx, b is in %eax

1 cmpl %eax,%edx Compare a:b

2 setl %al Set low order byte of %eax to 0 or 1

3 movzbl %al,%eax Set remaining bytes of %eax to 0

using themovzbl instruction to clear the high-order three bytes.

For some of the underlying machine instructions, there are multiple possible names, which we list as “syn-
onyms.” For example both “setg” (for “SET-Greater”) and “ setnle” (for “SET-Not-Less-or-Equal”)
refer to the same machine instruction. Compilers and disassemblers make arbitrary choices of which names
to use.

Although all arithmetic operations set the condition codes, the descriptions of the differentset commands
apply to the case where a comparison instruction has been executed, setting the condition codes according to
the computationt=a-b. For example, consider thesete, or “Set when equal” instruction. Whena = b,
we will havet = 0, and hence the zero flag indicates equality.

Similarly, consider testing a signed comparison with thesetl, or “Set when less,” instruction. Whena
andb are in two’s complement form, then fora < b we will havea � b < 0 if the true difference were
computed. When there is no overflow, this would be indicated by having the sign flag set. When there is
positive overflow, becausea � b is a large positive number, however, we will havet < 0. When there
is negative overflow, becausea � b is a small negative number, we will havet > 0. In either case, the
sign flag will indicate the opposite of the sign of the true difference. Hence, the EXCLUSIVE-OR of the
overflow and sign bits provides a test for whethera < b. The other signed comparison tests are based on

3.6. CONTROL 113

other combinations ofSF ˆ OF andZF.

For the testing of unsigned comparisons, the carry flag will be set by thecmpl instruction when the integer
differencea � b of the unsigned argumentsa andb would be negative, that is, when(unsigned) a <
(unsigned) b. Thus, these tests use combinations of the carry and zero flags.

Practice Problem 3.7:

In the following C code, we have replaced some of the comparison operators with “__” and omitted the
data types in the casts.

1 char ctest(int a, int b, int c)
2 {
3 char t1 = a __ b;
4 char t2 = b __ () a;
5 char t3 = () c __ () a;
6 char t4 = () a __ () c;
7 char t5 = c __ b;
8 char t6 = a __ 0;
9 return t1 + t2 + t3 + t4 + t5 + t6;

10 }

For the original C code,GCC generates the following assembly code

1 movl 8(%ebp),%ecx Get a

2 movl 12(%ebp),%esi Get b

3 cmpl %esi,%ecx Compare a:b

4 setl %al Compute t1

5 cmpl %ecx,%esi Compare b:a

6 setb -1(%ebp) Compute t2

7 cmpw %cx,16(%ebp) Compare c:a

8 setge -2(%ebp) Compute t3

9 movb %cl,%dl
10 cmpb 16(%ebp),%dl Compare a:c

11 setne %bl Compute t4

12 cmpl %esi,16(%ebp) Compare c:b

13 setg -3(%ebp) Compute t5

14 testl %ecx,%ecx Test a

15 setg %dl Compute t4

16 addb -1(%ebp),%al Add t2 to t1

17 addb -2(%ebp),%al Add t3 to t1

18 addb %bl,%al Add t4 to t1

19 addb -3(%ebp),%al Add t5 to t1

20 addb %dl,%al Add t6 to t1

21 movsbl %al,%eax Convert sum from char to int

Based on this assembly code, fill in the missing parts (the comparisons and the casts) in the C code.

114 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Instruction Synonym Jump Condition Description
jmp Label 1 Direct Jump
jmp *Operand 1 Indirect Jump
je Label jz ZF Equal / Zero
jne Label jnz ˜ZF Not Equal / Not Zero
js Label SF Negative
jns Label ˜SF Nonnegative
jg Label jnle ˜ (SF ˆ OF) & ˜ZF Greater (Signed>)
jge Label jnl ˜ (SF ˆ OF) Greater or Equal (Signed>=)
jl Label jnge SF ˆ OF Less (Signed<)
jle Label jng (SF ˆ OF) | ZF Less or Equal (Signed<=)
ja Label jnbe ˜CF & ˜ZF Above (Unsigned>)
jae Label jnb ˜CF Above or Equal (Unsigned>=)
jb Label jnae CF Below (Unsigned<)
jbe Label jna CF & ˜ZF Below or Equal (Unsigned<=)

Figure 3.10: The jump Instructions. These instructions jump to a labeled destination when the jump
condition holds. Some instructions have “synonyms,” alternate names for the same machine instruction.

3.6.3 Jump Instructions and their Encodings

Under normal execution, instructions follow each other in the order they are listed. A jump instruction can
cause the execution to switch to a completely new position in the program. These jump destinations are
generally indicated by alabel. Consider the following assembly code sequence:

1 xorl %eax,%eax Set %eax to 0

2 jmp .L1 Goto .L1

3 movl (%eax),%edx Null pointer dereference

4 .L1:
5 popl %edx

The instructionjmp .L1 will cause the program to skip over themovl instruction and instead resume exe-
cution with thepopl instruction. In generating the object code file, the assembler determines the addresses
of all labeled instructions and encodes thejump targets(the addresses of the destination instructions) as part
of the jump instructions.

Thejmp instruction jumps unconditionally. It can be either adirect jump, where the jump target is encoded
as part of the instruction, or anindirect jump, where the jump target is read from a register or a memory
location. Direct jumps are written in assembly by giving a label as the jump target, e.g., the label “.L1” in
the code above. Indirect jumps are written using ‘* ’ followed by an operand specifier using the same syntax
as used for themovl instruction. As examples, the instruction

jmp *%eax

uses the value in register%eaxas the jump target, while

3.6. CONTROL 115

jmp *(%eax)

reads the jump target from memory, using the value in%eaxas the read address.

The other jump instructions either jump or continue executing at the next instruction in the code sequence
depending on some combination of the condition codes. Note that the names of these instructions and the
conditions under which they jump match those of theset instructions. As with theset instructions, some
of the underlying machine instructions have multiple names. Conditional jumps can only be direct.

Although we will not concern ourselves with the detailed format of object code, understanding how the
targets of jump instructions are encoded will become important when we study linking in Chapter 7. In
addition, it helps when interpreting the output of a disassembler. In assembly code, jump targets are written
using symbolic labels. The assembler, and later the linker, generate the proper encodings of the jump targets.
There are several different encodings for jumps, but some of the most commonly used ones arePC-relative.
That is, they encode the difference between the address of the target instruction and the address of the
instruction immediately following the jump. These offsets can be encoded using one, two, or four bytes. A
second encoding method is to give an “absolute” address, using four bytes to directly specify the target. The
assembler and linker select the appropriate encodings of the jump destinations.

As an example, the following fragment of assembly code was generated by compiling a filesilly.c.
It contains two jumps: thejle instruction on line 1 jumps forward to a higher address, while thejg
instruction on line 8 jumps back to a lower one.

1 jle .L4 If <, goto dest2

2 .p2align 4,,7 Aligns next instruction to multiple of 8

3 .L5: dest1:

4 movl %edx,%eax
5 sarl $1,%eax
6 subl %eax,%edx
7 testl %edx,%edx
8 jg .L5 If >, goto dest1

9 .L4: dest2:

10 movl %edx,%eax

Note that line 2 is a directive to the assembler that causes the address of the following instruction to begin on
a multiple of 16, but leaving a maximum of 7 wasted bytes. This directive is intended to allow the processor
to make optimal use of the instruction cache memory.

The disassembled version of the “.o” format generated by the assembler is as follows:

1 8: 7e 11 jle 1b <silly+0x1b> Target = dest2

2 a: 8d b6 00 00 00 00 lea 0x0(%esi),%esi Added nops

3 10: 89 d0 mov %edx,%eax dest1:

4 12: c1 f8 01 sar $0x1,%eax
5 15: 29 c2 sub %eax,%edx
6 17: 85 d2 test %edx,%edx
7 19: 7f f5 jg 10 <silly+0x10> Target = dest1

8 1b: 89 d0 mov %edx,%eax dest2:

The “lea 0x0(%esi),%esi” instruction in line 2 has no real effect. It serves as a 6-byte nop so that
the next instruction (line 3) has a starting address that is a multiple of 16.

116 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

In the annotations generated by the disassembler on the right, the jump targets are indicated explicitly as
0x1b for instruction 1 and0x10 for instruction 7. Looking at the byte encodings of the instructions,
however, we see that the target of jump instruction 1 is encoded (in the second byte) as0x11 (decimal 17).
Adding this to0xa (decimal 10), the address of the following instruction, we get jump target address0x1b
(decimal 27), the address of instruction 8.

Similarly, the target of jump instruction 7 is encoded as0xf5 (decimal�11) using a single-byte, two’s
complement representation. Adding this to0x1b (decimal 27), the address of instruction 8, we get0x10
(decimal 16), the address of instruction 3.

The following shows the disassembled version of the program after linking:

1 80483c8: 7e 11 jle 80483db <silly+0x1b>
2 80483ca: 8d b6 00 00 00 00 lea 0x0(%esi),%esi
3 80483d0: 89 d0 mov %edx,%eax
4 80483d2: c1 f8 01 sar $0x1,%eax
5 80483d5: 29 c2 sub %eax,%edx
6 80483d7: 85 d2 test %edx,%edx
7 80483d9: 7f f5 jg 80483d0 <silly+0x10>
8 80483db: 89 d0 mov %edx,%eax

The instructions have been relocated to different addresses, but the encodings of the jump targets in lines
1 and 7 remain unchanged. By using a PC-relative encoding of the jump targets, the instructions can be
compactly encoded (requiring just two bytes), and the object code can be shifted to different positions in
memory without alteration.

Practice Problem 3.8:

In the following excerpts from a disassembled binary, some of the information has been replaced byX’s.
Determine the following information about these instructions.

A. What is the target of thejbe instruction below?

8048d1c: 76 da jbe XXXXXXX
8048d1e: eb 24 jmp 8048d44

B. What is the address of themov instruction?

XXXXXXX: eb 54 jmp 8048d44
XXXXXXX: c7 45 f8 10 00 mov $0x10,0xfffffff8(%ebp)

C. In the following, the jump target is encoded in PC-relative form as a 4-byte, two’s complement
number. The bytes are listed from least significant to most, reflecting the little endian byte ordering
of IA32. What is the address of the jump target?

8048902: e9 cb 00 00 00 jmp XXXXXXX
8048907: 90 nop

D. Explain the relation between the annotation on the right and the byte coding on the left. Both lines
are part of the encoding of thejmp instruction.

80483f0: ff 25 e0 a2 04 jmp *0x804a2e0
80483f5: 08

3.6. CONTROL 117

To implement the control constructs of C, the compiler must use the different types of jump instructions we
have just seen. We will go through the most common constructs, starting from simple conditional branches,
and then considering loops and switch statements.

3.6.4 Translating Conditional Branches

Conditional statements inC are implemented using combinations of conditional and unconditional jumps.
For example, Figure 3.11 shows the C code for a function that computes the absolute value of the difference
of two numbers (a). GCC generates the assembly code shown as (c). We have created a version in C,
calledgotodiff (b), that more closely follows the control flow of this assembly code. It uses thegoto
statement in C, which is similar to the unconditional jump of assembly code. The statementgoto less
on line 6 causes a jump to the labelless on line 8, skipping the statement on line 7. Note that usinggoto
statements is generally considered a bad programming style, since their use can make code very difficult to
read and debug. We use them in our presentation as a way to construct C programs that describe the control
flow of assembly-code programs. We call such C programs “goto code.”

The assembly code implementation first compares the two operands (line 3), setting the condition codes. If
the comparison result indicates thatx is less thany , it then jumps to a block of code that computesx-y
(line 9). Otherwise it continues with the execution of code that computesy-x (lines 5 and 6). In both cases
the computed result is stored in register%eax, and ends up at line 10, at which point it executes the stack
completion code (not shown).

The general form of an if-else statement in C is given by theif- else statement following template:

if (test-expr)
then-statement

else
else-statement

wheretest-expris an integer expression that evaluates either to 0 (interpreted as meaning “false”) or to a
nonzero value (interpreted as meaning “true”). Only one of the two branch statements (then-statementor
else-statement) is executed.

For this general form, the assembly implementation typically follows the form shown below, where we use
C syntax to describe the control flow:

t = test-expr;
if (t)

goto true;
else-statement
goto done;

true:
then-statement

done:

118 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

code/asm/abs.c

1 int absdiff(int x, int y)
2 {
3 if (x < y)
4 return y - x;
5 else
6 return x - y;
7 }

code/asm/abs.c

code/asm/abs.c

1 int gotodiff(int x, int y)
2 {
3 int rval;
4

5 if (x < y)
6 goto less;
7 rval = x - y;
8 goto done;
9 less:

10 rval = y - x;
11 done:
12 return rval;
13 }

code/asm/abs.c

(a) Original C code. (b) Equivalent goto version of (a).

1 movl 8(%ebp),%edx Get x

2 movl 12(%ebp),%eax Get y

3 cmpl %eax,%edx Compare x:y

4 jl .L3 If <, goto less:

5 subl %eax,%edx Compute y-x

6 movl %edx,%eax Set as return value

7 jmp .L5 Goto done:

8 .L3: less:

9 subl %edx,%eax Compute x-y as return value

10 .L5: done: Begin completion code

(c) Generated assembly code.

Figure 3.11:Compilation of Conditional StatementsC procedureabsdiff (a) contains an if-else state-
ment. The generated assembly code is shown (c), along with a C proceduregotodiff (b) that mimics
the control flow of the assembly code. The stack set-up and completion portions of the assembly code have
been omitted

3.6. CONTROL 119

That is, the compiler generates separate blocks of code forthen-statementand else-statement. It inserts
conditional and unconditional branches to make sure the correct block is executed.

Practice Problem 3.9:

When given the following C code:

code/asm/simple-if.c

1 void cond(int a, int *p)
2 {
3 if (p && a > 0)
4 *p += a;
5 }

code/asm/simple-if.c

GCC generates the following assembly code.

1 movl 8(%ebp),%edx
2 movl 12(%ebp),%eax
3 testl %eax,%eax
4 je .L3
5 testl %edx,%edx
6 jle .L3
7 addl %edx,(%eax)
8 .L3:

A. Write a goto version in C that performs the same computation and mimics the control flow of the
assembly code, in the style shown in Figure 3.11(b). You might find it helpful to first annotate the
assembly code as we have done in our examples.

B. Explain why the assembly code contains two conditional branches, even though the C code has
only one if statement.

3.6.5 Loops

C provides several looping constructs, namelywhile, for, and do-while. No corresponding instructions
exist in assembly. Instead, combinations of conditional tests and jumps are used to implement the effect of
loops. Interestingly, most compilers generate loop code based on thedo-while form of a loop, even
though this form is relatively uncommon in actual programs. Other loops are transformed intodo-while
form and then compiled into machine code. We will study the translation of loops as a progression, starting
with do-while and then working toward ones with more complex implementations.

Do-While Loops

The general form of ado-while statement is as follows:

120 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

do
body-statement
while (test-expr);

The effect of the loop is to repeatedly executebody-statement, evaluatetest-exprand continue the loop if
the evaluation result is nonzero. Observe thatbody-statementis executed at least once.

Typically, the implementation ofdo-while has the following general form:

loop:
body-statement
t = test-expr;
if (t)

goto loop;

As an example, Figure 3.12 shows an implementation of a routine to compute thenth element in the Fi-
bonacci sequence using ado-while loop. This sequence is defined by the recurrence:

F1 = 1
F2 = 1
Fn = Fn�2 + Fn�3; n � 3

For example, the first ten elements of the sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, and 55. To implement this
using ado-while loop, we have started the sequence with valuesF0 = 0 andF1 = 1, rather than withF1

andF2.

The assembly code implementing the loop is also shown, along with a table showing the correspondence
between registers and program values. In this example,body-statementconsists of lines 8 through 11,
assigning values tot , val, and nval, along with the incrementing ofi . These are implemented by lines
2 through 5 of the assembly code. The expressioni < n comprisestest-expr. This is implemented by line
6 and by the test condition of the jump instruction on line 7. Once the loop exits,val is copy to register
%eaxas the return value (line 8).

Creating a table of register usage, such as we have shown in Figure 3.12(b) is a very helpful step in analyzing
an assembly language program, especially when loops are present.

Practice Problem 3.10:

For the following C code:

1 int dw_loop(int x, int y, int n)
2 {
3 do {
4 x += n;
5 y *= n;
6 n--;

3.6. CONTROL 121

code/asm/fib.c

1 int fib_dw(int n)
2 {
3 int i = 0;
4 int val = 0;
5 int nval = 1;
6

7 do {
8 int t = val + nval;
9 val = nval;

10 nval = t;
11 i++;
12 } while (i < n);
13

14 return val;
15 }

code/asm/fib.c

(a) C code.

Register Usage
Register Variable Initially
%ecx i 0
%esi n n
%ebx val 0
%edx nval 1
%eax t –

1 .L6: loop:

2 leal (%edx,%ebx),%eax Compute t = val + nval

3 movl %edx,%ebx copy nval to val

4 movl %eax,%edx Copy t to nval

5 incl %ecx Increment i

6 cmpl %esi,%ecx Compare i:n

7 jl .L6 If less, goto loop

8 movl %ebx,%eax Set val as return value

(b) Corresponding assembly language code.

Figure 3.12:C and Assembly Code for Do-While Version of Fibonacci Program.Only the code inside
the loop is shown.

122 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

7 } while ((n > 0) & (y < n)); /* Note use of bitwise ’&’ */
8 return x;
9 }

GCC generates the following assembly code:

Initially x, y, and n are at offsets 8, 12, and 16 from %ebp

1 movl 8(%ebp),%esi
2 movl 12(%ebp),%ebx
3 movl 16(%ebp),%ecx
4 .p2align 4,,7 Inserted to optimize cache performance

5 .L6:
6 imull %ecx,%ebx
7 addl %ecx,%esi
8 decl %ecx
9 testl %ecx,%ecx

10 setg %al
11 cmpl %ecx,%ebx
12 setl %dl
13 andl %edx,%eax
14 testb $1,%al
15 jne .L6

A. Make a table of register usage, similar to the one shown in Figure 3.12(b).

B. Identify test-exprandbody-statementin the C code, and the corresponding lines in the assembly
code.

C. Add annotations to the assembly code describing the operation of the program, similar to those
shown in Figure 3.12(b).

While Loops

The general form of a while statement is as follows:

while (test-expr)
body-statement

It differs fromdo-while in thattest-expris evaluated and the loop is potentially terminated before the first
execution ofbody-statement. A direct translation into a form using goto’s would be:

3.6. CONTROL 123

loop:
t = test-expr;
if (!t)

goto done;
body-statement
goto loop;

done:

This translation requires two control statements within the inner loop—the part of the code that is executed
the most. Instead, most C compilers transform the code into ado-while loop by using a conditional branch
to skip the first execution of the body if needed:

if (!test-expr)
goto done;

do
body-statement
while (test-expr);

done:

This, in turn, can be transformed into goto code as:

t = test-expr;
if (!t)

goto done;
loop:

body-statement
t = test-expr;
if (t)

goto loop;
done:

As an example, Figure 3.13 shows an implementation of the Fibonacci sequence function using awhile
loop (a). Observe that this time we have started the recursion with elementsF1 (val) and F2 (nval).
The adjacent C functionfib_w_goto (b) shows how this code has been translated into assembly. The
assembly code in (c) closely follows the C code shown infib_w_goto. The compiler has performed
several interesting optimizations, as can be seen in the goto code (b). First, rather than using variablei as a
loop variable and comparing it ton on each iteration, the compiler has introduced a new loop variable that
we call “nmi”, since relative to the original code, its value equalsn � i. This allows the compiler to use
only three registers for loop variables, compared to four otherwise. Second, it has optimized the initial test
condition (i < n) into (val < n), since the initial values of both i andval are 1. By this means,
the compiler has totally eliminated variablei . Often the compiler can make use of the initial values of
the variables to optimize the initial test. This can make deciphering the assembly code tricky. Third, for

124 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

code/asm/fib.c

1 int fib_w(int n)
2 {
3 int i = 1;
4 int val = 1;
5 int nval = 1;
6

7 while (i < n) {
8 int t = val+nval;
9 val = nval;

10 nval = t;
11 i++;
12 }
13

14 return val;
15 }

code/asm/fib.c

code/asm/fib.c

1 int fib_w_goto(int n)
2 {
3 int val = 1;
4 int nval = 1;
5 int nmi, t;
6

7 if (val >= n)
8 goto done;
9 nmi = n-1;

10

11 loop:
12 t = val+nval;
13 val = nval;
14 nval = t;
15 nmi--;
16 if (nmi)
17 goto loop;
18

19 done:
20 return val;
21 }

code/asm/fib.c

(a) C code. (b) Equivalent goto version of (a).

Register Usage
Register Variable Initially
%edx nmi n-1
%ebx val 1
%ecx nval 1

1 movl 8(%ebp),%eax Get n

2 movl $1,%ebx Set val to 1

3 movl $1,%ecx Set nval to 1

4 cmpl %eax,%ebx Compare val:n

5 jge .L9 If >= goto done:

6 leal -1(%eax),%edx nmi = n-1

7 .L10: loop:

8 leal (%ecx,%ebx),%eax Compute t = nval+val

9 movl %ecx,%ebx Set val to nval

10 movl %eax,%ecx Set nval to t

11 decl %edx Decrement nmi

12 jnz .L10 if != 0, goto loop:

13 .L9: done:

(c) Corresponding assembly language code.

Figure 3.13: C and Assembly Code for While Version of Fibonacci. The compiler has performed a
number of optimizations, including replacing the value denoted by variablei with one we callnmi.

3.6. CONTROL 125

successive executions of the loop we are assured thati � n, and so the compiler can assume thatnmi is
nonnegative. As a result, it can test the loop condition asnmi != 0 rather thannmi >= 0. This saves
one instruction in the assembly code.

Practice Problem 3.11:

For the following C code:

1 int loop_while(int a, int b)
2 {
3 int i = 0;
4 int result = a;
5 while (i < 256) {
6 result += a;
7 a -= b;
8 i += b;
9 }

10 return result;
11 }

GCC generates the following assembly code:

Initially a and b are at offsets 8 and 12 from %ebp

1 movl 8(%ebp),%eax
2 movl 12(%ebp),%ebx
3 xorl %ecx,%ecx
4 movl %eax,%edx
5 .p2align 4,,7
6 .L5:
7 addl %eax,%edx
8 subl %ebx,%eax
9 addl %ebx,%ecx

10 cmpl $255,%ecx
11 jle .L5

A. Make a table of register usage within the loop body, similar to the one shown in Figure 3.13(c).

B. Identify test-exprandbody-statementin the C code, and the corresponding lines in the assembly
code. What optimizations has the C compiler performed on the initial test?

C. Add annotations to the assembly code describing the operation of the program, similar to those
shown in Figure 3.13(c).

D. Write a goto version (in C) of the function that has similar structure to the assembly code, as was
done in Figure 3.13(b).

126 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

For Loops

The general form of afor loop is as follows:

for (init-expr ; test-expr; update-expr)
body-statement

The C language standard states that the behavior of such a loop is identical to the following code using a
while loop:

init-expr;
while (test-expr) f

body-statement
update-expr;

g
That is, the program first evaluates the initialization expressioninit-expr. It then enters a loop where it
first evaluates the test conditiontest-expr, exiting if the test fails, then executes the body of the loopbody-
statement, and finally evaluates the update expressionupdate-expr.

The compiled form of this code then is based on the transformation from while todo-while described
previously, first giving ado-while form:

init-expr;
if (!test-expr)

goto done;
do f

body-statement
update-expr;

g while (test-expr);
done:

This, in turn, can be transformed into goto code as:

3.6. CONTROL 127

init-expr;
t = test-expr;
if (!t)

goto done;
loop:

body-statement
update-expr;
t = test-expr;
if (t)

goto loop;
done:

As an example, the following code shows an implementation of the Fibonacci function using afor loop:

code/asm/fib.c

1 int fib_f(int n)
2 {
3 int i;
4 int val = 1;
5 int nval = 1;
6

7 for (i = 1; i < n; i++) {
8 int t = val+nval;
9 val = nval;

10 nval = t;
11 }
12

13 return val;
14 }

code/asm/fib.c

The transformation of this code into the while loop form gives code identical to that for the functionfib_w
shown in Figure 3.13. In fact,GCC generates identical assembly code for the two functions.

Practice Problem 3.12:

The following assembly code:

Initially x, y, and n are offsets 8, 12, and 16 from %ebp

1 movl 8(%ebp),%ebx
2 movl 16(%ebp),%edx
3 xorl %eax,%eax
4 decl %edx
5 js .L4
6 movl %ebx,%ecx

128 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

7 imull 12(%ebp),%ecx
8 .p2align 4,,7 Inserted to optimize cache performance

9 .L6:
10 addl %ecx,%eax
11 subl %ebx,%edx
12 jns .L6
13 .L4:

was generated by compiling C code that had the following overall form

1 int loop(int x, int y, int n)
2 {
3 int result = 0;
4 int i;
5 for (i = ____; i ____ ; i = ___) {
6 result += _____ ;
7 }
8 return result;
9 }

Your task is to fill in the missing parts of the C code to get a program equivalent to the generated assembly
code. Recall that the result of the function is returned in register%eax. To solve this problem, you may
need to do a little bit of guessing about register usage and then see whether that guess makes sense.

A. Which registers hold program valuesresult andi ?

B. What is the initial value ofi ?

C. What is the test condition oni ?

D. How doesi get updated?

E. The C expression describing how to incrementresult in the loop body does not change value
from one iteration of the loop to the next. The compiler detected this and moved its computation
to before the loop. What is the expression?

F. Fill in all the missing parts of the C code.

3.6.6 Switch Statements

Switch statements provide a multi-way branching capability based on the value of an integer index. They
are particularly useful when dealing with tests where there can be a large number of possible outcomes.
Not only do they make the C code more readable, they also allow an efficient implementation using a data
structure called ajump table. A jump table is an array where entryi is the address of a code segment
implementing the action the program should take when the switch index equalsi. The code performs an
array reference into the jump table using the switch index to determine the target for a jump instruction. The
advantage of using a jump table over a long sequence of if-else statements is that the time taken to perform
the switch is independent of the number of switch cases. GCC selects the method of translating a switch
statement based on the number of cases and the sparsity of the case values. Jump tables are used when there
are a number of cases (e.g., four or more) and they span a small range of values.

3.6. CONTROL 129

code/asm/switch.c

1 int switch_eg(int x)
2 {
3 int result = x;
4

5 switch (x) {
6

7 case 100:
8 result *= 13;
9 break;

10

11 case 102:
12 result += 10;
13 /* Fall through */
14

15 case 103:
16 result += 11;
17 break;
18

19 case 104:
20 case 106:
21 result *= result;
22 break;
23

24 default:
25 result = 0;
26 }
27

28 return result;
29 }

code/asm/switch.c

code/asm/switch.c

1 /* Next line is not legal C */
2 code *jt[7] = {
3 loc_A, loc_def, loc_B, loc_C,
4 loc_D, loc_def, loc_D
5 };
6

7 int switch_eg_impl(int x)
8 {
9 unsigned xi = x - 100;

10 int result = x;
11

12 if (xi > 6)
13 goto loc_def;
14

15 /* Next goto is not legal C */
16 goto jt[xi];
17

18 loc_A: /* Case 100 */
19 result *= 13;
20 goto done;
21

22 loc_B: /* Case 102 */
23 result += 10;
24 /* Fall through */
25

26 loc_C: /* Case 103 */
27 result += 11;
28 goto done;
29

30 loc_D: /* Cases 104, 106 */
31 result *= result;
32 goto done;
33

34 loc_def: /* Default case*/
35 result = 0;
36

37 done:
38 return result;
39 }

code/asm/switch.c

(a) Switch statement. (b) Translation into extended C.

Figure 3.14:Switch Statement Example with Translation into Extended C.The translation shows the
structure of jump tablejt and how it is accessed. Such tables and accesses are not actually allowed in C.

130 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Set up the jump table access

1 leal -100(%edx),%eax Compute xi = x-100

2 cmpl $6,%eax Compare xi:6

3 ja .L9 if >, goto done

4 jmp *.L10(,%eax,4) Goto jt[xi]

Case 100

5 .L4: loc A:

6 leal (%edx,%edx,2),%eax Compute 3*x

7 leal (%edx,%eax,4),%edx Compute x+4*3*x

8 jmp .L3 Goto done

Case 102

9 .L5: loc B:

10 addl $10,%edx result += 10, Fall through

Case 103

11 .L6: loc C:

12 addl $11,%edx result += 11

13 jmp .L3 Goto done

Cases 104, 106

14 .L8: loc D:

15 imull %edx,%edx result *= result

16 jmp .L3 Goto done

Default case

17 .L9: loc def:

18 xorl %edx,%edx result = 0

Return result

19 .L3: done:

20 movl %edx,%eax Set result as return value

Figure 3.15:Assembly Code for Switch Statement Example in Figure 3.14.

3.6. CONTROL 131

Figure 3.14(a) shows an example of a Cswitch statement. This example has a number of interesting
features, including case labels that do not span a contiguous range (there are no labels for cases 101 and
105), cases with multiple labels (cases 104 and 106), and cases that “fall through” to other cases (case 102),
because the code for the case does not end with abreak statement.

Figure 3.15 shows the assembly code generated when compilingswitch_eg. The behavior of this code
is shown using an extended form of C as the procedureswitch_eg_impl in Figure 3.14(b). We say
“extended” because C does not provide the necessary constructs to support this style of jump table, and
hence our code is not legal C. The arrayjt contains 7 entries, each of which is the address of a block of
code. We extend C with a data typecode for this purpose.

Lines 1 to 4 set up the jump table access. To make sure that values ofx that are either less than 100 or greater
than 106 cause the computation specified by thedefault case, the code generates an unsigned valuexi
equal tox-100. For values of x between 100 and 106,xi will have values 0 through 6. All other values
will be greater than 6, since negative values ofx-100 will wrap around to be very large unsigned numbers.
The code therefore uses theja (unsigned greater) instruction to jump to code for the default case whenxi
is greater than 6. Usingjt to indicate the jump table, the code then performs a jump to the address at entry
xi in this table. Note that this form ofgoto is not legal C. Instruction 4 implements the jump to an entry
in the jump table. Since it is an indirect jump, the target is read from memory. The effective address of the
read is determined by adding the base address specified by label.L10 to the scaled (by 4 since each jump
table entry is 4 bytes) value of variablexi (in register%eax).

In the assembly code, the jump table is indicated by the following declarations, to which we have added
comments:

1 .section .rodata
2 .align 4 Align address to multiple of 4

3 .L10:
4 .long .L4 Case 100: loc_A

5 .long .L9 Case 101: loc_def

6 .long .L5 Case 102: loc_B

7 .long .L6 Case 103: loc_C

8 .long .L8 Case 104: loc_D

9 .long .L9 Case 105: loc_def

10 .long .L8 Case 106: loc_D

These declarations state that within the segment of the object code file called “.rodata” (for “Read-Only
Data”), there should be a sequence of seven “long” (4-byte) words, where the value of each word is given by
the instruction address associated with the indicated assembly code labels (e.g.,.L4). Label .L10 marks
the start of this allocation. The address associated with this label serves as the base for the indirect jump
(instruction 4).

The code blocks starting with labelsloc_A throughloc_D andloc_def in switch_eg_impl (Figure
3.14(b)) implement the five different branches of the switch statement. Observe that the block of code
labeledloc_def will be executed either whenx is outside the range 100 to 106 (by the initial range
checking) or when it equals either 101 or 105 (based on the jump table). Note how the code for the block
labeledloc_B falls through to the block labeledloc_C.

132 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Practice Problem 3.13:

In the following C function, we have omitted the body of the switch statement. In the C code, the case
labels did not span a contiguous range, and some cases had multiple labels.

int switch2(int x) {
int result = 0;
switch (x) {

/* Body of switch statement omitted */
}
return result;

}

In compiling the function,GCCgenerates the following assembly code for the initial part of the procedure
and for the jump table. Variablex is initially at offset 8 relative to register%ebp.

Setting up jump table access

1 movl 8(%ebp),%eax Retrieve x

2 addl $2,%eax
3 cmpl $6,%eax
4 ja .L10
5 jmp *.L11(,%eax,4)

Jump table for switch2

1 .L11:
2 .long .L4
3 .long .L10
4 .long .L5
5 .long .L6
6 .long .L8
7 .long .L8
8 .long .L9

From this determine:

A. What were the values of the case labels in the switch statement body?

B. What cases had multiple labels in the C code?

3.7 Procedures

A procedure call involves passing both data (in the form of procedure parameters and return values) and
control from one part of the code to another. In addition, it must allocate space for the local variables of
the procedure on entry and deallocate them on exit. Most machines, including IA32, provide only simple
instructions for transferring control to and from procedures. The passing of data and the allocation and
deallocation of local variables is handled by manipulating the program stack.

3.7.1 Stack Frame Structure

IA32 programs make use of the program stack to support procedure calls. The stack is used to pass procedure
arguments, to store return information, to save registers for later restoration, and for local storage. The
portion of the stack allocated for a single procedure call is called astack frame. Figure 3.16 diagrams the
general structure of a stack frame. The topmost stack frame is delimited by two pointers, with register%ebp
serving as theframe pointer, and register%esp serving as thestack pointer. The stack pointer can move
while the procedure is executing, and hence most information is accessed relative to the frame pointer.

3.7. PROCEDURES 133

Locals
and

Temporaries

Return Address

Saved %ebp

Passed Arg. n

Passed Arg. 1

Saved Registers

Argument
Build
Area

•
•
•

Frame Pointer
%ebp

Current
Frame

Caller’s
Frame

Increasing
Address

Stack Bottom

•
•
•

Stack Top

Stack Pointer
%esp

+4

+8

+4n+4

-4

Figure 3.16:Stack Frame Structure. The stack is used for passing arguments, for storing return informa-
tion, for saving registers, and for local storage.

134 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Suppose procedureP (the caller) calls procedureQ (thecallee). The arguments toQare contained within
the stack frame forP. In addition, whenP calls Q, the return addresswithin P where the program should
resume execution when it returns fromQ is pushed on the stack, forming the end ofP’s stack frame. The
stack frame forQstarts with the saved value of the frame pointer (i.e.,%ebp). followed by copies of any
other saved register values.

ProcedureQalso uses the stack for any local variables that cannot be stored in registers. This can occur for
the following reasons:

� There are not enough registers to hold all of the local data.

� Some of the local variables are arrays or structures and hence must be accessed by array or structure
references.

� The address operator ‘&’ is applied to one of the local variables, and hence we must be able to generate
an address for it.

Finally, Qwill use the stack frame for storing arguments to any procedures it calls.

As described earlier, the stack grows toward lower addresses and the stack pointer%esp points to the top
element of the stack. Data can be stored on and retrieved from the stack using thepushl andpopl instruc-
tions. Space for data with no specified initial value can be allocated on the stack by simply decrementing
the stack pointer by an appropriate amount. Similarly, space can be deallocated by incrementing the stack
pointer.

3.7.2 Transferring Control

The instructions supporting procedure calls and returns are as follows:

Instruction Description
call Label Procedure Call
call *Operand Procedure Call
leave Prepare stack for return
ret Return from call

Thecall instruction has a target indicating the address of the instruction where the called procedure starts.
Like jumps, a call can either be direct or indirect. In assembly code, the target of a direct call is given as a
label, while the target of an indirect call is given by a* followed by an operand specifier having the same
syntax as is used for the operands of themovl instruction (Figure 3.3).

The effect of acall instruction is to push a return address on the stack and jump to the start of the
called procedure. The return address is the address of the instruction immediately following thecall in
the program, so that execution will resume at this location when the called procedure returns. Theret
instruction pops an address off the stack and jumps to this location. The proper use of this instruction is to
have prepared the stack so that the stack pointer points to the place where the precedingcall instruction
stored its return address. Theleave instruction can be used to prepare the stack for returning. It is
equivalent to the following code sequence:

3.7. PROCEDURES 135

1 movl %ebp, %esp Set stack pointer to beginning of frame

2 popl %ebp Restore saved %ebp and set stack ptr to end of caller’s frame

Alternatively, this preparation can be performed by an explicit sequence of move and pop operations.

Register%eax is used for returning the value of any function that returns an integer or pointer.

Practice Problem 3.14:

The following code fragment occurs often in the compiled version of library routines:

1 call next
2 next:
3 popl %eax

A. To what value does register%eax get set?

B. Explain why there is no matchingret instruction to thiscall .

C. What useful purpose does this code fragment serve?

3.7.3 Register Usage Conventions

The set of program registers acts as a single resource shared by all of the procedures. Although only one
procedure can be active at a given time, we must make sure that when one procedure (thecaller) calls
another (thecallee), the callee does not overwrite some register value that the caller planned to use later.
For this reason, IA32 adopts a uniform set of conventions for register usage that must be respected by all
procedures, including those in program libraries.

By convention, registers%eax, %edx, and%ecx are classified ascaller saveregisters. When procedure
Q is called byP, it can overwrite these registers without destroying any data required byP. On the other
hand, registers%ebx,%esi, and %edi are classified ascallee saveregisters. This means thatQmust save
the values of any of these registers on the stack before overwriting them, and restore them before returning,
becauseP (or some higher level procedure) may need these values for its future computations. In addition,
registers%ebpand%espmust be maintained according to the conventions described here.

Aside: Why the names “callee save” and “caller save?”
Consider the following scenario:

int P()
{

int x = f(); /* Some computation */
Q();
return x;

}

ProcedureP wants the value it has computed forx to remain valid across the call toQ. If x is in acaller saveregister,
thenP (the caller) must save the value before callingP and restore it afterQreturns. Ifx is in acallee saveregister,
andQ(the callee) wants to use this register, thenQmust save the value before using the register and restore it before
returning. In either case, saving involves pushing the register value onto the stack, while restoring involves popping
from the stack back to the register.End Aside.

136 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

As an example, consider the following code:

1 int P(int x)
2 {
3 int y = x*x;
4 int z = Q(y);
5

6 return y + z;
7 }

ProcedureP computesy before callingQ, but it must also ensure that the value ofy is available afterQ
returns. It can do this by one of two means:

� Store the value ofy in its own stack frame before callingQ. WhenQ returns, it can then retrieve the
value ofy from the stack.

� Store the value ofy in a callee save register. IfQ, or any procedure called byQ, wants to use this
register, it must save the register value in its stack frame and restore the value before it returns. Thus,
whenQreturns toP, the value ofy will be in the callee save register, either because the register was
never altered or because it was saved and restored.

Most commonly,GCC uses the latter convention, since it tends to reduce the total number of stack writes
and reads.

Practice Problem 3.15:

The following code sequence occurs right near the beginning of the assembly code generated byGCC

for a C procedure:

1 pushl %edi
2 pushl %esi
3 pushl %ebx
4 movl 24(%ebp),%eax
5 imull 16(%ebp),%eax
6 movl 24(%ebp),%ebx
7 leal 0(,%eax,4),%ecx
8 addl 8(%ebp),%ecx
9 movl %ebx,%edx

We see that just three registers (%edi , %esi , and%ebx) are saved on the stack. The program then
modifies these and three other registers (%eax, %ecx, and%edx). At the end of the procedure, the
values of registers%edi , %esi , and%ebx are restored usingpopl instructions, while the other three
are left in their modified states.

Explain this apparently inconsistency in the saving and restoring of register states.

3.7. PROCEDURES 137

code/asm/swapadd.c

1 int swap_add(int *xp, int *yp)
2 {
3 int x = *xp;
4 int y = *yp;
5

6 *xp = y;
7 *yp = x;
8 return x + y;
9 }

10

11 int caller()
12 {
13 int arg1 = 534;
14 int arg2 = 1057;
15 int sum = swap_add(&arg1, &arg2);
16 int diff = arg1 - arg2;
17

18 return sum * diff;
19 }

code/asm/swapadd.c

Figure 3.17:Example of Procedure Definition and Call.

3.7.4 Procedure Example

As an example, consider the C procedures defined in Figure 3.17. Figure 3.18 shows the stack frames for
the two procedures. Observe thatswap_add retrieves its arguments from the stack frame forcaller.
These locations are accessed relative to the frame pointer in register%ebp. The numbers along the left of
the frames indicate the address offsets relative to the frame pointer.

The stack frame forcaller includes storage for local variablesarg1 andarg2, at positions �8 and
�4 relative to the frame pointer. These variables must be stored on the stack, since we must generate
addresses for them. The following assembly code from the compiled version ofcaller shows how it calls
swap_add.

Calling code in caller

1 leal -4(%ebp),%eax Compute &arg2

2 pushl %eax Push &arg2

3 leal -8(%ebp),%eax Compute &arg1

4 pushl %eax Push &arg1

5 call swap_add Call the swap_add function

Observe that this code computes the addresses of local variablesarg2 andarg1 (using theleal instruc-
tion) and pushes them on the stack. It then callsswap_add.

The compiled code forswap_add has three parts: the “setup,” where the stack frame is initialized; the
“body,” where the actual computation of the procedure is performed; and the “finish,” where the stack state

138 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Saved %ebx

Return Address

Saved %ebp

xp (= &arg1)

+4

+8

-4

yp (= &arg2) +12

0%ebp

%esp

Stack Frame for
swap_add

Stack Frame for
caller

•
•
•

arg1

&arg2

&arg1

arg2

Saved %ebp

-4

-8

- 12

Stack Frame for
caller

%ebp

%esp - 16

0

Figure 3.18:Stack Frames for caller and swap add. Procedureswap add retrieves its arguments
from the stack frame forcaller.

is restored and the procedure returns.

The following is the setup code forswap_add. Recall that thecall instruction will already push the
return address on the stack.

Setup code in swap_add

1 swap_add:
2 pushl %ebp Save old %ebp

3 movl %esp,%ebp Set %ebp as frame pointer

4 pushl %ebx Save %ebx

Procedureswap_add requires register%ebx for temporary storage. Since this is a callee save register, it
pushes the old value on the stack as part of the stack frame setup.

The following is the body code forswap_add:

Body code in swap_add

1 movl 8(%ebp),%edx Get xp

2 movl 12(%ebp),%ecx Get yp

3 movl (%edx),%ebx Get x

4 movl (%ecx),%eax Get y

5 movl %eax,(%edx) Store y at *xp

6 movl %ebx,(%ecx) Store x at *yp

7 addl %ebx,%eax Set return value = x+y

This code retrieves its arguments from the stack frame forcaller. Since the frame pointer has shifted, the
locations of these arguments has shifted from positions�12 and�16 relative to the old value of%ebp to
positions+12 and+8 relative to new value of%ebp. Observe that the sum of variablesx andy is stored in
register%eax to be passed as the returned value.

The following is the finishing code forswap_add:

Finishing code in swap_add

1 popl %ebx Restore %ebx

2 movl %ebp,%esp Restore %esp

3 popl %ebp Restore %ebp

4 ret Return to caller

3.7. PROCEDURES 139

This code simply restores the values of the three registers%ebx, %esp, and%ebp, and then executes
the ret instruction. Note that instructions F2 and F3 could be replaced by a singleleave instruction.
Different versions ofGCC seem to have different preferences in this regard.

The following code incaller comes immediately after the instruction callingswap_add:

1 movl %eax,%edx Resume here

Upon return fromswap_add, procedurecaller will resume execution with this instruction. Observe
that this instruction copies the return value from%eax to a different register.

Practice Problem 3.16:

Given the following C function:

1 int proc(void)
2 {
3 int x,y;
4 scanf("%x %x", &y, &x);
5 return x-y;
6 }

GCC generates the following assembly code

1 proc:
2 pushl %ebp
3 movl %esp,%ebp
4 subl $24,%esp
5 addl $-4,%esp
6 leal -4(%ebp),%eax
7 pushl %eax
8 leal -8(%ebp),%eax
9 pushl %eax

10 pushl $.LC0 Pointer to string "%x %x"

11 call scanf
Diagram stack frame at this point

12 movl -8(%ebp),%eax
13 movl -4(%ebp),%edx
14 subl %eax,%edx
15 movl %edx,%eax
16 movl %ebp,%esp
17 popl %ebp
18 ret

Assume that procedureproc starts executing with the following register values:

Register Value
%esp 0x800040
%ebp 0x800060

140 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

code/asm/fib.c

1 int fib_rec(int n)
2 {
3 int prev_val, val;
4

5 if (n <= 2)
6 return 1;
7 prev_val = fib_rec(n-2);
8 val = fib_rec(n-1);
9 return prev_val + val;

10 }

code/asm/fib.c

Figure 3.19:C Code for Recursive Fibonacci Program.

Supposeproc callsscanf (line 12), and thatscanf reads values0x46 and0x53 from the standard
input. Assume that the string"%x %x" is stored at memory location0x300070 .

A. What value does%ebpget set to on line 3?

B. At what addresses are local variablesx andy stored?

C. What is the value of%esp at line 11?

D. Draw a diagram of the stack frame forproc right afterscanf returns. Include as much informa-
tion as you can about the addresses and the contents of the stack frame elements.

E. Indicate the regions of the stack frame that are not used byproc (these wasted areas are allocated
to improve the cache performance).

3.7.5 Recursive Procedures

The stack and linkage conventions described in the previous section allow procedures to call themselves
recursively. Since each call has its own private space on the stack, the local variables of the multiple
outstanding calls do not interfere with one another. Furthermore, the stack discipline naturally provides the
proper policy for allocating local storage when the procedure is called and deallocating it when it returns.

Figure 3.19 shows the C code for a recursive Fibonacci function. (Note that this code is very inefficient—we
intend it to be an illustrative example, not a clever algorithm). The complete assembly code is shown as
well in Figure 3.20.

Although there is a lot of code, it is worth studying closely. The set-up code (lines 2 to 6) creates a stack
frame containing the old version of%ebp, 16 unused bytes,2 and saved values for the callee save registers
%esi and%ebx, as diagrammed on the left side of Figure 3.21. It then uses register%ebx to hold the
procedure parametern (line 7). In the event of a terminal condition, the code jumps to line 22, where the
return value is set to 1.

2It is unclear why the C compiler allocates so much unused storage on the stack for this function.

3.7. PROCEDURES 141

1 fib_rec:
Setup code

2 pushl %ebp Save old %ebp

3 movl %esp,%ebp Set %ebp as frame pointer

4 subl $16,%esp Allocate 16 bytes on stack

5 pushl %esi Save %esi (offset -20)

6 pushl %ebx Save %ebx (offset -24)

Body code

7 movl 8(%ebp),%ebx Get n

8 cmpl $2,%ebx Compare n:2

9 jle .L24 if <=, goto terminate

10 addl $-12,%esp Allocate 12 bytes on stack

11 leal -2(%ebx),%eax Compute n-2

12 pushl %eax Push as argument

13 call fib_rec Call fib_rec(n-2)

14 movl %eax,%esi Store result in %esi

15 addl $-12,%esp Allocate 12 bytes to stack

16 leal -1(%ebx),%eax Compute n-1

17 pushl %eax Push as argument

18 call fib_rec Call fib_rec(n-1)

19 addl %esi,%eax Compute val+nval

20 jmp .L25 Go to done

Terminal condition

21 .L24: terminate:

22 movl $1,%eax Return value 1

Finishing code

23 .L25: done:

24 leal -24(%ebp),%esp Set stack to offset -24

25 popl %ebx Restore %ebx

26 popl %esi Restore %esi

27 movl %ebp,%esp Restore stack pointer

28 popl %ebp Restore %ebp

29 ret Return

Figure 3.20:Assembly Code for the Recursive Fibonacci Program in Figure 3.19.

142 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Unused

Return Address

Saved %ebp

n

+4

+8

-40

0%ebp

%esp

•
•
•

Saved %esi

n-2

Unused

Saved %ebx

-20

-24

Stack Frame for
fib_rec

Stack Frame for
calling procedure

Unused

Return Address

Saved %ebp

n

+4

+8

0

%esp

%ebp

•
•
•

Saved %esi

Saved %ebx

-20

-24

Before first recursive callAfter set up

Figure 3.21:Stack Frame for Recursive Fibonacci Function. State of frame is shown after initial set up
(left), and just before the first recursive call (right).

For the nonterminal condition, instructions 10 to 12 set up the first recursive call. This involves allocating
12 bytes on the stack that are never used, and then pushing the computed valuen-2. At this point, the stack
frame will have the form shown on the right side of Figure 3.21. It then makes the recursive call, which
will trigger a number of calls that allocate stack frames, perform operations on local storage, and so on. As
each call returns, it deallocates any stack space and restores any modified callee save registers. Thus, when
we return to the current call at line 14 we can assume that register%eaxcontains the value returned by the
recursive call, and that register%ebxcontains the value of function parametern. The returned value (local
variableprev_val in the C code) is stored in register%esi (line 14). By using a callee save register, we
can be sure that this value will still be available after the second recursive call.

Instructions 15 to 17 set up the second recursive call. Again it allocates 12 bytes that are never used, and
pushes the value ofn-1. Following this call (line 18), the computed result will be in register%eax, and we
can assume that the result of the previous call is in register%esi. These are added to give the return value
(instruction 19).

The completion code restores the registers and deallocates the stack frame. It starts (line 24) by setting
the stack frame to the location of the saved value of%ebx. Observe that by computing this stack position
relative to the value of%ebp, the computation will be correct regardless of whether or not the terminal
condition was reached.

3.8 Array Allocation and Access

Arrays in C are one means of aggregating scalar data into larger data types. C uses a particularly simple
implementation of arrays, and hence the translation into machine code is fairly straightforward. One unusual
feature of C is that one can generate pointers to elements within arrays and perform arithmetic with these

3.8. ARRAY ALLOCATION AND ACCESS 143

pointers. These are translated into address computations in assembly code.

Optimizing compilers are particularly good at simplifying the address computations used by array indexing.
This can make the correspondence between the C code and its translation into machine code somewhat
difficult to decipher.

3.8.1 Basic Principles

For data typeT and integer constantN , the declaration

T A[N];

has two effects. First, it allocates a contiguous region ofL � N bytes in memory, whereL is the size (in
bytes) of data typeT . Let us denote the starting location asxA. Second, it introduces an identifierA that can
be used as a pointer to the beginning of the array. The value of this pointer will bexA. The array elements
can be accessed using an integer index ranging between0 andN � 1. Array elementi will be stored at
addressxA + L � i.
As examples, consider the following declarations:

char A[12];
char *B[8];
double C[6];
double *D[5];

These declarations will generate arrays with the following parameters:

Array Element Size Total Size Start Address Elementi
A 1 12 xA xA + i

B 4 32 xB xB + 4i
C 8 48 xC xC+ 8i
D 4 20 xD xD+ 4i

Array A consists of 12 single-byte (char) elements. Array C consists of 6 double-precision floating-point
values, each requiring 8 bytes.B andDare both arrays of pointers, and hence the array elements are 4 bytes
each.

The memory referencing instructions of IA32 are designed to simplify array access. For example, suppose
E is an array ofint’s, and we wish to computeE[i] where the address ofE is stored in register%edxand
i is stored in register%ecx. Then the instruction:

movl (%edx,%ecx,4),%eax

will perform the address computationxE + 4i, read that memory location, and store the result in register
%eax. The allowed scaling factors of 1, 2, 4, and 8 cover the sizes of the primitive data types.

Practice Problem 3.17:
Consider the following declarations:

144 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

short S[7];
short *T[3];
short **U[6];
long double V[8];
long double *W[4];

Fill in the following table describing the element size, the total size, and the address of elementi for
each of these arrays.

Array Element Size Total Size Start Address Elementi
S xS
T xT
U xU
V xV
W xW

3.8.2 Pointer Arithmetic

C allows arithmetic on pointers, where the computed value is scaled according to the size of the data type
referenced by the pointer. That is, ifp is a pointer to data of typeT , and the value ofp is xp , then the
expressionp+i has valuexp + L � i whereL is the size of data typeT .

The unary operators& and* allow the generation and dereferencing of pointers. That is, for an expression
Expr denoting some object,&Expr is a pointer giving the address of the object. For an expressionAddr-
Exprdenoting an address,* Addr-Exprgives the value at that address. The expressionsExprand*&Expr are
therefore equivalent. The array subscripting operation can be applied to both arrays and pointers. The array
referenceA[i] is identical to the expression*(A+i). It computes the address of theith array element and
then accesses this memory location.

Expanding on our earlier example, suppose the starting address of integer arrayE and integer indexi are
stored in registers%edxand%ecx, respectively. The following are some expressions involvingE. We also
show an assembly code implementation of each expression, with the result being stored in register%eax.

Expression Type Value Assembly Code
E int * xE movl %edx,%eax
E[0] int Mem[xE] movl (%edx),%eax
E[i] int Mem[xE + 4i] movl (%edx,%ecx,4),%eax
&E[2] int * xE+ 8 leal 8(%edx),%eax
E+i-1 int * xE+ 4i� 4 leal -4(%edx,%ecx,4),%eax
*(&E[i]+i) int Mem[xE + 4i+ 4i] movl (%edx,%ecx,8),%eax
&E[i]-E int i movl %ecx,%eax

In these examples, theleal instruction is used to generate an address, whilemovl is used to reference
memory (except in the first case, where it copies an address). The final example shows that one can compute
the difference of two pointers within the same data structure, with the result divided by the size of the data
type.

3.8. ARRAY ALLOCATION AND ACCESS 145

Practice Problem 3.18:

Suppose the address ofshort integer arrayS and integer indexi are stored in registers%edx and
%ecx, respectively. For each of the following expressions, give its type, a formula for its value, and an
assembly code implementation. The result should be stored in register%eax if it a pointer and register
element%ax if it is a short integer.

Expression Type Value Assembly Code
S+1
S[3]
&S[i]
S[4*i+1]
S+i-5

3.8.3 Arrays and Loops

Array references within loops often have very regular patterns that can be exploited by an optimizing com-
piler. For example, the functiondecimal5 shown in Figure 3.22(a) computes the integer represented by
an array of 5 decimal digits. In converting this to assembly code, the compiler generates code similar to
that shown in Figure 3.22(b) as C functiondecimal5_opt. First, rather than using a loop index i , it
uses pointer arithmetic to step through successive array elements. It computes the address of the final array
element and uses a comparison to this address as the loop test. Finally, it can use ado-while loop since
there will be at least one loop iteration.

The assembly code shown in Figure 3.22(c) shows a further optimization to avoid the use of an integer
multiply instruction. In particular, it usesleal (line 5) to compute5*val asval+4*val. It then uses
leal with a scaling factor of 2 (line 7) to scale to10*val.

Aside: Why avoid integer multiply?
In older models of the IA32 processor, the integer multiply instruction took as many as 30 clock cycles, and so
compilers try to avoid it whenever possible. In the most recent models it requires only 3 clock cycles, and therefore
these optimizations are not warranted.End Aside.

3.8.4 Nested Arrays

The general principles of array allocation and referencing hold even when we create arrays of arrays. For
example, the declaration:

int A[4][3];

is equivalent to the declaration:

typedef int row3_t[3];
row3_t A[4];

146 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

code/asm/decimal5.c

1 int decimal5(int *x)
2 {
3 int i;
4 int val = 0;
5

6 for (i = 0; i < 5; i++)
7 val = (10 * val) + x[i];
8

9 return val;
10 }

code/asm/decimal5.c

code/asm/decimal5.c

1 int decimal5_opt(int *x)
2 {
3 int val = 0;
4 int *xend = x + 4;
5

6 do {
7 val = (10 * val) + *x;
8 x++;
9 } while (x <= xend);

10

11 return val;
12 }

code/asm/decimal5.c

(a) Original C code (b) Equivalent pointer code

Body code

1 movl 8(%ebp),%ecx Get base addr of array x

2 xorl %eax,%eax val = 0;

3 leal 16(%ecx),%ebx xend = x+4 (16 bytes = 4 double words)

4 .L12: loop:

5 leal (%eax,%eax,4),%edx Compute 5*val

6 movl (%ecx),%eax Compute *x

7 leal (%eax,%edx,2),%eax Compute *x + 2*(5*val)

8 addl $4,%ecx x++

9 cmpl %ebx,%ecx Compare x:xend

10 jbe .L12 if <=, goto loop:

(c) Corresponding assembly code.

Figure 3.22:C and Assembly Code for Array Loop Example.The compiler generates code similar to the
pointer code shown indecimal5 opt.

3.8. ARRAY ALLOCATION AND ACCESS 147

Data typerow3_t is defined to be an array of three integers. ArrayA contains four such elements, each
requiring 12 bytes to store the three integers. The total array size is then4 � 4 � 3 = 48 bytes.

Array A can also be viewed as a two-dimensional array with four rows and three columns, referenced as
A[0][0] throughA[3][2]. The array elements are ordered in memory in “row major” order, meaning
all elements of row 0, followed by all elements of row 1, and so on.

Element Address
A[0][0] xA
A[0][1] xA + 4
A[0][2] xA + 8
A[1][0] xA + 12
A[1][1] xA + 16
A[1][2] xA + 20
A[2][0] xA + 24
A[2][1] xA + 28
A[2][2] xA + 32
A[3][0] xA + 36
A[3][1] xA + 40
A[3][2] xA + 44

This ordering is a consequence of our nested declaration. ViewingA as an array of four elements, each of
which is an array of threeint’s, we first have A[0] (i.e., row 0), followed byA[1], and so on.

To access elements of multidimensional arrays, the compiler generates code to compute the offset of the
desired element and then uses amovl instruction using the start of the array as the base address and the
(possibly scaled) offset as an index. In general, for an array declared as:

T D[R][C];

array elementD[i][j] is at memory addressxD+L(C � i+j), whereL is the size of data typeT in bytes.

As an example, consider the4� 3 integer arrayA defined earlier. Suppose register%eax containsxA, that
%edx holds i , and%ecx holds j . Then array elementA[i][j] can be copied to register%eax by the
following code:

A in %eax, i in %edx, j in %ecx

1 sall $2,%ecx j * 4

2 leal (%edx,%edx,2),%edx i * 3

3 leal (%ecx,%edx,4),%edx j * 4 + i * 12

4 movl (%eax,%edx),%eax Read Mem [xA + 4(3 � i+ j)]

Practice Problem 3.19:

Consider the source code below, whereMandNare constants declared with#define .

1 int mat1[M][N];

148 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

2 int mat2[N][M];
3

4 int sum_element(int i, int j)
5 {
6 return mat1[i][j] + mat2[j][i];
7 }

In compiling this program,GCC generates the following assembly code:

1 movl 8(%ebp),%ecx
2 movl 12(%ebp),%eax
3 leal 0(,%eax,4),%ebx
4 leal 0(,%ecx,8),%edx
5 subl %ecx,%edx
6 addl %ebx,%eax
7 sall $2,%eax
8 movl mat2(%eax,%ecx,4),%eax
9 addl mat1(%ebx,%edx,4),%eax

Use your reverse engineering skills to determine the values ofMandNbased on this assembly code.

3.8.5 Fixed Size Arrays

The C compiler is able to make many optimizations for code operating on multi-dimensional arrays of fixed
size. For example, suppose we declare data typefix_matrix to be16� 16 arrays of integers as follows:

1 #define N 16
2 typedef int fix_matrix[N][N];

The code in Figure 3.23(a) computes elementi; k of the product of matricesA and B. The C compiler
generates code similar to that shown in Figure 3.23(b). This code contains a number of clever optimizations.
It recognizes that the loop will access the elements of arrayA asA[i][0], A[i][1], . . . , A[i][15] in
sequence. These elements occupy adjacent positions in memory starting with the address of array element
A[i][0]. The program can therefore use a pointer variableAptr to access these successive locations.
The loop will access the elements of arrayB asB[0][k], B[1][k], . . . , B[15][k] in sequence. These
elements occupy positions in memory starting with the address of array elementB[0][k] and spaced 64
bytes apart. The program can therefore use a pointer variableBptr to access these successive locations. In
C, this pointer is shown as being incremented by 16, although in fact the actual pointer is incremented by
4 � 16 = 64. Finally, the code can use a simple counter to keep track of the number of iterations required.

We have shown the C codefix_prod_ele_opt to illustrate the optimizations made by the C compiler
in generating the assembly. The actual assembly code for the loop is shown below.

Aptr is in %edx, Bptr in %ecx, result in %esi, cnt in %ebx

1 .L23: loop:

2 movl (%edx),%eax Compute t = *Aptr

3.8. ARRAY ALLOCATION AND ACCESS 149

code/asm/array.c

1 #define N 16
2 typedef int fix_matrix[N][N];
3

4 /* Compute i,k of fixed matrix product */
5 int fix_prod_ele (fix_matrix A, fix_matrix B, int i, int k)
6 {
7 int j;
8 int result = 0;
9

10 for (j = 0; j < N; j++)
11 result += A[i][j] * B[j][k];
12

13 return result;
14 }

code/asm/array.c

(a) Original C code

code/asm/array.c

1 /* Compute i,k of fixed matrix product */
2 int fix_prod_ele_opt(fix_matrix A, fix_matrix B, int i, int k)
3 {
4 int *Aptr = &A[i][0];
5 int *Bptr = &B[0][k];
6 int cnt = N - 1;
7 int result = 0;
8

9 do {
10 result += (*Aptr) * (*Bptr);
11 Aptr += 1;
12 Bptr += N;
13 cnt--;
14 } while (cnt >= 0);
15

16 return result;
17 }

code/asm/array.c

(b) Optimized C code.

Figure 3.23: Original and Optimized Code to Compute Elementi; k of Matrix Product for Fixed
Length Arrays. The compiler performs these optimizations automatically.

150 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

3 imull (%ecx),%eax Compute v = *Bptr * t

4 addl %eax,%esi Add v result

5 addl $64,%ecx Add 64 to Bptr

6 addl $4,%edx Add 4 to Aptr

7 decl %ebx Decrement cnt

8 jns .L23 if >=, goto loop

Note that in the above code, all pointer increments are scaled by a factor of 4 relative to the C code.

Practice Problem 3.20:

The following C code sets the diagonal elements of a fixed-size array toval

1 /* Set all diagonal elements to val */
2 void fix_set_diag(fix_matrix A, int val)
3 {
4 int i;
5 for (i = 0; i < N; i++)
6 A[i][i] = val;
7 }

When compiledGCC generates the following assembly code:

1 movl 12(%ebp),%edx
2 movl 8(%ebp),%eax
3 movl $15,%ecx
4 addl $1020,%eax
5 .p2align 4,,7 Added to optimize cache performance

6 .L50:
7 movl %edx,(%eax)
8 addl $-68,%eax
9 decl %ecx

10 jns .L50

Create a C code programfix_set_diag_opt that uses optimizations similar to those in the assembly
code, in the same style as the code in Figure 3.23(b).

3.8.6 Dynamically Allocated Arrays

C only supports multidimensional arrays where the sizes (with the possible exception of the first dimension)
are known at compile time. In many applications, we require code that will work for arbitrary size arrays
that have been dynamically allocated. For these we must explicitly encode the mapping of multidimensional
arrays into one-dimensional ones. We can define a data typevar_matrix as simply anint *:

typedef int *var_matrix;

To allocate and initialize storage for ann� n array of integers, we use the Unix library functioncalloc:

3.8. ARRAY ALLOCATION AND ACCESS 151

1 var_matrix new_var_matrix(int n)
2 {
3 return (var_matrix) calloc(sizeof(int), n * n);
4 }

The calloc function (documented as part of ANSI C [30, 37]) takes two arguments: the size of each
array element and the number of array elements required. It attempts to allocate space for the entire array. If
successful, it initializes the entire region of memory to 0s and returns a pointer to the first byte. If insufficient
space is available, it returns null.

New to C?
In C, storage on the heap (a pool of memory available for storing data structures) is allocated using the library
function malloc or its cousincalloc . Their effect is similar to that of thenew operation in C++ and Java. Both
C and C++ require the program to explictly free allocated space using the

free function. In Java, freeing is performed automatically by the run-time system via a process calledgarbage
collection, as will be discussed in Chapter 10.End

We can then use the indexing computation of row-major ordering to determine the position of elementi; j
of the matrix asi � n+ j:

1 int var_ele(var_matrix A, int i, int j, int n)
2 {
3 return A[(i*n) + j];
4 }

This referencing translates into the following assembly code:

1 movl 8(%ebp),%edx Get A

2 movl 12(%ebp),%eax Get i

3 imull 20(%ebp),%eax Compute n*i

4 addl 16(%ebp),%eax Compute n*i + j

5 movl (%edx,%eax,4),%eax Get A[i*n + j]

Comparing this code to that used to index into a fixed-size array, we see that the dynamic version is some-
what more complex. It must use a multiply instruction to scalei byn, rather than a series of shifts and adds.
In modern processors, this multiplication does not incur a significant performance penalty.

In many cases, the compiler can simplify the indexing computations for variable-sized arrays using the
same principles as we saw for fixed-size ones. For example, Figure 3.24(a) shows C code to compute
elementi; k of the product of two variable-sized matricesA andB. In Figure 3.24(b) we show an optimized
version derived by reverse engineering the assembly code generated by compiling the original version. The
compiler is able to eliminate the integer multiplicationsi*n and j*n by exploiting the sequential access
pattern resulting from the loop structure. In this case, rather than generating a pointer variableBptr, the
compiler creates an integer variable we callnTjPk, for “ n Timesj Plusk,” since its value equalsn*j+k
relative to the original code. InitiallynTjPk equalsk , and it is incremented byn on each iteration.

The assembly code for the loop is shown below. The registers values are:%edx holdscnt, %ebx holds
Aptr, %ecx holdsnTjPk, and %esi holdsresult.

152 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

code/asm/array.c

1 typedef int *var_matrix;
2

3 /* Compute i,k of variable matrix product */
4 int var_prod_ele(var_matrix A, var_matrix B, int i, int k, int n)
5 {
6 int j;
7 int result = 0;
8

9 for (j = 0; j < n; j++)
10 result += A[i*n + j] * B[j*n + k];
11

12 return result;
13 }

code/asm/array.c

(a) Original C code

code/asm/array.c

1 /* Compute i,k of variable matrix product */
2 int var_prod_ele_opt(var_matrix A, var_matrix B, int i, int k, int n)
3 {
4 int *Aptr = &A[i*n];
5 int nTjPk = n;
6 int cnt = n;
7 int result = 0;
8

9 if (n <= 0)
10 return result;
11

12 do {
13 result += (*Aptr) * B[nTjPk];
14 Aptr += 1;
15 nTjPk += n;
16 cnt--;
17 } while (cnt);
18

19 return result;
20 }

code/asm/array.c

(b) Optimized C code

Figure 3.24:Original and Optimized Code to Compute Elementi; k of Matrix Product for Variable
Length Arrays. The compiler performs these optimizations automatically.

3.9. HETEROGENEOUS DATA STRUCTURES 153

1 .L37: loop:

2 movl 12(%ebp),%eax Get B

3 movl (%ebx),%edi Get *Aptr

4 addl $4,%ebx Increment Aptr

5 imull (%eax,%ecx,4),%edi Multiply by B[nTjPk]

6 addl %edi,%esi Add to result

7 addl 24(%ebp),%ecx Add n to nTjPk

8 decl %edx Decrement cnt

9 jnz .L37 If cnt <> 0, goto loop

Observe that in the above code, variablesB andn must be retrieved from memory on each iteration. This
is an example ofregister spilling. There are not enough registers to hold all of the needed temporary data,
and hence the compiler must keep some local variables in memory. In this case the compiler chose to spill
variablesB and n because they are read only—they do not change value within the loop. Spilling is a
common problem for IA32, since the processor has so few registers.

3.9 Heterogeneous Data Structures

C provides two mechanisms for creating data types by combining objects of different types. Structures,
declared using the keywordstruct, aggregate multiple objects into a single one. Unions, declared using
the keywordunion, allow an object to be referenced using any of a number of different types.

3.9.1 Structures

The Cstruct declaration creates a data type that groups objects of possibly different types into a single
object. The different components of a structure are referenced by names. The implementation of structures
is similar to that of arrays in that all of the components of a structure are stored in a contiguous region
of memory, and a pointer to a structure is the address of its first byte. The compiler maintains information
about each structure type indicating the byte offset of each field. It generates references to structure elements
using these offsets as displacements in memory referencing instructions.

New to C?
The struct data type constructor is the closest thing C provides to the objects of C++ and Java. It allows the
programmer to keep information about some entity in a single data structure, and reference that information with
names.

For example, a graphics program might represent a rectangle as a structure:

struct rect {
int llx; /* X coordinate of lower-left corner */
int lly; /* Y coordinate of lower-left corner */
int color; /* Coding of color */
int width; /* Width (in pixels) */
int height; /* Height (in pixels) */

};

We could declare a variabler of typestruct rect and set its field values as follows:

154 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

struct rect r;
r.llx = r.lly = 0;
r.color = 0xFF00FF;
r.width = 10;
r.height = 20;

where the expressionr.llx selects fieldllx of structurer .

It is common to pass pointers to structures from one place to another rather than copying them. For example,
the following function computes the area of a rectangle, where a pointer to the rectangestruct is passed to the
function:

int area(struct rect *rp)
{

return (*rp).width * (*rp).height;
}

The expression(*rp).width dereferences the pointer and selects thewidth field of the resulting structure.
Parentheses are required, because the compiler would interpret the expression*rp.width as *(rp.width) ,
which is not valid. This combination of dereferencing and field selection is so common that C provides an alternative
notation using-> . That is,rp->width is equivalent to the expression(*rp).width . For example, we could
write a function that rotates a rectangle left by 90 degrees as

void rotate_left(struct rect *rp)
{

/* Exchange width and height */
int t = rp->height;
rp->height = rp->width;
rp->width = t;

}

The objects of C++ and Java are more elaborate than structures in C, in that they also associate a set ofmethodswith
an object that can be invoked to perform computation. In C, we would simply write these as ordinary functions,
such as the functionsarea androtate_left shown above.End

As an example, consider the following structure declaration:

struct rec {
int i;
int j;
int a[3];
int *p;

};

This structure contains four fields: two 4-byteint’s, an array consisting of three 4-byteint’s, and a 4-byte
integer pointer, giving a total of 24 bytes:

Offset 0 4 8 20
Contents i j a[0] a[1] a[2] p

3.9. HETEROGENEOUS DATA STRUCTURES 155

Observe that arraya is embedded within the structure. The numbers along the top of the diagram give the
byte offsets of the fields from the beginning of the structure.

To access the fields of a structure, the compiler generates code that adds the appropriate offset to the address
of the structure. For example, suppose variabler of typestruct rec * is in register%edx. Then the
following code copies elementr->i to elementr->j:

1 movl (%edx),%eax Get r->i

2 movl %eax,4(%edx) Store in r->j

Since the offset of fieldi is 0, the address of this field is simply the value ofr . To store into fieldj , the
code adds offset 4 to the address ofr .

To generate a pointer to an object within a structure, we can simply add the field’s offset to the structure
address. For example, we can generate the pointer&(r->a[1]) by adding offset8+4�1 = 12. For pointer
r in register%edxand integer variablei in register%eax, we can generate the pointer value&(r->a[i])
with the single instruction:

r in %eax, i in %edx

1 leal 8(%eax,%edx,4),%ecx %ecx = &r->a[i]

As a final example, the following code implements the statement:

r->p = &r->a[r->i + r->j];

starting withr in register%edx:

1 movl 4(%edx),%eax Get r->j

2 addl (%edx),%eax Add r->i

3 leal 8(%edx,%eax,4),%eax Compute &r->[r->i + r->j]

4 movl %eax,20(%edx) Store in r->p

As these examples show, the selection of the different fields of a structure is handled completely at compile
time. The machine code contains no information about the field declarations or the names of the fields.

Practice Problem 3.21:

Consider the following structure declaration.

struct prob {
int *p;
struct {

int x;
int y;

} s;
struct prob *next;

};

This declaration illustrates that one structure can be embedded within another, just as arrays can be
embedded within structures, and arrays can be embedded within arrays.

The following procedure (with some expressions omitted) operates on this structure:

156 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

void sp_init(struct prob *sp)
{

sp->s.x = ________;
sp->p = ________;
sp->next = ________;

}

A. What are the offsets (in bytes) of the following fields:

p:

s.x :

s.y :

next :

B. How many total bytes does the structure require?

C. The compiler generates the following assembly code for the body ofsp_init :

1 movl 8(%ebp),%eax
2 movl 8(%eax),%edx
3 movl %edx,4(%eax)
4 leal 4(%eax),%edx
5 movl %edx,(%eax)
6 movl %eax,12(%eax)

Based on this, fill in the missing expressions in the code forsp_init .

3.9.2 Unions

Unions provide a way to circumvent the type system of C, allowing a single object to be referenced according
to multiple types. The syntax of a union declaration is identical to that for structures, but its semantics are
very different. Rather than having the different fields reference different blocks of memory, they all reference
the same block.

Consider the following declarations:

struct S3 {
char c;
int i[2];
double v;

};

union U3 {
char c;
int i[2];
double v;

};

The offsets of the fields, as well as the total size of data typesS3 andU3, are:

3.9. HETEROGENEOUS DATA STRUCTURES 157

Type c i v Size
S3 0 4 12 20
U3 0 0 0 8

(We will see shortly whyi has offset 4 inS3 rather than 1). For pointerp of typeunion U3 *, references
p->c, p->i[0], and p->v would all reference the beginning of the data structure. Observe also that the
overall size of a union equals the maximum size of any of its fields.

Unions can be useful in several contexts. However, they can also lead to nasty bugs, since they bypass the
safety provided by the C type system. One application is when we know in advance that the use of two
different fields in a data structure will be mutually exclusive. Then declaring these two fields as part of a
union rather than a structure will reduce the total space allocated.

For example, suppose we want to implement a binary tree data structure where each leaf node has adouble
data value, while each internal node has pointers to two children, but no data. If we declare this as:

struct NODE {
struct NODE *left;
struct NODE *right;
double data;

};

then every node requires 16 bytes, with half the bytes wasted for each type of node. On the other hand, if
we declare a node as:

union NODE {
struct {

union NODE *left;
union NODE *right;

} internal;
double data;

};

then every node will require just 8 bytes. Ifn is a pointer to a node of typeunion NODE *, we would ref-
erence the data of a leaf node asn->data, and the children of an internal node asn->internal.left
andn->internal.right .

With this encoding, however, there is no way to determine whether a given node is a leaf or an internal node.
A common method is to introduce an additional tag field:

struct NODE {
int is_leaf;
union {

struct {
struct NODE *left;
struct NODE *right;

} internal;
double data;

} info;
};

158 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

where the fieldis_leaf is 1 for a leaf node and is 0 for an internal node. This structure requires a total of
12 bytes: 4 foris_leaf, and either 4 each for info.internal.left andinfo.internal.right ,
or 8 for info.data. In this case, the savings gain of using a union is small relative to the awkwardness of
the resulting code. For data structures with more fields, the savings can be more compelling.

Unions can also be used to access the bit patterns of different data types. For example, the following code
returns the bit representation of afloat as anunsigned:

1 unsigned float2bit(float f)
2 {
3 union {
4 float f;
5 unsigned u;
6 } temp;
7 temp.f = f;
8 return temp.u;
9 };

In this code we store the argument in the union using one data type, and access it using another. Interestingly,
the code generated for this procedure is identical to that for the procedure:

1 unsigned copy(unsigned u)
2 {
3 return u;
4 }

The body of both procedures is just a single instruction:

1 movl 8(%ebp),%eax

This demonstrates the lack of type information in assembly code. The argument will be at offset 8 relative
to %ebpregardless of whether it is afloat or anunsigned. The procedure simply copies its argument
as the return value without modifying any bits.

When using unions combining data types of different sizes, byte ordering issues can become important. For
example suppose we write a procedure that will create an 8-bytedouble using the bit patterns given by
two 4-byteunsigned’s:

1 double bit2double(unsigned word0, unsigned word1)
2 {
3 union {
4 double d;
5 unsigned u[2];
6 } temp;
7

8 temp.u[0] = word0;
9 temp.u[1] = word1;

10 return temp.d;
11 }

3.9. HETEROGENEOUS DATA STRUCTURES 159

On a little-endian machine such as IA32, argumentword0 will become the low-order four bytes ofd, while
word1 will become the high-order four bytes. On a big-endian machine, the role of the two arguments will
be reversed.

Practice Problem 3.22:

Consider the following union declaration.

union ele {
struct {

int *p;
int y;

} e1;
struct {

int x;
union ele *next;

} e2;
};

This declaration illustrates that structures can be embedded within unions.

The following procedure (with some expressions omitted) operates on link list having these unions as
list elements:

void proc (union ele *up)
{

up->__________ = *(up->__________) - up->__________;
}

A. What would be the offsets (in bytes) of the following fields:

e1.p :
e1.y :
e2.x :

e2.next :

B. How many total bytes would the structure require?

C. The compiler generates the following assembly code for the body ofproc :

1 movl 8(%ebp),%eax
2 movl 4(%eax),%edx
3 movl (%edx),%ecx
4 movl %ebp,%esp
5 movl (%eax),%eax
6 movl (%ecx),%ecx
7 subl %eax,%ecx
8 movl %ecx,4(%edx)

Based on this, fill in the missing expressions in the code forproc . [Hint: Some union references
can have ambiguous interpretations. These ambiguities get resolved as you see where the refer-
ences lead. There is only one answer that does not perform any casting and does not violate any
type constraints.]

160 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

3.10 Alignment

Many computer systems place restrictions on the allowable addresses for the primitive data types, requiring
that the address for some type of object must be a multiple of some valuek (typically 2, 4, or 8). Such
alignment restrictionssimplify the design of the hardware forming the interface between the processor and
the memory system. For example, suppose a processor always fetches 8 bytes from memory with an address
that must be a multiple of 8. If we can guarantee that anydouble will be aligned to have its address be
a multiple of 8, then the value can be read or written with a single memory operation. Otherwise, we may
need to perform two memory accesses, since the object might be split across two 8-byte memory blocks.

The IA32 hardware will work correctly regardless of the alignment of data. However, Intel recommends that
data be aligned to improve memory system performance. Linux follows an alignment policy where 2-byte
data types (e.g.,short) must have an address that is a multiple of 2, while any larger data types (e.g.,int,
int *, float, and double) must have an address that is a multiple of 4. Note that this requirement
means that the least significant bit of the address of an object of typeshort must equal 0. Similarly, any
object of typeint, or any pointer, must be at an address having the low-order two bits equal to 0.

Aside: Alignment with Microsoft Windows.
Microsoft Windows requires a stronger alignment requirement—anyk-byte (primitive) object must have an address
that is a multiple ofk. In particular, it requires that the address of adouble be a multiple of 8. This requirement
enhances the memory performance at the expense of some wasted space. The design decision made in Linux was
probably good for the i386, back when memory was scarce and memory busses were only 4 bytes wide. With
modern processors, Microsoft’s alignment is a better design decision.

The command line flag-malign-double causesGCCon Linux to use 8-byte alignment for data of typedouble .
This will lead to improved memory performance, but it can cause incompatibilities when linking with library code
that has been compiled assuming a 4-byte alignment.End Aside.

Alignment is enforced by making sure that every data type is organized and allocated in such a way that every
object within the type satisfies its alignment restrictions. The compiler places directives in the assembly code
indicating the desired alignment for global data. For example, the assembly code declaration of the jump
table on page 131 contains the following directive on line 2:

.align 4

This ensures that the data following it (in this case the start of the jump table) will start with an address
that is a multiple of 4. Since each table entry is 4 bytes long, the successive elements will obey the 4-byte
alignment restriction.

Library routines that allocate memory, such asmalloc, must be designed so that they return a pointer that
satisfies the worst-case alignment restriction for the machine it is running on, typically 4 or 8.

For code involving structures, the compiler may need to insert gaps in the field allocation to ensure that each
structure element satisfies its alignment requirement. The structure then has some required alignment for its
starting address.

For example, consider the structure declaration:

struct S1 {

3.10. ALIGNMENT 161

int i;
char c;
int j;

};

Suppose the compiler used the minimal 9-byte allocation, diagrammed as follows:

Offset 0 4 5
Contents i c j

Then it would be impossible to satisfy the 4-byte alignment requirement for both fieldsi (offset 0) andj
(offset 5). Instead, the compiler inserts a 3-byte gap (shown below as “XXX”) between fieldsc andj :

Offset 0 4 5 8
Contents i c XXX j

so thatj has offset 8, and the overall structure size is 12 bytes. Furthermore, the compiler must ensure that
any pointerp of typestruct S1 * satisfies a 4-byte alignment. Using our earlier notation, let pointerp
have valuexp. Thenxp must be a multiple of 4. This guarantees that bothp->i (addressxp) andp->j
(addressxp + 4) will satisfy their 4-byte alignment requirements.

In addition, the compiler may need to add padding to the end of the structure so that each element in an
array of structures will satisfy its alignment requirement. For example, consider the following structure
declaration:

struct S2 {
int i;
int j;
char c;

};

If we pack this structure into 9 bytes, we can still satisfy the alignment requirements for fieldsi andj by
making sure that the starting address of the structure satisfies a 4-byte alignment requirement. Consider,
however, the following declaration:

struct S2 d[4];

With the 9-byte allocation, it is not possible to satisfy the alignment requirement for each element ofd,
because these elements will have addressesxd , xd + 9, xd + 18, andxd + 27.

Instead the compiler will allocate 12 bytes for structureS1, with the final 3 bytes being wasted space:

Offset 0 4 8 9
Contents i j c XXX

That way the elements ofd will have addressesxd , xd + 12, xd + 24, andxd + 36. As long asxd is a
multiple of 4, all of the alignment restrictions will be satisfied.

162 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Practice Problem 3.23:

For each of the following structure declarations, determine the offset of each field, the total size of the
structure, and its alignment requirement under Linux/IA32.

A. struct P1 { int i; char c; int j; char d; };

B. struct P2 { int i; char c; char d; int j; };

C. struct P3 { short w[3]; char c[3] };

D. struct P4 { short w[3]; char *c[3] };

E. struct P3 { struct P1 a[2]; struct P2 *p };

3.11 Putting it Together: Understanding Pointers

Pointers are a central feature of the C programming language. They provide a uniform way to provide remote
access to data structures. Pointers are a source of confusion for novice programmers, but the underlying
concepts are fairly simple. The code in Figure 3.25 lets us illustrate a number of these concepts.

� Every pointer has a type. This type indicates what kind of object the pointer points to. In our example
code, we see the following pointer types:

Pointer Type Object Type Pointers
int * int xp, ip[0], ip[1]
union uni * union uni up

Note in the above table, that we indicate the type of the pointer itself, as well as the type of the object
it points to. In general, if the object has typeT , then the pointer has type* T . The specialvoid *
type represents a generic pointer. For example, themalloc function returns a generic pointer, which
is converted to a typed pointer via a cast (line 21).

� Every pointer has a value. This value is an address of some object of the designated type. The special
NULL (0) value indicates that the pointer does not point anywhere. We will see the values of our
pointers shortly.

� Pointers are created with the& operator. This operator can be applied to any C expression that is
categorized as anlvalue, meaning an expression that can appear on the left side of an assignment.
Examples include variables and the elements of structures, unions, and arrays. In our example code,
we see this operator being applied to global variableg (line 24), to structure elements.v (line 32),
to union elementup->v (line 33), and to local variablex (line 42).

� Pointers are dereferenced with the* operator. The result is a value having the type associated with
the pointer. We see dereferencing applied to bothip and*ip (line 29), toip[1] (line 31), andxp
(line 35). In addition, the expressionup->v (line 33) both derefences pointerup and selects fieldv .

3.11. PUTTING IT TOGETHER: UNDERSTANDING POINTERS 163

1 struct str { /* Example Structure */
2 int t;
3 char v;
4 };
5

6 union uni { /* Example Union */
7 int t;
8 char v;
9 } u;

10

11 int g = 15;
12

13 void fun(int* xp)
14 {
15 void (*f)(int*) = fun; /* f is a function pointer */
16

17 /* Allocate structure on stack */
18 struct str s = {1,’a’}; /* Initialize structure */
19

20 /* Allocate union from heap */
21 union uni *up = (union uni *) malloc(sizeof(union uni));
22

23 /* Locally declared array */
24 int *ip[2] = {xp, &g};
25

26 up->v = s.v+1;
27

28 printf("ip = %p, *ip = %p, **ip = %d\n",
29 ip, *ip, **ip);
30 printf("ip+1 = %p, ip[1] = %p, *ip[1] = %d\n",
31 ip+1, ip[1], *ip[1]);
32 printf("&s.v = %p, s.v = ’%c’\n", &s.v, s.v);
33 printf("&up->v = %p, up->v = ’%c’\n", &up->v, up->v);
34 printf("f = %p\n", f);
35 if (--(*xp) > 0)
36 f(xp); /* Recursive call of fun */
37 }
38

39 int test()
40 {
41 int x = 2;
42 fun(&x);
43 return x;
44 }

Figure 3.25:Code Illustrating Use of Pointers in C.In C, pointers can be generated to any data type.

164 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

� Arrays and pointers are closely related. The name of an array can be referenced (but not updated)
as if it were a pointer variable. Array referencing (e.g.,a[3]) has the exact same effect as pointer
arithmetic and dereferencing (e.g.,*(a+3)). We can see this in line 29, where we print the pointer
value of arrayip, and reference its first (element 0) entry as*ip.

� Pointers can also point to functions.This provides a powerful capability for storing and passing
references to code, which can be invoked in some other part of the program. We see this with variable
f (line 15), which is declared to be a variable that points to a function taking anint * as argument
and returningvoid. The assignment makesf point tofun. When we later applyf (line 36), we are
making a recursive call.

New to C?
The syntax for declaring function pointers is especially difficult for novice programmers to understand. For a

declaration such as

void (*f)(int*);

it helps to read it starting from the inside (starting with “f”) and working outward. Thus, we see thatf is a pointer,
as indicated by “(*f) .” It is a pointer to a function that has a singleint * as an argument as indicated by
“ (*f)(int*) .” Finally, we see that it is a pointer to a function that takes anint * as an argument and returns
void .

The parentheses around*f are required, because otherwise the declaration:

void *f(int*);

would be read as:

(void *) f(int*);

That is, it would be interpreted as a function prototype, declaring a functionf that has anint * as its argument
and returns avoid * .

Kernighan & Ritchie [37, Sect. 5.12] present a very helpful tutorial on reading C declarations.End

Our code contains a number of calls toprintf, printing some of the pointers (using directive %p) and
values. When executed, it generates the following output:

1 ip = 0xbfffefa8, *ip = 0xbfffefe4, **ip = 2 ip[0] = xp. *xp = x = 2

2 ip+1 = 0xbfffefac, ip[1] = 0x804965c, *ip[1] = 15 ip[1] = &g. g = 15

3 &s.v = 0xbfffefb4, s.v = ’a’ s in stack frame

4 &up->v = 0x8049760, up->v = ’b’ up points to area in heap

5 f = 0x8048414 f points to code for fun

6 ip = 0xbfffef68, *ip = 0xbfffefe4, **ip = 1 ip in new frame, x = 1

7 ip+1 = 0xbfffef6c, ip[1] = 0x804965c, *ip[1] = 15 ip[1] same as before

8 &s.v = 0xbfffef74, s.v = ’a’ s in new frame

9 &up->v = 0x8049770, up->v = ’b’ up points to new area in heap

10 f = 0x8048414 f points to code for fun

3.12. LIFE IN THE REAL WORLD: USING THEGDB DEBUGGER 165

We see that the function is executed twice—first by the direct call fromtest (line 42), and second by
the indirect, recursive call (line 36). We can see that the printed values of the pointers all correspond
to addresses. Those starting with0xbfffef point to locations on the stack, while the rest are part of
the global storage (0x804965c), part of the executable code (0x8048414), or locations on the heap
(0x8049760 and0x8049770).

Array ip is instantiated twice—once for each call tofun. The second value (0xbfffef68) is smaller
than the first (0xbfffefa8), because the stack grows downward. The contents of the array, however, are
the same in both cases. Element 0 (*ip) is a pointer to variable x in the stack frame fortest. Element 1
is a pointer to global variableg.

We can see that structures is instantiated twice, both times on the stack, while the union pointed to by
variableup is allocated on the heap.

Finally, variablef is a pointer to functionfun. In the disassembled code, we find the following as the initial
code forfun:

1 08048414 <fun>:
2 8048414: 55 push %ebp
3 8048415: 89 e5 mov %esp,%ebp
4 8048417: 83 ec 1c sub $0x1c,%esp
5 804841a: 57 push %edi

The value0x8048414 printed for pointerf is exactly the address of the first instruction in the code for
fun.

New to C?
Other languages, such as Pascal, provide two different ways to pass parameters to procedures—byvalue(identified
in Pascal by keywordvar), where the caller provides the actual parameter value, and byreference, where the
caller provides a pointer to the value. In C, all parameters are passed by value, but we can simulate the effect of a
reference parameter by explicitly generating a pointer to a value and passing this pointer to a procedure. We saw
this in functionfun (Figure 3.25) with the parameterxp . With the initial callfun(&x) (line 42), the function is
given a reference to local variablex in test . This variable is decremented by each call tofun (line 35), causing
the recursion to stop after two calls.

C++ reintroduced the concept of a reference parameter, but many feel this was a mistake.End

3.12 Life in the Real World: Using theGDB Debugger

The GNU debuggerGDB provides a number of useful features to support the run-time evaluation and anal-
ysis of machine-level programs. With the examples and exercises in this book, we attempt to infer the
behavior of a program by just looking at the code. UsingGDB, it becomes possible to study the behavior by
watching the program in action, while having considerable control over its execution.

Figure 3.26 shows examples of someGDB commands that help when working with machine-level, IA32
programs. It is very helpful to first runOBJDUMP to get a disassembled version of the program. Our
examples were based on runningGDB on the fileprog, described and disassembled on page 96. We would
startGDB with the command line:

unix> gdb prog

166 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Command Effect
Starting and Stopping

quit Exit GDB

run Run your program (give command line arguments here)
kill Stop your program

Breakpoints
break sum Set breakpoint at entry to functionsum
break *0x80483c3 Set breakpoint at address0x80483c3
delete 1 Delete breakpoint 1
delete Delete all breakpoints

Execution
stepi Execute one instruction
stepi 4 Execute four instructions
nexti Like stepi, but proceed through function calls
continue Resume execution
finish Run until current function returns

Examining code
disas Disassemble current function
disas sum Disassemble function sum
disas 0x80483b7 Disassemble function around address0x80483b7
disas 0x80483b7 0x80483c7 Disassemble code within specified address range
print /x $eip Print program counter in hex

Examining data
print $eax Print contents of%eax in decimal
print /x $eax Print contents of%eax in hex
print /t $eax Print contents of%eax in binary
print 0x100 Print decimal representation of0x100
print /x 555 Print hex representation of 555
print /x ($ebp+8) Print contents of%ebpplus 8 in hex
print *(int *) 0xbffff890 Print integer at address0xbffff890
print *(int *) ($ebp+8) Print integer at address%ebp+ 8
x/2w 0xbffff890 Examine two (4-byte) words starting at address0xbffff890
x/20b sum Examine first 20 bytes of functionsum

Useful information
info frame Information about current stack frame
info registers Values of all the registers
help Get information aboutGDB

Figure 3.26:Example GDB Commands.These examples illustrate some of the waysGDB supports debug-
ging of machine-level programs.

3.13. OUT-OF-BOUNDS MEMORY REFERENCES AND BUFFER OVERFLOW 167

The general scheme is to set breakpoints near points of interest in the program. These can be set to just
after the entry of a function, or at a program address. When one of the breakpoints is hit during program
execution, the program will halt and return control to the user. From a breakpoint, we can examine different
registers and memory locations in various formats. We can also single-step the program, running just a few
instructions at a time, or we can proceed to the next breakpoint.

As our examples suggests,GDB has an obscure command syntax, but the online help information (invoked
within GDB with thehelp command) overcomes this shortcoming.

3.13 Out-of-Bounds Memory References and Buffer Overflow

We have seen that C does not perform any bounds checking for array references, and that local variables are
stored on the stack along with state information such as register values and return pointers. This combination
can lead to serious program errors, where the state stored on the stack gets corrupted by a write to an out-
of-bounds array element. When the program then tries to reload the register or execute aret instruction
with this corrupted state, things can go seriously wrong.

A particularly common source of state corruption is known asbuffer overflow. Typically some character
array is allocated on the stack to hold a string, but the size of the string exceeds the space allocated for the
array. This is demonstrated by the following program example.

1 /* Implementation of library function gets() */
2 char *gets(char *s)
3 {
4 int c;
5 char *dest = s;
6 while ((c = getchar()) != ’\n’ && c != EOF)
7 *dest++ = c;
8 *dest++ = ’\0’; /* Terminate String */
9 if (c == EOF)

10 return NULL;
11 return s;
12 }
13

14 /* Read input line and write it back */
15 void echo()
16 {
17 char buf[4]; /* Way too small! */
18 gets(buf);
19 puts(buf);
20 }

The above code shows an implementation of the library functiongets to demonstrate a serious problem
with this function. It reads a line from the standard input, stopping when either a terminating newline
character or some error condition is encountered. It copies this string to the location designated by argument
s , and terminates the string with a null character. We show the use ofgets in the functionecho, which
simply reads a line from standard input and echos it back to standard output.

168 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Return Address

Saved %ebp

[3][2][1][0] buf

%ebp

Stack
Frame

for echo

Stack
Frame

for caller

Figure 3.27:Stack Organization for echo Function. Character arraybuf is just below part of the saved
state. An out-of-bounds write tobuf can corrupt the program state.

The problem withgets is that it has no way to determine whether sufficient space has been allocated to
hold the entire string. In ourecho example, we have purposely made the buffer very small—just four
characters long. Any string longer than three characters will cause an out-of-bounds write.

Examining a portion of the assembly code forecho shows how the stack is organized.

1 echo:
2 pushl %ebp Save %ebp on stack

3 movl %esp,%ebp
4 subl $20,%esp Allocate space on stack

5 pushl %ebx Save %ebx

6 addl $-12,%esp Allocate more space on stack

7 leal -4(%ebp),%ebx Compute buf as %ebp-4

8 pushl %ebx Push buf on stack

9 call gets Call gets

We can see in this example that the program allocates a total of 32 bytes (lines 4 and 6) for local storage.
However, the location of character arraybuf is computed as just four bytes below%ebp (line 7). Figure
3.27 shows the resulting stack structure. As can be seen, any write tobuf[4] throughbuf[7] will cause
the saved value of%ebp to be corrupted. When the program later attempts to restore this as the frame
pointer, all subsequent stack references will be invalid. Any write tobuf[8] throughbuf[11] will
cause the return address to be corrupted. When theret instruction is executed at the end of the function,
the program will “return” to the wrong address. As this example illustrates, buffer overflow can cause a
program to seriously misbehave.

Our code forecho is simple but sloppy. A better version involves using the functionfgets, which includes
as an argument a count on the maximum number bytes to read. Homework problem 3.37 asks you to write
an echo function that can handle an input string of arbitrary length. In general, usinggets or any function
that can overflow storage is considered a bad programming practice. The C compiler even produces the
following error message when compiling a file containing a call togets: “the gets function is dangerous
and should not be used.”

3.13. OUT-OF-BOUNDS MEMORY REFERENCES AND BUFFER OVERFLOW 169

code/asm/bufovf.c

1 /* This is very low quality code.
2 It is intended to illustrate bad programming practices.
3 See Practice Problem 3.24. */
4 char *getline()
5 {
6 char buf[8];
7 char *result;
8 gets(buf);
9 result = malloc(strlen(buf));

10 strcpy(result, buf);
11 return(result);
12 }

code/asm/bufovf.c

C Code

1 08048524 <getline>:
2 8048524: 55 push %ebp
3 8048525: 89 e5 mov %esp,%ebp
4 8048527: 83 ec 10 sub $0x10,%esp
5 804852a: 56 push %esi
6 804852b: 53 push %ebx

Diagram stack at this point

7 804852c: 83 c4 f4 add $0xfffffff4,%esp
8 804852f: 8d 5d f8 lea 0xfffffff8(%ebp),%ebx
9 8048532: 53 push %ebx

10 8048533: e8 74 fe ff ff call 80483ac <_init+0x50> gets

Modify diagram to show values at this point

Disassembly up through call togets

Figure 3.28:C and Disassembled Code for Problem 3.24.

170 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Practice Problem 3.24:

Figure 3.28 shows a (low quality) implementation of a function that reads a line from standard input,
copies the string to newly allocated storage, and returns a pointer to the result.

Consider the following scenario. Proceduregetline is called with the return address equal to0x8048643 ,
register%ebpequal to0xbffffc94 , register%esi equal to0x1 , and register%ebx equal to0x2 .
You type in the string “012345678901 .” The program terminates with a segmentation fault. You run
GDB and determine that the error occurs during the execution of theret instruction ofgetline .

A. Fill in the diagram below indicating as much as you can about the stack just after executing the
instruction at line 6 in the disassembly. Label the quantities stored on the stack (e.g., “Return
Address ”) on the right, and their hexadecimal values (if known) within the box. Each box
represents four bytes. Indicate the position of%ebp.

+-------------+
| 08 04 86 43 | Return Address
+-------------+
| |
+-------------+
| |
+-------------+
| |
+-------------+
| |
+-------------+
| |
+-------------+
| |
+-------------+
| |
+-------------+

B. Modify your diagram to show the effect of the call togets (line 10).

C. To what address does the program attempt to return?

D. What register(s) have corrupted value(s) whengetline returns?

E. Besides the potential for buffer overflow, what two other things are wrong with the code forget-
line ?

A more pernicious use of buffer overflow is to get a program to perform a function that it would otherwise be
unwilling to do. This is one of the most common methods to attack the security of a system over a computer
network. Typically, the program is fed with a string that contains the byte encoding of some executable
code, called theexploit code, plus some extra bytes that overwrite the return pointer with a pointer to the
code in the buffer. The effect of executing theret instruction is then to jump to the exploit code.

In one form of attack, the exploit code then uses a system call to start up a shell program, providing the
attacker with a range of operating system functions. In another form, the exploit code performs some
otherwise unauthorized task, repairs the damage to the stack, and then executesret a second time, causing
an (apparently) normal return to the caller.

3.13. OUT-OF-BOUNDS MEMORY REFERENCES AND BUFFER OVERFLOW 171

As an example, the famous Internet worm of November, 1988 used four different ways to gain access
to many of the computers across the Internet. One was a buffer overflow attack on the finger daemon
fingerd, which serves requests by the FINGER command. By invokingFINGER with an appropriate
string, the worm could make the daemon at a remote site have a buffer overflow and execute code that gave
the worm access to the remote system. Once the worm gained access to a system, it would replicate itself
and consume virtually all of the machine’s computing resources. As a consequence, hundreds of machines
were effectively paralyzed until security experts could determine how to eliminate the worm. The author of
the worm was caught and prosecuted. He was sentenced to three years probation, 400 hours of community
service, and a $10,500 fine. Even to this day, however, people continue to find security leaks in systems that
leave them vulnerable to buffer overflow attacks. This highlights the need for careful programming. Any
interface to the external environment should be made “bullet proof” so that no behavior by an external agent
can cause the system to misbehave.

Aside: Worms and viruses
Both worms and viruses are pieces of code that attempt to spread themselves among computers. As described by
Spafford [69], aworm is a program that can run by itself and can propagate a fully working version of itself to other
machines. Avirus is a piece of code that adds itself to other programs, including operating systems. It cannot run
independently. In the popular press, the term “virus” is used to refer to a variety of different strategies for spreading
attacking code among systems, and so you will hear people saying “virus” for what more properly should be called
a “worm.” End Aside.

In Problem 3.38, you can gain first-hand experience at mounting a buffer overflow attack. Note that we
do not condone using this or any other method to gain unauthorized access to a system. Breaking into
computer systems is like breaking into a building—it is a criminal act even when the perpetrator does not
have malicious intent. We give this problem for two reasons. First, it requires a deep understanding of
machine-language programming, combining such issues as stack organization, byte ordering, and instruc-
tion encoding. Second, by demonstrating how buffer overflow attacks work, we hope you will learn the
importance of writing code that does not permit such attacks.

Aside: Battling Microsoft via buffer overflow
In July, 1999, Microsoft introduced an instant messaging (IM) system whose clients were compatible with the
popular AOL IM servers. This allowed Microsoft IM users to chat with AOL IM users. However, one month later,
Microsoft IM users were suddenly and mysteriously unable to chat with AOL users. Microsoft released updated
clients that restored service to the AOL IM system, but within days these clients no longer worked either. AOL had,
possibly unintentionally, written client code that was vulnerable to a buffer overflow attack. Their server applied
such an attack on client code when a user logged in to determine whether the client was running AOL code or
someone else’s.

The AOL exploit code sampled a small number of locations in the memory image of the client, packed them into
a network packet, and sent them back to the server. If the server did not receive such a packet, or if the packet it
received did not match the expected “footprint” of the AOL client, then the server assumed the client was not an
AOL client and denied it access. So if other IM clients, such as Microsoft’s, wanted access to the AOL IM servers,
they would not only have to incorporate the buffer overflow bug that existed in AOL’s clients, but they would also
have to have identical binary code and data in the appropriate memory locations. But as soon as they matched these
locations and distributed new versions of their client programs to customers, AOL could simply change its exploit
code to sample different locations in the client’s memory image. This was clearly a war that the non-AOL clients
could never win!

The entire episode had a number of unusuals twists and turns. Information about the client bug and AOL’s exploita-
tion of it first came out when someone posing to be an independent consultant by the name of Phil Bucking sent

172 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

a description via email to Richard Smith, a noted security expert. Smith did some tracing and determined that the
email actually originated from within Microsoft. Later Microsoft admitted that one of its employees had sent the
email [48]. On the other side of the controversy, AOL never admitted to the bug nor their exploitation of it, even
though conclusive evidence was made public by Geoff Chapell of Australia.

So, who violated which code of conduct in this incident? First, AOL had no obligation to open its IM system to
non-AOL clients, so they were justified in blocking Microsoft. On the other hand, using buffer overflows is a tricky
business. A small bug would have crashed the client computers, and it made the systems more vulnerable to attacks
by external agents (although there is no evidence that this occurred). Microsoft would have done well to publicly
announce AOL’s intentional use of buffer overflow. However, their Phil Bucking subterfuge was clearly the wrong
way to spread this information, from both an ethical and a public relations point of view.End Aside.

3.14 *Floating-Point Code

The set of instructions for manipulating floating-point values is one least elegant features of the IA32 archi-
tecture. In the original Intel machines, floating point was performed by a separatecoprocessor, a unit with
its own registers and processing capabilities that executes a subset of the instructions. This coprocessor was
implemented as a separate chip named the 8087, 80287, and i387, to accompany the processor chips 8086,
80286, and i386, respectively. During these product generations, chip capacity was insufficient to include
both the main processor and the floating-point coprocessor on a single chip. In addition, lower-budget ma-
chines would omit floating-point hardware and simply perform the floating-point operations (very slowly!)
in software. Since the i486, floating point has been included as part of the IA32 CPU chip.

The original 8087 coprocessor was introduced to great acclaim in 1980. It was the first single-chip floating-
point unit (FPU), and the first implementation of what is now known as IEEE floating point. Operating as
a coprocessor, the FPU would take over the execution of floating-point instructions after they were fetched
by the main processor. There was minimal connection between the FPU and the main processor. Commu-
nicating data from one processor to the other required the sending processor to write to memory and the
receiving one to read it. Artifacts of that design remain in the IA32 floating-point instruction set today. In
addition, the compiler technology of 1980 was much less sophisticated than it is today. Many features of
IA32 floating point make it a difficult target for optimizing compilers.

3.14.1 Floating-Point Registers

The floating-point unit contains eight floating-point registers, but unlike normal registers, these are treated
as a shallow stack. The registers are identified as%st(0), %st(1), and so on, up to %st(7), with
%st(0) being the top of the stack. When more than eight values are pushed onto the stack, the ones at the
bottom simply disappear.

Rather than directly indexing the registers, most of the arithmetic instructions pop their source operands
from the stack, compute a result, and then push the result onto the stack. Stack architectures were considered
a clever idea in the 1970s, since they provide a simple mechanism for evaluating arithmetic instructions,
and they allow a very dense coding of the instructions. With advances in compiler technology and with
the memory required to encode instructions no longer considered a critical resource, these properties are no
longer important. Compiler writers would be much happier with a larger, conventional set of floating-point
registers.

3.14. *FLOATING-POINT CODE 173

Aside: Other stack-based languages.
Stack-based interpreters are still commonly used as an intermediate representation between a high-level language
and its mapping onto an actual machine. Other examples of stack-based evaluators include Java byte code, the
intermediate format generated by Java compilers, and the Postscript page formatting language.End Aside.

Having the floating-point registers organized as a bounded stack makes it difficult for compilers to use these
registers for storing the local variables of a procedure that calls other procedures. For storing local integer
variables, we have seen that some of the general purpose registers can be designated as callee saved and
hence be used to hold local variables across a procedure call. Such a designation is not possible for an IA32
floating-point register, since its identity changes as values are pushed onto and popped from the stack. For
a push operation causes the value in%st(0) to now be in%st(1).

On the other hand, it might be tempting to treat the floating-point registers as a true stack, with each pro-
cedure call pushing its local values onto it. Unfortunately, this approach would quickly lead to a stack
overflow, since there is room for only eight values. Instead, compilers generate code that saves every local
floating-point value on the main program stack before calling another procedure and then retrieves them on
return. This generates memory traffic that can degrade program performance.

3.14.2 Extended-Precision Arithmetic

A second unusual feature of IA32 floating point is that the floating-point registers are all 80 bits wide. They
encode numbers in anextended-precisionformat as described in Problem 2.49. It is similar to an IEEE
floating-point format with a 15-bit exponent (i.e.,k = 15) and a 63-bit fraction (i.e.,n = 63). All single and
double-precision numbers are converted to this format as they are loaded from memory into floating-point
registers. The arithmetic is always performed in extended precision. Numbers are converted from extended
precision to single or double-precision format as they are stored in memory.

This extension to 80 bits for all register data and then contraction to a smaller format for all memory data
has some undesirable consequences for programmers. It means that storing a value in memory and then
retrieving it can change its value, due to rounding, underflow, or overflow. This storing and retrieving is not
always visible to the C programmer, leading to some very peculiar results.

The following example illustrates this property:

code/asm/fcomp.c

1 double recip(int denom)
2 {
3 return 1.0/(double) denom;
4 }
5

6 void do_nothing() {} /* Just like the name says */
7

8 void test1(int denom)
9 {

10 double r1, r2;
11 int t1, t2;
12

174 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

13 r1 = recip(denom); /* Stored in memory */
14 r2 = recip(denom); /* Stored in register */
15 t1 = r1 == r2; /* Compares register to memory */
16 do_nothing(); /* Forces register save to memory */
17 t2 = r1 == r2; /* Compares memory to memory */
18 printf("test1 t1: r1 %f %c= r2 %f\n", r1, t1 ? ’=’ : ’!’, r2);
19 printf("test1 t2: r1 %f %c= r2 %f\n", r1, t2 ? ’=’ : ’!’, r2);
20 }

code/asm/fcomp.c

Variablesr1 andr2 are computed by the same function with the same argument. One would expect them
to be identical. Furthermmore, both variablest1 and t2 are computing by evaluating the expressionr1
== r2, and so we would expect them both to equal1. There are no apparent hidden side effects—function
recip does a straightforward reciprocal computation, and, as the name suggests, functiondo_nothing
does nothing. When the file is compiled with optimization flag ‘-O2’ and run with argument10, however,
we get the following result:

test1 t1: r1 0.100000 != r2 0.100000
test1 t2: r1 0.100000 == r2 0.100000

The first test indicates the two reciprocals are different, while the second indicates they are the same! This is
certainly not what we would expect, nor what we want. The comments in the code provide a clue for why this
outcome occurs. Functionrecip returns its result in a floating-point register. Whenever proceduretest1
calls some function, it must store any value currently in a floating-point register onto the main program
stack, converting from extended to double precision in the process. (We will see why this happens shortly).
Before making the second call torecip, variable r1 is converted and stored as a double-precision number.
After the second call, variabler2 has the extended-precision value returned by the function. In computing
t1, the double-precision numberr1 is compared to the extended-precision numberr2. Since 0:1 cannot be
represented exactly in either format, the outcome of the test is false. Before calling functiondo_nothing,
r2 is converted and stored as a double-precision number. In computingt2, two double-precision numbers
are compared, yielding true.

This example demonstrates a deficiency ofGCC on IA32 machines (the same result occurs for both Linux
and Microsoft Windows). The value associated with a variable changes due to operations that are not visible
to the programmer, such as the saving and restoring of floating-point registers. Our experiments with the
Microsoft Visual C++ compiler indicate that it does not have this problem.

There are several ways to overcome this problem, although none are ideal. One is to invokeGCC with the
command line flag ‘-mno-fp-ret-in-387’ indicating that floating-point values should be returned on
the main program stack rather than in a floating-point register. Functiontest1 will then show that both
comparisons are true. This does not solve the problem—it just moves it to a different source of inconsistency.
For example, consider the following variant, where we compute the reciprocalr2 directly rather than calling
recip:

code/asm/fcomp.c

3.14. *FLOATING-POINT CODE 175

1 void test2(int denom)
2 {
3 double r1, r2;
4 int t1, t2;
5

6 r1 = recip(denom); /* Stored in memory */
7 r2 = 1.0/(double) denom; /* Stored in register */
8 t1 = r1 == r2; /* Compares register to memory */
9 do_nothing(); /* Forces register save to memory */

10 t2 = r1 == r2; /* Compares memory to memory */
11 printf("test2 t1: r1 %f %c= r2 %f\n", r1, t1 ? ’=’ : ’!’, r2);
12 printf("test2 t2: r1 %f %c= r2 %f\n", r1, t2 ? ’=’ : ’!’, r2);
13 }

code/asm/fcomp.c

Once again we gett1 equal to 0—the double-precision value in memory computed byrecip is compared
to the extended-precision value computed directly.

A second method is to disable compiler optimization. This causes the compiler to store every intermediate
result on the main program stack, ensuring that all values are converted to double precision. However, this
leads to a significant loss of performance.

Aside: Why should we be concerned about these inconsistencies?
As we will discuss in Chapter 5, one of the fundamental principles of optimizing compilers is that programs should
produce the exact same results whether or not optimization is enabled. UnfortunatelyGCC does not satisfy this
requirement for floating-point code.End Aside.

Finally, we can haveGCC use extended precision in all of its computations by declaring all of the variables
to belong double as shown in the following code:

code/asm/fcomp.c

1 long double recip_l(int denom)
2 {
3 return 1.0/(long double) denom;
4 }
5

6 void test3(int denom)
7 {
8 long double r1, r2;
9 int t1, t2;

10

11 r1 = recip_l(denom); /* Stored in memory */
12 r2 = recip_l(denom); /* Stored in register */
13 t1 = r1 == r2; /* Compares register to memory */
14 do_nothing(); /* Forces register save to memory */
15 t2 = r1 == r2; /* Compares memory to memory */
16 printf("test3 t1: r1 %f %c= r2 %f\n",
17 (double) r1, t1 ? ’=’ : ’!’, (double) r2);

176 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Instruction Effect
load S Push value atSonto stack
storep D Pop top stack element and store atD
neg Negate top stack element
addp Pop top two stack elements; Push their sum
subp Pop top two stack elements; Push their difference
multp Pop top two stack elements; Push their product
divp Pop top two stack elements; Push their ratio

Figure 3.29:Hypothetical Stack Instruction Set. These instructions are used to illustrate stack-based
expression evaluation

18 printf("test3 t2: r1 %f %c= r2 %f\n",
19 (double) r1, t2 ? ’=’ : ’!’, (double) r2);
20 }

code/asm/fcomp.c

The declarationlong double is allowed as part of the ANSI C standard, although for most machines
and compilers this declaration is equivalent to an ordinarydouble. For GCC on IA32 machines, however,
it uses the extended-precision format for memory data as well as for floating point register data. This allows
us to take full advantage of the wider range and greater precision provided by the extended-precision format
while avoiding the anomalies we have seen in our earlier examples. Unfortunately, this solution comes at a
price. GCC uses 12 bytes to store a long double, increasing memory consumption by 50%. (Although 10
bytes would suffice, it rounds this up to 12 to give a better alignment. The same allocation is used on both
Linux and Windows machines). Transfering these longer data between registers and memory takes more
time, too. Still, this is the best option for programs requiring very consistent numerical results.

3.14.3 Stack Evaluation of Expressions

To understand how IA32 uses its floating-point registers as a stack, let us consider a more abstract version
of stack-based evaluation. Assume we have an arithmetic unit that uses a stack to hold intermediate re-
sults, having the instruction set illustrated in Figure 3.29. For example, so-called RPN (for Reverse Polish
Notation) pocket calculators provide this feature. In addition to the stack, this unit has a memory that can
hold values we will refer to by names such asa, b, andx . As Figure 3.29 indicates, we can push memory
values onto this stack with theload instruction. Thestorep operation pops the top element from the
stack and stores the result in memory. A unary operation such asneg (negation) uses the top stack element
as its argument and overwrites this element with the result. Binary operations such asaddp andmultp
use the top two elements of the stack as their arguments. They pop both arguments off the stack and then
push the result back onto the stack. We use the suffix ‘p’ with the store, add, subtract, multiply, and divide
instructions to emphasize the fact that these instructions pop their operands.

As an example, suppose we wish to evaluate the expressionx = (a-b)/(-b+c). We could translate this
expression into the following code. Alongside each line of code, we show the contents of the floating-point

3.14. *FLOATING-POINT CODE 177

register stack. In keeping with our earlier convention, we show the stack as growing downward, so the “top”
of the stack is really at the bottom.

1 load c c %st(0)

2 load b b

c
%st(0)

%st(1)

3 neg �b
c

%st(0)

%st(1)

4 addp �b+ c %st(0)

5 load b b
�b+ c

%st(0)

%st(1)

6 load a a
b

�b+ c

%st(0)

%st(1)

%st(2)

7 subp a� b
�b+ c

%st(0)

%st(1)

8 divp (a+ b)=(�b+ c) %st(0)

9 storep x

As this example shows, there is a natural recursive procedure for converting an arithmetic expression into
stack code. Our expression notation has four types of expressions having the following translation rules:

1. A variable reference of the formVar . This is implemented with the instructionload Var .

2. A unary operation of the form- Expr . This is implemented by first generating the code forExpr

followed by aneg instruction.

3. A binary operation of the formExpr 1 + Expr 2, Expr1 - Expr2,Expr 1 * Expr 2, orExpr 1 / Expr 2.
This is implemented by generating the code forExpr2, followed by the code forExpr1, followed by
anaddp, subp, multp, or divp instruction.

4. An assignment of the formVar = Expr . This is implemented by first generating the code forExpr ,
followed by thestorep Var instruction.

As an example, consider the expressionx = a-b/c. Since division has precedence over subtraction, this
expression can be parenthesized asx = a-(b/c). The recursive procedure would therefore proceed as
follows:

1. Generate code forExpr :
= a-(b/c):

(a) Generate code forExpr 2
:
= b/c:

i. Generate code forExpr 2
:
= c using the instructionload c.

ii. Generate code forExpr 1
:
= b, using the instructionload b.

iii. Generate instructiondivp.

(b) Generate code forExpr 1
:
= a, using the instructionload a.

(c) Generate instructionsubp.

178 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

2. Generate instructionstorep x.

The overall effect is to generate the following stack code:

1 load c c %st(0)

2 load b b

c
%st(0)

%st(1)

3 divp b=c %st(0)

4 load a a
b=c

%st(0)

%st(1)

5 subp a� (b=c) %st(0)

6 storep x

Practice Problem 3.25:

Generate stack code for the expressionx = a*b/c * -(a+b*c) . Diagram the contents of the stack
for each step of your code. Remember to follow the C rules for precedence and associativity.

Stack evaluation becomes more complex when we wish to use the result of some computation multiple
times. For example, consider the expressionx = (a*b)*(-(a*b)+c). For efficiency, we would like to
computea*b only once, but our stack instructions do not provide a way to keep a value on the stack once
it has been used. With the set of instructions listed in Figure 3.29, we would therefore need to store the
intermediate resulta+b in some memory location, sayt , and retrieve this value for each use. This gives the
following code:

1 load c c %st(0)

2 load b b

c
%st(0)

%st(1)

3 load a a
b

c

%st(0)

%st(1)

%st(2)

4 multp a � b
c

%st(0)

%st(1)

5 storep t c %st(0)

6 load t a � b
c

%st(0)

%st(1)

7 neg �(a � b)
c

%st(0)

%st(1)

8 addp �(a � b) + c %st(0)

9 load t a � b
�(a � b) + c

%st(0)

%st(1)

10 multp a � b � (�(a � b) + c) %st(0)

11 storep x

This approach has the disadvantage of generating additional memory traffic, even though the register stack
has sufficient capacity to hold its intermediate results. The IA32 floating-point unit avoids this inefficiency

3.14. *FLOATING-POINT CODE 179

Instruction Source Format Source Location
flds Addr Single Mem4 [Addr]
fldl Addr double Mem8 [Addr]
fldt Addr extended Mem10 [Addr]
fildl Addr integer Mem4 [Addr]

fld %st(i) extended %st(i)

Figure 3.30:Floating-Point Load Instructions. All convert the operand to extended-precision format and
push it onto the register stack.

by introducing variants of the arithmetic instructions that leave their second operand on the stack, and that
can use an arbitrary stack value as their second operand. In addition, it provides an instruction that can
swap the top stack element with any other element. Although these extensions can be used to generate more
efficient code, the simple and elegant algorithm for translating arithmetic expressions into stack code is lost.

3.14.4 Floating-Point Data Movement and Conversion Operations

Floating-point registers are referenced with the notation%st(i), where i denotes the position relative to
the top of the stack. The valuei can range between 0 and 7. Register%st(0) is the top stack element,
%st(1) is the second element, and so on. The top stack element can also be referenced as%st. When a
new value is pushed onto the stack, the value in register%st(7) is lost. When the stack is popped, the new
value in%st(7) is not predictable. Compilers must generate code that works within the limited capacity
of the register stack.

Figure 3.30 shows the set of instructions used to push values onto the floating-point register stack. The first
group of these read from a memory location, where the argumentAddr is a memory address given in one
of the memory operand formats listed in Figure 3.3. These instructions differ by the presumed format of
the source operand and hence the number of bytes that must be read from memory. We use the notation
Memn [Addr] to denote accessing ofn bytes with starting addressAddr . All of these instructions convert
the operand to extended-precision format before pushing it onto the stack. The final load instructionfld is
used to duplicate a stack value. That is, it pushes a copy of floating-point register%st(i) onto the stack.
For example, the instructionfld %st(0) pushes a copy of the top stack element onto the stack.

Figure 3.31 shows the instructions that store the top stack element either in memory or in another floating-
point register. There are both “popping” versions that pop the top element off the stack, similar to the
storep instruction for our hypothetical stack evaluator, as well as nonpopping versions that leave the
source value on the top of the stack. As with the floating-point load instructions, different variants of the
instruction generate different formats for the result and therefore store different numbers of bytes. The first
group of these store the result in memory. The address is specified using any of the memory operand formats
listed in Figure 3.3. The second group copies the top stack element to some other floating-point register.

Practice Problem 3.26:

Assume for the following code fragment that register%eax contains an integer variablex and that the
top two stack elements correspond to variablesa andb, respectively. Fill in the boxes to diagram the

180 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

Instruction Pop (Y/N) Destination Format Destination Location
fsts Addr N Single Mem4 [Addr]
fstps Addr Y Single Mem4 [Addr]
fstl Addr N Double Mem8 [Addr]
fstpl Addr Y Double Mem8 [Addr]
fstt Addr N Extended Mem10 [Addr]
fstpt Addr Y Extended Mem10 [Addr]
fistl Addr N integer Mem4 [Addr]
fistpl Addr Y integer Mem4 [Addr]

fst %st(i) N Extended %st(i)
fstp %st(i) Y Extended %st(i)

Figure 3.31:Floating-Point Store Instructions. All convert from extended-precision format to the desti-
nation format. Instructions with suffix ‘p’ pop the top element off the stack.

stack contents after each instruction

testl %eax,%eax

jne L11 a
b

%st(0)

%st(1)

fstp %st(0) %st(0)

jmp L9

L11:

fstp %st(1) %st(0)

L9:

Write a C expression describing the contents of the top stack element at the end of this code sequence in
terms ofx, a andb.

A final floating-point data movement operation allows the contents of two floating-point registers to be
swapped. The instructionfxch %st(i) exchanges the contents of floating-point registers%st(0) and
%st(i). The notation fxch written with no argument is equivalent tofxch %st(1), that is, swap the
top two stack elements.

3.14. *FLOATING-POINT CODE 181

Instruction Computation
fldz 0
fld1 1

fabs jOpj
fchs �Op
fcos cosOp
fsin sinOp
fsqrt

p
Op

fadd Op1 +Op2
fsub Op1 �Op2
fsubr Op2 �Op1
fdiv Op1=Op2
fdivr Op2=Op1
fmul Op1 �Op2

Figure 3.32:Floating-Point Arithmetic Operations. Each of the binary operations has many variants.

Instruction Operand 1 Operand 2 (Format) Destination Pop%st(0) (Y/N)
fsubs Addr %st(0) Mem4 [Addr] Single %st(0) N
fsubl Addr %st(0) Mem8 [Addr] Double %st(0) N
fsubt Addr %st(0) Mem10 [Addr] Extended %st(0) N
fisubl Addr %st(0) Mem4 [Addr] integer %st(0) N
fsub %st(i),%st %st(i) %st(0) Extended %st(0) N
fsub %st,%st(i) %st(0) %st(i) Extended %st(i) N
fsubp %st,%st(i) %st(0) %st(i) Extended %st(i) Y
fsubp %st(0) %st(1) Extended %st(1) Y

Figure 3.33:Floating-Point Subtraction Instructions. All store their results into a floating-point register
in extended-precision format. Instructions with suffix ‘p’ pop the top element off the stack.

3.14.5 Floating-Point Arithmetic Instructions

Figure 3.32 documents some of the most common floating-point arithmetic operations. Instructions in the
first group have no operands. They push the floating-point representation of some numerical constant onto
the stack. There are similar instructions for such constants as�, e, andlog2 10. Instructions in the second
group have a single operand. The operand is always the top stack element, similar to theneg operation
of the hypothetical stack evaluator. They replace this element with the computed result. Instructions in the
third group have two operands. For each of these instructions, there are many different variants for how the
operands are specified, as will be discussed shortly. For noncommutative operations such as subtraction and
division there is both a forward (e.g.,fsub) and a reverse (e.g.,fsubr) version, so that the arguments can
be used in either order.

In Figure 3.32 we show just a single form of the subtraction operationfsub. In fact, this operation comes in

182 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

many different variants, as shown in Figure 3.33. All compute the difference of two operands:Op1 �Op2
and store the result in some floating-point register. Beyond the simplesubp instruction we considered
for the hypothetical stack evaluator, IA32 has instructions that read their second operand from memory or
from some floating-point register other than%st(1). In addition, there are both popping and nonpopping
variants. The first group of instructions reads the second operand from memory, either in single-precision,
double-precision, or integer format. It then converts this to extended-precision format, subtracts it from
the top stack element, and overwrites the top stack element. These can be seen as a combination of a
floating-point load following by a stack-based subtraction operation.

The second group of subtraction instructions use the top stack element as one argument and some other
stack element as the other, but they vary in the argument ordering, the result destination, and whether
or not they pop the top stack element. Observe that the assembly code linefsubp is shorthand for
fsubp %st,%st(1). This line corresponds to the subp instruction of our hypothetical stack evalua-
tor. That is, it computes the difference between the top two stack elements, storing the result in%st(1),
and then popping%st(0) so that the computed value ends up on the top of the stack.

All of the binary operations listed in Figure 3.32 come in all of the variants listed forfsub in Figure 3.33.

As an example, we can rewrite the code for the expressionx = (a-b)*(-b+c) using the IA32 instruc-
tions. For exposition purposes we will still use symbolic names for memory locations and we assume these
are double-precision values.

1 fldl b b %st(0)

2 fchs �b %st(0)

3 faddl c �b+ c %st(0)

4 fldl a a
�b+ c

%st(0)

%st(1)

5 fsubl b a� b
�b+ c

%st(0)

%st(1)

6 fmulp (a� b)(�b+ c) %st(0)

7 fstpl x

As another example, we can write the code for the expressionx = (a*b)+(-(a*b)+c) as follows.
Observe how the instructionfld %st(0) is used to create two copies ofa*b on the stack, avoiding the
need to save the value in a temporary memory location.

1 fldl a a %st(0)

2 fmul b a � b %st(0)

3 fld %st(0) a � b
a � b

%st(0)

%st(1)

4 fchs �(a � b)
a � b

%st(0)

%st(1)

5 faddl c �(a � b) + c
a � b

%st(0)

%st(1)

6 fmulp (�(a � b) + c) � a � b %st(0)

3.14. *FLOATING-POINT CODE 183

Practice Problem 3.27:

Diagram the stack contents after each step of the following code:

1 fldl b %st(0)

2 fldl a %st(0)

%st(1)

3 fmul %st(1),%st %st(0)

%st(1)

4 fxch %st(0)

%st(1)

5 fdivrl c %st(0)

%st(1)

6 fsubrp %st(0)

7 fstp x

Give an expression describing this computation.

3.14.6 Using Floating Point in Procedures

Floating-point arguments are passed to a calling procedure on the stack, just as are integer arguments. Each
parameter of typefloat requires 4 bytes of stack space, while each parameter of typedouble requires
8. For functions whose return values are of typefloat or double, the result is returned on the top of the
floating-point register stack in extended-precision format.

As an example, consider the following function

1 double funct(double a, float x, double b, int i)
2 {
3 return a*x - b/i;
4 }

Argumentsa, x , b, and i will be at byte offsets 8, 16, 20, and 28 relative to%ebp, respectively, as dia-
grammed below:

Offset 8 16 20 28
Contents a x b i

184 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

The body of the generated code, and the resulting stack values are as follows:

1 fildl 28(%ebp) i %st(0)

2 fdivrl 20(%ebp) b=i %st(0)

3 flds 16(%ebp) x
b=i

%st(0)

%st(1)

4 fmull 8(%ebp) a � x
b=i

%st(0)

%st(1)

5 fsubp %st,%st(1) a � x� b=i %st(0)

Practice Problem 3.28:

For a functionfunct2 with argumentsa, x , b, andi (and a different declaration than that offunct ,
the compiler generates the following code for the function body:

1 movl 8(%ebp),%eax
2 fldl 12(%ebp)
3 flds 20(%ebp)
4 movl %eax,-4(%ebp)
5 fildl -4(%ebp)
6 fxch %st(2)
7 faddp %st,%st(1)
8 fdivrp %st,%st(1)
9 fld1

10 flds 24(%ebp)
11 faddp %st,%st(1)

The returned value is of typedouble . Write C code forfunct2 . Be sure to correctly declare the
argument types.

3.14.7 Testing and Comparing Floating-Point Values

Similar to the integer case, determining the relative values of two floating-point numbers involves using
a comparison instruction to set condition codes and then testing these condition codes. For floating point,
however, the condition codes are part of thefloating-point status word, a 16-bit register that contains various
flags about the floating-point unit. This status word must be transferred to an integer word, and then the
particular bits must be tested.

3.14. *FLOATING-POINT CODE 185

Ordered Unordered Op2 Type Number of Pops
fcoms Addr fucoms Addr Mem4 [Addr] Single 0
fcoml Addr fucoml Addr Mem8 [Addr] Double 0
fcom %st(i) fucom %st(i) %st(i) Extended 0
fcom fucom %st(1) Extended 0
fcomps Addr fucomps Addr Mem4 [Addr] Single 1
fcompl Addr fucompl Addr Mem8 [Addr] Double 1
fcomp %st(i) fucomp %st(i) %st(i) Extended 1
fcomp fucomp %st(1) Extended 1
fcompp fucompp %st(1) Extended 2

Figure 3.34:Floating-Point Comparison Instructions. Ordered vs. unordered comparisons differ in their
treatment ofNaN’s.

Op1 :Op2 Binary Decimal
> [00000000] 0
< [00000001] 1
= [00100000] 64

Unordered [00100101] 69

Figure 3.35:Encoded Results from Floating-Point Comparison. The results are encoded in the high-
order byte of the floating-point status word after masking out all but bits 0, 2, and 6.

There are a number of different floating-point comparison instructions as documented in Figure 3.34. All
of them perform a comparison between operandsOp1 andOp2, whereOp1 is the top stack element. Each
line of the table documents two different comparison types: anorderedcomparison used for comparisons
such as< and�, and anunorderedcomparison used for equality comparisons. The two comparisons differ
only in their treatment ofNaNvalues, since there is no relative ordering betweenNaN’s and other values.
For example, if variablex is aNaNand variabley is some other value, then both expressionsx < y and
x >= y should yield 0.

The various forms of comparison instructions also differ in the location of operandOp2, analogous to the
different forms of floating-point load and floating-point arithmetic instructions. Finally, the various forms
differ in the number of elements popped off the stack after the comparison is completed. Instructions in the
first group shown in the table do not change the stack at all. Even for the case where one of the arguments
is in memory, this value is not on the stack at the end. Operations in the second group pop elementOp1 off
the stack. The final operation pops bothOp1 andOp2 off the stack.

The floating-point status word is transferred to an integer register with thefnstsw instruction. The operand
for this instruction is one of the 16-bit register identifiers shown in Figure 3.2, for example,%ax. The bits in
the status word encoding the comparison results are in bit positions 0, 2, and 6 of the high-order byte of the
status word. For example, if we use instructionfnstw %ax to transfer the status word, then the relevant
bits will be in%ah. A typical code sequence to select these bits is then:

1 fnstsw %ax Store floating point status word in %ax

186 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

2 andb $69,%ah Mask all but bits 0, 2, and 6

Note that6910 has bit representation[00100101], that is, it has 1s in the three relevant bit positions. Figure
3.35 shows the possible values of byte%ahthat would result from this code sequence. Observe that there
are only four possible outcomes for comparing operandsOp1 andOp2: the first is either greater, less, equal,
or incomparable to the second, where the latter outcome only occurs when one of the values is aNaN .

As an example, consider the following procedure:

1 int less(double x, double y)
2 {
3 return x < y;
4 }

The compiled code for the function body is shown below:

1 fldl 16(%ebp) Push y

2 fcompl 8(%ebp) Compare y:x

3 fnstsw %ax Store floating point status word in %ax

4 andb $69,%ah Mask all but bits 0, 2, and 6

5 sete %al Test for comparison outcome of 0 (>)

6 movzbl %al,%eax Copy low order byte to result, and set rest to 0

Practice Problem 3.29:

Show how by inserting a single line of assembly code into the code sequence shown above you can
implement the following function:

1 int greater(double x, double y)
2 {
3 return x > y;
4 }

This completes our coverage of assembly-level, floating-point programming with IA32. Even experienced
programmers find this code arcane and difficult to read. The stack-based operations, the awkwardness of
getting status results from the FPU to the main processor, and the many subtleties of floating-point compu-
tations combine to make the machine code lengthy and obscure. It is remarkable that the modern processors
manufactured by Intel and its competitors can achieve respectable performance on numeric programs given
the form in which they are encoded.

3.15 *Embedding Assembly Code in C Programs

In the early days of computing, most programs were written in assembly code. Even large-scale operating
systems were written without the help of high-level languages. This becomes unmanageable for programs
of significant complexity. Since assembly code does not provide any form of type checking, it is very easy

3.15. *EMBEDDING ASSEMBLY CODE IN C PROGRAMS 187

to make basic mistakes, such as using a pointer as an integer rather than dereferencing the pointer. Even
wors, writing in assembly code locks the entire program into a particular class of machine. Rewriting an
assembly language program to run on a different machine can be as difficult as writing the entire program
from scratch.

Aside: Writing large programs in assembly code.
Frederick Brooks, Jr., a pioneer in computer systems wrote a fascinating account of the development of OS/360, an
early operating system for IBM machines [5] that still provides important object lessons today. He became a devoted
believer in high-level languages for systems programming as a result of this effort. Surprisingly, however, there is
an active group of programmers who take great pleasure in writing assembly code for IA32. The communicate with
one another via the Internet news groupcomp.lang.asm.x86 . Most of them write computer games for the DOS
operating system.End Aside.

Early compilers for higher-level programming languages did not generate very efficient code and did not
provide access to the low-level object representations, as is often required by systems programmers. Pro-
grams requiring maximum performance or requiring access to object representations were still often written
in assembly code. Nowadays, however, optimizing compilers have largely removed performance optimiza-
tion as a reason for writing in assembly code. Code generated by a high quality compiler is generally as
good or even better than what can be achieved manually. The C language has largely eliminated machine
access as a reason for writing in assembly code. The ability to access low-level data representations through
unions and pointer arithmetic, along with the ability to operate on bit-level data representations, provide suf-
ficient access to the machine for most programmers. For example, almost every part of a modern operating
system such as Linux is written in C.

Nonetheless, there are times when writing in assembly code is the only option. This is especially true when
implementing an operating system. For example, there are a number of special registers storing process state
information that the operating system must access. There are either special instructions or special memory
locations for performing input and output operations. Even for application programmers, there are some
machine features, such as the values of the condition codes, that cannot be accessed directly in C.

The challenge then is to integrate code consisting mainly of C with a small amount written in assembly
language. One method is to write a few key functions in assembly code, using the same conventions for
argument passing and register usage as are followed by the C compiler. The assembly functions are kept
in a separate file, and the compiled C code is combined with the assembled assembly code by the linker.
For example, if filep1.c contains C code and filep2.s contains assembly code, then the compilation
command:

unix> gcc -o p p1.c p2.s

will cause filep1.c to be compiled, filep2.s to be assembled, and the resulting object code to be linked
to form an executable programp.

3.15.1 Basic Inline Assembly

With GCC, it is also possible to mix assembly with C code. Inline assembly allows the user to insert assembly
code directly into the code sequence generated by the compiler. Features are provided to specify instruction
operands and to indicate to the compiler which registers are being overwritten by the assembly instructions.

188 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

The resulting code is, of course, highly machine-dependent, since different types of machines do not have
compatible machine instructions. Theasmdirective is also specific toGCC, creating an incompatibility with
many other compilers. Nonetheless, this can be a useful way to keep the amount of machine-dependent code
to an absolute minimum.

Inline assembly is documented as part of theGCCinformation archive. Executing the commandinfo gcc
on any machine withGCCinstalled will give a hierarchical document reader. Inline assembly is documented
by first following the link titled “C Extensions” and then the link titled “Extended Asm.” Unfortunately, the
documentation is somewhat incomplete and imprecise.

The basic form of inline assembly is to write code that looks like a procedure call:

asm(code-string);

wherecode-stringis an assembly code sequence given as a quoted string. The compiler will insert this
string verbatim into the assembly code being generated, and hence the compiler-supplied and the user-
supplied assembly will be combined. The compiler does not check the string for errors, and so the first
indication of a problem might be an error report from the assembler.

We illustrate the use ofasm by an example where having access to the condition codes can be useful.
Consider functions with the following prototypes:

int ok_smul(int x, int y, int *dest);

int ok_umul(unsigned x, unsigned y, unsigned *dest);

Each is supposed to compute the product of argumentsx andy and store the result in the memory location
specified by argumentdest. As return values, they should return 0 when the multiplication overflows and
1 when it does not. We have separate functions for signed and unsigned multiplication, since they overflow
under different circumstances.

Examining the documentation for the IA32 multiply instructionsmul and imul, we see that both set the
carry flagCFwhen they overflow. Examining Figure 3.9, we see that the instructionsetae can be used to
set the low-order byte of a register to 0 when this flag is set and to 1 otherwise. Thus, we wish to insert this
instruction into the sequence generated by the compiler.

In an attempt to use the least amount of both assembly code and detailed analysis, we attempt to implement
ok_smul with the following code:

code/asm/okmul.c

1 /* First attempt. Does not work */
2 int ok_smul1(int x, int y, int *dest)
3 {
4 int result = 0;
5

6 *dest = x*y;
7 asm("setae %al");
8 return result;
9 }

3.15. *EMBEDDING ASSEMBLY CODE IN C PROGRAMS 189

code/asm/okmul.c

The strategy here is to exploit the fact that register%eax is used to store the return value. Assuming the
compiler uses this register for variableresult, the first line will set the register to 0. The inline assembly
will insert code that sets the low-order byte of this register appropriately, and the register will be used as the
return value.

Unfortunately, GCC has its own ideas of code generation. Instead of setting register%eax to 0 at the
beginning of the function, the generated code does so at the very end, and so the function always returns 0.
The fundamental problem is that the compiler has no way to know what the programmer’s intentions are,
and how the assembly statement should interact with the rest of the generated code.

By a process of trial and error (we will develop more systematic approaches shortly), we were able to
generate working, but less than ideal code as follows:

code/asm/okmul.c

1 /* Second attempt. Works in limited contexts */
2 int dummy = 0;
3

4 int ok_smul2(int x, int y, int *dest)
5 {
6 int result;
7

8 *dest = x*y;
9 result = dummy;

10 asm("setae %al");
11 return result;
12 }

code/asm/okmul.c

This code uses the same strategy as before, but it reads a global variabledummyto initialize result to 0.
Compilers are typically more conservative about generating code involving global variables, and therefore
less likely to rearrange the ordering of the computations.

The above code depends on quirks of the compiler to get proper behavior. In fact, it only works when
compiled with optimization enabled (command line flag-O). When compiled without optimization, it stores
result on the stack and retrieves its value just before returning, overwriting the value set by thesetae
instruction. The compiler has no way of knowing how the inserted assembly language relates to the rest of
the code, because we provided the compiler no such information.

3.15.2 Extended Form ofasm

GCC provides an extended version of theasm that allows the programmer to specify which program values
are to be used as operands to an assembly code sequence and which registers are overwritten by the assem-
bly code. With this information the compiler can generate code that will correctly set up the required source
values, execute the assembly instructions, and make use of the computed results. It will also have informa-
tion it requires about register usage so that important program values are not overwritten by the assembly
code instructions.

190 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

The general syntax of an extended assembly sequence is as follows:

asm(code-string[: output-list[: input-list [: overwrite-list]]]);

where the square brackets denote optional arguments. The declaration contains a string describing the
assembly code sequence, followed by optional lists of outputs (i.e., results generated by the assembly code),
inputs (i.e., source values for the assembly code), and registers that are overwritten by the assembly code.
These lists are separated by the colon (‘: ’) character. As the square brackets show, we only include lists up
to the last nonempty list.

The syntax for the code string is reminiscent of that for the format string in aprintf statement. It consists
of a sequence of assembly code instructions separated by the semicolon (‘; ’) character. Input and output
operands are denoted by references%0,%1, and so on, up to possibly%9. Operands are numbered, according
to their ordering first in the output list and then in the input list. Register names such as “%eax” must be
written with an extra ‘%’ symbol, e.g., “%%eax.”

The following is a better implementation ofok_smul using the extended assembly statement to indicate to
the compiler that the assembly code generates the value for variableresult:

code/asm/okmul.c

1 /* Uses the extended assembly statement to get reliable code */
2 int ok_smul3(int x, int y, int *dest)
3 {
4 int result;
5

6 *dest = x*y;
7

8 /* Insert the following assembly code:
9 setae %bl # Set low-order byte

10 movzbl %bl, result # Zero extend to be result
11 */
12 asm("setae %%bl; movzbl %%bl,%0"
13 : "=r" (result) /* Output */
14 : /* No inputs */
15 : "%ebx" /* Overwrites */
16);
17

18 return result;
19 }

code/asm/okmul.c

The first assembly instruction stores the test result in the single-byte register%bl. The second instruction
then zero-extends and copies the value to whatever register the compiler chooses to holdresult, indicated
by operand%0. The output list consists of pairs of values separated by spaces. (In this example there is only
a single pair). The first element of the pair is a string indicating the operand type, where ‘r ’ indicates an
integer register and ‘=’ indicates that the assembly code assigns a value to this operand. The second element
of the pair is the operand enclosed in parentheses. It can be any assignable value (known in C as anlvalue).

3.15. *EMBEDDING ASSEMBLY CODE IN C PROGRAMS 191

The input list has the same general format, while the overwrite list simply gives the names of the registers
(as quoted strings) that are overwritten.

The code shown above works regardless of the compilation flags. As this example illustrates, it may take a
little creative thinking to write assembly code that will allow the operands to be described in the required
form. For example, there are no direct ways to specify a program value to use as the destination operand for
thesetae instruction, since the operand must be a single byte. Instead, we write a code sequence based on
a specific register and then use an extra data movement instruction to copy the resulting value to some part
of the program state.

Practice Problem 3.30:

GCC provides a facility for extended-precision arithmetic. This can be used to implement function
ok_smul , with the advantage that it is portable across machines. A variable declared as type “long long ”
will have twice the size of normallong variable. Thus, the statement:

long long prod = (long long) x * y;

will compute the full 64-bit product ofx andy . Write a version ofok_smul that does not use anyasm
statements.

One would expect the same code sequence could be used forok_umul, but GCC uses theimull (signed
multiply) instruction for both signed and unsigned multiplication. This generates the correct value for
either product, but it sets the carry flag according to the rules for signed multiplication. We therefore need
to include an assembly-code sequence that explicitly performs unsigned multiplication using themull
instruction as documented in Figure 3.8, as follows:

code/asm/okmul.c

1 /* Uses the extended assembly statement */
2 int ok_umul(unsigned x, unsigned y, unsigned *dest)
3 {
4 int result;
5

6 /* Insert the following assembly code:
7 movl x,%eax # Get x
8 mull y # Unsigned multiply by y
9 movl %eax, *dest # Store low-order 4 bytes at dest

10 setae %dl # Set low-order byte
11 movzbl %dl, result # Zero extend to be result
12 */
13 asm("movl %2,%%eax; mull %3; movl %%eax,%0;
14 setae %%dl; movzbl %%dl,%1"
15 : "=r" (*dest), "=r" (result) /* Outputs */
16 : "r" (x), "r" (y) /* Inputs */
17 : "%eax", "%edx" /* Overwrites */
18);
19

20 return result;
21 }

192 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

code/asm/okmul.c

Recall that themull instruction requires one of its arguments to be in register%eaxand is given the second
argument as an operand. We indicate this in theasmstatement by using amovl to move program valuex to
%eaxand indicating that program valuey should be the argument for themull instruction. The instruction
then stores the 8-byte product in two registers with%eax holding the low-order 4 bytes and%edx holding
the high-order bytes. We then use register%edx to construct the return value. As this example illustrates,
comma (‘, ’) characters are used to separate pairs of operands in the input and output lists, and register
names in the overwrite list. Note that we were able to specify*dest as an output of the secondmovl
instruction, since this is an assignable value. The compiler then generates the correct machine code to store
the value in%eaxat this memory location.

Although the syntax of theasm statement is somewhat arcane, and its use makes the code less portable,
this statement can be very useful for writing programs that accesses machine-level features using a minimal
amount of assembly code. We have found that a certain amount of trial and error is required to get code
that works. The best strategy is to compile the code with the-S switch and then examine the generated
assembly code to see if it will have the desired effect. The code should be tested with different settings of
switches such as with and without the-O flag.

3.16 Summary

In this chapter, we have peered beneath the layer of abstraction provided by a high-level language to get a
view of machine-level programming. By having the compiler generate an assembly-code representation of
the machine-level program, we can gain insights into both the compiler and its optimization capabilities,
along with the machine, its data types, and its instruction set. As we will see in Chapter 5, knowing the
characteristics of a compiler can help when trying to write programs that will have efficient mappings onto
the machine. We have also seen examples where the high-level language abstraction hides important details
about the operation of a program. For example, we have seen that the behavior of floating-point code can
depend on whether values are held in registers or in memory. In Chapter 7, we will see many examples
where we need to know whether a program variable is on the runtime stack, in some dynamically-allocated
data structure, or in some global storage locations. Understanding how programs map onto machines makes
it easier to understand the difference between these kinds of storage.

Assembly language is very different from C code. There is minimal distinction between different data types.
The program is expressed as a sequence of instructions, each of which performs a single operation. Parts
of the program state, such as registers and the runtime stack, are directly visible to the programmer. Only
low-level operations are provided to support data manipulation and program control. The compiler must use
multiple instructions to generate and operate on different data structures and to implement control constructs
such as conditionals, loops, and procedures. We have covered many different aspects of C and how it gets
compiled. We have seen the that the lack of bounds checking in C makes many programs prone to buffer
overflows, and that this has made many system vulnerable to attacks.

We have only examined the mapping of C onto IA32, but much of what we have covered is handled in a
similar way for other combinations of language and machine. For example, compiling C++ is very similar to
compiling C. In fact, early implementations of C++ simply performed a source-to-source conversion from

3.16. SUMMARY 193

C++ to C and generated object code by running a C compiler on the result. C++ objects are represented
by structures, similar to a Cstruct. Methods are represented by pointers to the code implementing
the methods. By contrast, Java is implemented in an entirely different fashion. The object code of Java is a
special binary representation known asJava byte code. This code can be viewed as a machine-level program
for avirtual machine. As its name suggests, this machine is not implemented directly in hardware. Instead,
software interpreters process the byte code, simulating the behavior of the virtual machine. The advantage
of this approach is that the same Java byte code can be executed on many different machines, whereas the
machine code we have considered runs only under IA32.

Bibliographic Notes

The best references on IA32 are from Intel. Two useful references are part of their series on software devel-
opment. The basic architecture manual [17] gives an overview of the architecture from the perspective of an
assembly-language programmer, and the instruction set reference manual [18] gives detailed descriptions
of the different instructions. These references contain far more information than is required to understand
Linux code. In particular, with flat mode addressing, all of the complexities of the segmented addressing
scheme can be ignored.

TheGAS format used by the Linux assembler is very different from the standard format used in Intel docu-
mentation and by other compilers (particularly those produced by Microsoft). One main distinction is that
the source and destination operands are given in the opposite order

On a Linux machine, running the commandinfo as will display information about the assembler. One
of the subsections documents machine-specific information, including a comparison ofGAS with the more
standard Intel notation. Note thatGCC refers to these machines as “i386”—it generates code that could
even run on a 1985 vintage machine.

Muchnick’s book on compiler design [52] is considered the most comprehensive reference on code opti-
mization techniques. It covers many of the techniques we discuss here, such as register usage conventions
and the advantages of generating code for loops based on theirdo-while form.

Much has been written about the use of buffer overflow to attack systems over the Internet. Detailed analyses
of the 1988 Internet worm have been published by Spafford [69] as well as by members of the team at MIT
who helped stop its spread [24]. Since then, a number of papers and projects have generated about both
creating and preventing buffer overflow attacks, such as [19].

Homework Problems

Homework Problem 3.31[Category 1]:

You are given the following information. A function with prototype

int decode2(int x, int y, int z);

is compiled into assembly code. The body of the code is as follows:

194 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

1 movl 16(%ebp),%eax
2 movl 12(%ebp),%edx
3 subl %eax,%edx
4 movl %edx,%eax
5 imull 8(%ebp),%edx
6 sall $31,%eax
7 sarl $31,%eax
8 xorl %edx,%eax

Parametersx , y , andz are stored at memory locations with offsets 8, 12, and 16 relative to the address in
register%ebp. The code stores the return value in register%eax.

Write C code fordecode2 that will have an effect equivalent to our assembly code. You can test your
solution by compiling your code with the-S switch. Your compiler may not generate identical code, but it
should be functionally equivalent.

Homework Problem 3.32[Category 2]:

The following C code is almost identical to that in Figure 3.11:

1 int absdiff2(int x, int y)
2 {
3 int result;
4

5 if (x < y)
6 result = y-x;
7 else
8 result = x-y;
9 return result;

10 }

When compiled, however, it gives a different form of assembly code:

1 movl 8(%ebp),%edx
2 movl 12(%ebp),%ecx
3 movl %edx,%eax
4 subl %ecx,%eax
5 cmpl %ecx,%edx
6 jge .L3
7 movl %ecx,%eax
8 subl %edx,%eax
9 .L3:

A. What subtractions are performed whenx < y? Whenx � y?

B. In what way does this code deviate from the standard implementation of if-else described previously?

C. Using C syntax (including goto’s), show the general form of this translation.

D. What restrictions must be imposed on the use of this translation to guarantee that it has the behavior
specified by the C code?

3.16. SUMMARY 195

The jump targets

Arguments p1 and p2 are in registers %ebx and %ecx.

1 .L15: MODE_A

2 movl (%ecx),%edx
3 movl (%ebx),%eax
4 movl %eax,(%ecx)
5 jmp .L14
6 .p2align 4,,7 Inserted to optimize cache performance

7 .L16: MODE_B

8 movl (%ecx),%eax
9 addl (%ebx),%eax

10 movl %eax,(%ebx)
11 movl %eax,%edx
12 jmp .L14
13 .p2align 4,,7 Inserted to optimize cache performance

14 .L17: MODE_C

15 movl $15,(%ebx)
16 movl (%ecx),%edx
17 jmp .L14
18 .p2align 4,,7 Inserted to optimize cache performance

19 .L18: MODE_D

20 movl (%ecx),%eax
21 movl %eax,(%ebx)
22 .L19: MODE_E

23 movl $17,%edx
24 jmp .L14
25 .p2align 4,,7 Inserted to optimize cache performance

26 .L20:
27 movl $-1,%edx
28 .L14: default

29 movl %edx,%eax Set return value

Figure 3.36:Assembly Code for Problem 3.33.This code implements the different branches of aswitch
statement.

Homework Problem 3.33[Category 2]:

The following code shows an example of branching on an enumerated type value in a switch statement.
Recall that enumerated types in C are simply a way to introduce a set of names having associated integer
values. By default, the values assigned to the names go from 0 upward. In our code, the actions associated
with the different case labels have been omitted.

/* Enumerated type creates set of constants numbered 0 and upward */
typedef enum {MODE_A, MODE_B, MODE_C, MODE_D, MODE_E} mode_t;

int switch3(int *p1, int *p2, mode_t action)
{

196 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

int result = 0;
switch(action) {
case MODE_A:

case MODE_B:

case MODE_C:

case MODE_D:

case MODE_E:

default:

}
return result;

}

The part of the generated assembly code implementing the different actions is shown shown in Figure
3.36. The annotations indicate the values stored in the registers and the case labels for the different jump
destinations.

A. What register corresponds to program variableresult?

B. Fill in the missing parts of the C code. Watch out for cases that fall through.

Homework Problem 3.34[Category 2]:

Switch statements are particularly challenging to reverse engineer from the object code. In the following
procedure, the body of the switch statement has been removed.

1 int switch_prob(int x)
2 {
3 int result = x;
4

5 switch(x) {
6

7 /* Fill in code here */
8 }
9

10 return result;
11 }

Figure 3.37 shows the disassembled object code for the procedure. We are only interested in the part of
code shown on lines 4 through 16. We can see on line 4 that parameterx (at offset 8 relative to%ebp) is
loaded into register%eax, corresponding to program variableresult. The “ lea 0x0(%esi),%esi ”

3.16. SUMMARY 197

1 080483c0 <switch_prob>:
2 80483c0: 55 push %ebp
3 80483c1: 89 e5 mov %esp,%ebp
4 80483c3: 8b 45 08 mov 0x8(%ebp),%eax
5 80483c6: 8d 50 ce lea 0xffffffce(%eax),%edx
6 80483c9: 83 fa 05 cmp $0x5,%edx
7 80483cc: 77 1d ja 80483eb <switch_prob+0x2b>
8 80483ce: ff 24 95 68 84 04 08 jmp *0x8048468(,%edx,4)
9 80483d5: c1 e0 02 shl $0x2,%eax

10 80483d8: eb 14 jmp 80483ee <switch_prob+0x2e>
11 80483da: 8d b6 00 00 00 00 lea 0x0(%esi),%esi
12 80483e0: c1 f8 02 sar $0x2,%eax
13 80483e3: eb 09 jmp 80483ee <switch_prob+0x2e>
14 80483e5: 8d 04 40 lea (%eax,%eax,2),%eax
15 80483e8: 0f af c0 imul %eax,%eax
16 80483eb: 83 c0 0a add $0xa,%eax
17 80483ee: 89 ec mov %ebp,%esp
18 80483f0: 5d pop %ebp
19 80483f1: c3 ret
20 80483f2: 89 f6 mov %esi,%esi

Figure 3.37:Disassembled Code for Problem 3.34.

instruction on line 11 is a nop instruction inserted to make the instruction on line 12 start on an address that
is a multiple of 16.

The jump table resides in a different area of memory. Using the debuggerGDB we can examine the six
4-byte words of memory starting at address0x8048468 with the commandx/6w 0x8048468. G DB
prints the following:

(gdb) x/6w 0x8048468
0x8048468: 0x080483d5 0x080483eb 0x080483d5 0x080483e0
0x8048478: 0x080483e5 0x080483e8
(gdb)

Fill in the body of the switch statement with C code that will have the same behavior as the object code.

Homework Problem 3.35[Category 2]:

The code generated by the C compiler forvar_prod_ele (Figure 3.24(b)) is not optimal. Write code for
this function based on a hybrid of proceduresfix_prod_ele_opt (Figure 3.23) andvar_prod_ele_opt
(Figure 3.24) that is correct for all values ofn, but compiles into code that can keep all of its temporary data
in registers.

Recall that the processor only has six registers available to hold temporary data, since registers%ebpand
%espcannot be used for this purpose. One of these registers must be used to hold the result of the multiply
instruction. Hence, you must reduce the number of local variables in the loop from six (result, Aptr, B,
nTjPk, n, andcnt) to five.

Homework Problem 3.36[Category 2]:

198 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

You are charged with maintaining a large C program, and you come across the following code:

code/asm/structprob-ans.c

1 typedef struct {
2 int left;
3 a_struct a[CNT];
4 int right;
5 } b_struct;
6

7 void test(int i, b_struct *bp)
8 {
9 int n = bp->left + bp->right;

10 a_struct *ap = &bp->a[i];
11 ap->x[ap->idx] = n;
12 }

code/asm/structprob-ans.c

Unfortunately, the ‘.h’ file defining the compile-time constantCNTand the structurea_struct are in
files for which you do not have access privileges. Fortunately, you have access to a ‘.o’ version of code,
which you are able to disassemble with theobjdump program, yielding the disassembly shown in Figure
3.38.

Using your reverse engineering skills, deduce the following:

A. The value ofCNT.

B. A complete declaration of structurea_struct. Assume that the only fields in this structure areidx
andx .

Homework Problem 3.37[Category 1]:

Write a functiongood_echo that reads a line from standard input and writes it to standard output. Your
implementation should work for an input line of arbitrary length. You may use the library functionfgets,
but you must make sure your function works correctly even when the input line requires more space than
you have allocated for your buffer. Your code should also check for error conditions and return when one is
encounted. You should refer to the definitions of the standard I/O functions for documentation [30, 37].

Homework Problem 3.38[Category 3]:

In this problem, you will mount a buffer overflow attack on your own program. As stated earlier, we do not
condone using this or any other form of attack to gain unauthorized access to a system, but by doing this
exercise, you will learn a lot about machine-level programming.

Download the filebufbomb.c from the CS:APP website and compile it to create an executable program.
In bufbomb.c, you will find the following functions:

1 int getbuf()

3.16. SUMMARY 199

2 {
3 char buf[12];
4 getxs(buf);
5 return 1;
6 }
7

8 void test()
9 {

10 int val;
11 printf("Type Hex string:");
12 val = getbuf();
13 printf("getbuf returned 0x%x\n", val);
14 }

The functiongetxs (also inbufbomb.c) is similar to the library gets, except that it reads characters
encoded as pairs of hex digits. For example, to give it a string “0123,” the user would type in the string
“30 31 32 33.” The function ignores blank characters. Recall that decimal digitx has ASCII represen-
tation0x3 x.

A typical execution of the program is as follows:

unix> ./bufbomb
Type Hex string: 30 31 32 33
getbuf returned 0x1

Looking at the code for thegetbuf function, it seems quite apparent that it will return value1 whenever it
is called. It appears as if the call togetxs has no effect. Your task is to makegetbuf return�559038737
(0xdeadbeef) to test, simply by typing an appropriate hexadecimal string to the prompt.

Here are some ideas that will help you solve the problem:

� UseOBJDUMP to create a disassembled version ofbufbomb. Study this closely to determine how
the stack frame forgetbuf is organized and how overflowing the buffer will alter the saved program
state.

� Run your program underGDB. Set a breakpoint withingetbuf and run to this breakpoint. Determine
such parameters as the value of%ebpand the saved value of any state that will be overwritten when
you overflow the buffer.

� Determining the byte encoding of instruction sequences by hand is tedious and prone to errors. You
can let tools do all of the work by writing an assembly code file containing the instructions and data
you want to put on the stack. Assemble this file withGCC and disassemble it withOBJDUMP. You
should be able to get the exact byte sequence that you will type at the prompt. OBJDUMPwill produce
some pretty strange looking assembly instructions when it tries to disassemble the data in your file,
but the hexadecimal byte sequence should be correct.

Keep in mind that your attack is very machine and compiler specific. You may need to alter your string
when running on a different machine or with a different version ofGCC.

200 CHAPTER 3. MACHINE-LEVEL REPRESENTATION OF C PROGRAMS

1 00000000 <test>:
2 0: 55 push %ebp
3 1: 89 e5 mov %esp,%ebp
4 3: 53 push %ebx
5 4: 8b 45 08 mov 0x8(%ebp),%eax
6 7: 8b 4d 0c mov 0xc(%ebp),%ecx
7 a: 8d 04 80 lea (%eax,%eax,4),%eax
8 d: 8d 44 81 04 lea 0x4(%ecx,%eax,4),%eax
9 11: 8b 10 mov (%eax),%edx

10 13: c1 e2 02 shl $0x2,%edx
11 16: 8b 99 b8 00 00 00 mov 0xb8(%ecx),%ebx
12 1c: 03 19 add (%ecx),%ebx
13 1e: 89 5c 02 04 mov %ebx,0x4(%edx,%eax,1)
14 22: 5b pop %ebx
15 23: 89 ec mov %ebp,%esp
16 25: 5d pop %ebp
17 26: c3 ret

Figure 3.38:Disassembled Code For Problem 3.36.

Homework Problem 3.39[Category 2]:

Use theasm statement to implement a function with the following prototype:

void full_umul(unsigned x, unsigned y, unsigned dest[]);

This function should compute the full 64-bit product of its arguments and store the results in the destination
array, withdest[0] having the low-order 4 bytes anddest[1] having the high-order 4 bytes.

Homework Problem 3.40[Category 2]:

The fscale instruction computes the functionx � 2RTZ (y) for floating-point valuesx andy, whereRTZ
denotes the round-toward-zero function, rounding positive numbers downward and negative numbers up-
ward. The arguments tofscale come from the floating-point register stack, withx in %st(0) andy in
%st(1). It writes the computed value written%st(0) without popping the second argument. (The actual
implementation of this instruction works by addingRTZ (y) to the exponent ofx).

Using anasm statement, implement a function with the following prototype

double scale(double x, int n, double *dest);

that computesx �2n using thefscale instruction and stores the result at the location designated by pointer
dest.

Hint: Extendedasmdoes not provide very good support for IA32 floating point. In this case, however, you
can access the arguments from the program stack.

Chapter 4

Processor Architecture

To appear in the final version of the manuscript.

201

202 CHAPTER 4. PROCESSOR ARCHITECTURE

Chapter 5

Optimizing Program Performance

Writing an efficient program requires two types of activities. First, we must select the best set of algorithms
and data structures. Second, we must write source code that the compiler can effectively optimize to turn into
efficient executable code. For this second part, it is important to understand the capabilities and limitations of
optimizing compilers. Seemingly minor changes in how a program is written can make large differences in
how well a compiler can optimize it. Some programming languages are more easily optimized than others.
Some features of C, such as the ability to perform pointer arithmetic and casting, make it challenging to
optimize. Programmers can often write their programs in ways that make it easier for compilers to generate
efficient code.

In approaching the issue of program development and optimization, we must consider how the code will
be used and what critical factors affect it. In general, programmers must make a trade-off between how
easy a program is to implement and maintain, and how fast it will run. At an algorithmic level, a simple
insertion sort can be programmed in a matter of minutes, whereas a highly efficient sort routine may take a
day or more to implement and optimize. At the coding level, many low-level optimizations tend to reduce
code readability and modularity. This makes the programs more susceptible to bugs and more difficult to
modify or extend. For a program that will just be run once to generate a set of data points, it is more
important to write it in a way that minimizes programming effort and ensures correctness. For code that
will be executed repeatedly in a performance-critical environment, such as in a network router, much more
extensive optimization may be appropriate.

In this chapter, we describe a number of techniques for improving code performance. Ideally, a compiler
would be able to take whatever code we write and generate the most efficient possible machine-level pro-
gram having the specified behavior. In reality, compilers can only perform limited transformations of the
program, and they can be thwarted byoptimization blockers—aspects of the program whose behavior de-
pends strongly on the execution environment. Programmers must assist the compiler by writing code that
can be optimized readily. In the compiler literature, optimization techniques are classified as either “ma-
chine independent,” meaning that they should be applied regardless of the characteristics of the computer
that will execute the code, or as “machine dependent,” meaning they depend on many low-level details of
the machine. We organize our presentation along similar lines, starting with program transformations that
should be standard practice when writing any program. We then progress to transformations whose efficacy
depends on the characteristics of the target machine and compiler. These transformations also tend to reduce

203

204 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

the modularity and readability of the code and hence should be applied when maximum performance is the
dominant concern.

To maximize the performance of a program, both the programmer and the compiler need to have a model of
the target machine, specifying how instructions are processed and the timing characteristics of the different
operations. For example, the compiler must know timing information to be able to decide whether it is
should use a multiply instruction or some combinations of shifts and adds. Modern computers use sophisti-
cated techniques to process a machine-level program, executing many instructions in parallel and possibly
in a different order than they appear in the program. Programmers must understand how these processors
work to be able to tune their programs for maximum speed. We present a high-level model of such a ma-
chine based on some recent models of Intel processors. We devise a graphical notation that can be used to
visualize the execution of instructions on the processor and to predict program performance.

We conclude by discussing issues related to optimizing large programs. We describe the use of code
profilers—tools that measure the performance of different parts of a program. This analysis can help find
inefficiencies in the code and identify the parts of the program on which we should focus our optimization
efforts. Finally, we present an important observation, known asAmdahl’s Lawquantifying the overall effect
of optimizing some portion of a system.

In this presentation, we make code optimization look like a simple, linear process of applying a series
of transformations to the code in a particular order. In fact, the task is not nearly so straightforward. A
fair amount of trial-and-error experimentation is required. This is especially true as we approach the later
optimization stages, where seemingly small changes can cause major changes in performance, while some
very promising techniques prove ineffective. As we will see in the examples, it can be difficult to explain
exactly why a particular code sequence has a particular execution time. Performance can depend on many
detailed features of the processor design for which we have relatively little documentation or understanding.
This is another reason to try a number of different variations and combinations of techniques.

Studying the assembly code is one of the most effective means of gaining some understanding of the com-
piler and how the generated code will run. A good strategy is to start by looking carefully at the code for
the inner loops. One can identify performance-reducing attributes such as excessive memory references
and poor use of registers. Starting with the assembly code, we can even predict what operations will be
performed in parallel and how well they will use the processor resources.

5.1 Capabilities and Limitations of Optimizing Compilers

Modern compilers employ sophisticated algorithms to determine what values are computed in a program and
how they are used. They can then exploit opportunities to simplify expressions, to use a single computation
in several different places, and to reduce the number of times a given computation must be performed.
Unfortunately, optimizing compilers have limitations, due to constraints imposed on their behavior, to the
limited understanding they have of the program’s behavior and how it will be used, and to the requirement
that they perform the compilation quickly.

Compiler optimization is supposed to be invisible to the user. When a programmer compiles code with
optimization enabled (e.g., using the-O command line option), the code should have identical behavior
as when compiled otherwise, except that it should run faster. This requirement restricts the ability of the

5.1. CAPABILITIES AND LIMITATIONS OF OPTIMIZING COMPILERS 205

compiler to perform some types of optimizations.

Consider, for example, the following two procedures:

1 void twiddle1(int *xp, int *yp)
2 {
3 *xp += *yp;
4 *xp += *yp;
5 }
6

7 void twiddle2(int *xp, int *yp)
8 {
9 *xp += 2* *yp;

10 }

At first glance, both procedures seem to have identical behavior. They both add twice the value stored at the
location designated by pointeryp to that designated by pointerxp. On the other hand, functiontwiddle2
is more efficient. It requires only three memory references (read*xp, read *yp, write *xp), whereas
twiddle1 requires six (two reads of*xp, two reads of*yp, and two writes of*xp). Hence, if a compiler
is given proceduretwiddle1 to compile, one might think it could generate more efficient code based on
the computations performed bytwiddle2.

Consider however, the case wherexp andyp are equal. Then functiontwiddle1 will perform the fol-
lowing computations:

3 *xp += *xp; /* Double value at xp */
4 *xp += *xp; /* Double value at xp */

The result will be that the value atxp will be increased by a factor of 4. On the other hand, function
twiddle2 will perform the following computation:

9 *xp += 2* *xp; /* Triple value at xp */

The result will be that the value atxp will be increased by a factor of 3. The compiler knows nothing about
how twiddle1 will be called, and so it must assume that argumentsxp andyp can be equal. Therefore it
cannot generate code in the style oftwiddle2 as an optimized version oftwiddle1.

This phenomenon is known asmemory aliasing. The compiler must assume that different pointers may des-
ignate a single place in memory. This leads to one of the majoroptimization blockers, aspects of programs
that can severely limit the opportunities for a compiler to generate optimized code.

Practice Problem 5.1:

The following problem illustrates the way memory aliasing can cause unexpected program behavior.
Consider the following procedure to swap two values:

1 /* Swap value x at xp with value y at yp */

206 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

2 void swap(int *xp, int *yp)
3 {
4 *xp = *xp + *yp; /* x+y */
5 *yp = *xp - *yp; /* x+y-y = x */
6 *xp = *xp - *yp; /* x+y-x = y */
7 }

If this procedure is called withxp equal toyp , what effect will it have?

A second optimization blocker is due to function calls. As an example, consider the following two proce-
dures:

1 int f(int);
2

3 int func1(x)
4 {
5 return f(x) + f(x) + f(x) + f(x);
6 }
7

8 int func2(x)
9 {

10 return 4*f(x);
11 }

It might seem at first that both compute the same result, but withfunc2 calling f only once, whereas
func1 calls it four times. It is tempting to generate code in the style offunc2 when givenfunc1 as
source.

Consider, however, the following code forf

1 int counter = 0;
2

3 int f(int x)
4 {
5 return counter++;
6 }
7

This function has aside effect—it modifies some part of the global program state. Changing the number of
times it gets called changes the program behavior. In particular, a call tofunc1 would return0+1+2+3 =
6, whereas a call tofunc2 would return4 � 0 = 0, assuming both started with global variablecounter
set to 0.

Most compilers do not try to determine whether a function is free of side effects and hence is a candidate for
optimizations such as those attempted infunc2. Instead, the compiler assumes the worst case and leaves
all function calls intact.

5.2. EXPRESSING PROGRAM PERFORMANCE 207

Among compilers, the GNU compilerGCC is considered adequate, but not exceptional, in terms of its
optimization capabilities. It performs basic optimizations but does not perform the radical transformations
on programs that more “aggressive” compilers do. As a consequence, programmers usingGCC must put
more effort into writing programs in a way that simplifies the compiler’s task of generating efficient code.

5.2 Expressing Program Performance

We need a way to express program performance that can guide us in improving the code. A useful measure
for many programs isCycles Per Element(CPE). This measure helps us understand the loop performance of
an iterative program at a detailed level. Such a measure is appropriate for programs that perform a repetitive
computation, such as processing the pixels in an image or computing the elements in a matrix product.

The sequencing of activities by a processor is controlled by a clock providing a regular signal of some
frequency, expressed in eitherMegahertz(Mhz), i.e., millions of cycles per second, orGigahertz(GHz), i.e.,
billions of cycles per second. For example, when product literature characterizes a system as a “1.4 GHz”
processor, it means that the processor clock runs at 1,400 Megahertz. The time required for each clock
cycle is given by the reciprocal of the clock frequency. These are typically expressed innanoseconds, i.e.,
billionths of a second. A 2 GHz clock has a 0.5-nanosecond period, while a 500 Mhz clock has a period of
2 nanoseconds. From a programmer’s perspective, it is more instructive to express measurements in clock
cycles rather than nanoseconds. That way, the measurements are less dependent on the particular model of
processor being evaluated, and they help us understand exactly how the program is being executed by the
machine.

Many procedures contain a loop that iterates over a set of elements. For example, functionsvsum1 and
vsum2 in Figure 5.1 both compute the sum of two vectors of lengthn. The first computes one element of
the destination vector per iteration. The second uses a technique known asloop unrolling to compute two
elements per iteration. This version will only work properly for even values ofn. Later in this chapter we
cover loop unrolling in more detail, including how to make it work for arbitrary values ofn.

The time required by such a procedure can be characterized as a constant plus a factor proportional to the
number of elements processed. For example, Figure 5.2 shows a plot of the number of clock cycles required
by the two functions for a range of values ofn. Using aleast squares fit, we find that the two function run
times (in clock cycles) can be approximated by lines with equations80+4:0n and83:5+3:5n, respectively.
These equations indicated an overhead of 80 to 84 cycles to initiate the procedure, set up the loop, and
complete the procedure, plus a linear factor of 3.5 or 4.0 cycles per element. For large values ofn (say
greater than 50), the run times will be dominated by the linear factors. We refer to the coefficients in these
terms as the effective number ofCycles per Element, abbreviated “CPE.” Note that we prefer measuring
the number of cycles perelementrather than the number of cycles periteration, because techniques such as
loop unrolling allow us to use fewer iterations to complete the computation, but our ultimate concern is how
fast the procedure will run for a given vector length. We focus our efforts on minimizing the CPE for our
computations. By this measure,vsum2, with a CPE of 3.50, is superior tovsum1, with a CPE of 4.0.

Aside: What is a least squares fit?
For a set of data points(x1; y1); : : : (xn; yn), we often try to draw a line that best approximates the X-Y trend
represented by this data. With a least squares fit, we look for a line of the formy = mx + b that minimizes the

208 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

code/opt/vsum.c

1 void vsum1(int n)
2 {
3 int i;
4

5 for (i = 0; i < n; i++)
6 c[i] = a[i] + b[i];
7 }
8

9 /* Sum vector of n elements (n must be even) */
10 void vsum2(int n)
11 {
12 int i;
13

14 for (i = 0; i < n; i+=2) {
15 /* Compute two elements per iteration */
16 c[i] = a[i] + b[i];
17 c[i+1] = a[i+1] + b[i+1];
18 }
19 }

code/opt/vsum.c

Figure 5.1:Vector Sum Functions.These provide examples for how we express program performance.

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200

Elements

C
yc

le
s

vsum1

Slope = 4.0

 vsum2
Slope = 3.5

Figure 5.2:Performance of Vector Sum Functions.The slope of the lines indicates the number of clock
cycles per element (CPE).

5.3. PROGRAM EXAMPLE 209

length

data • • •

0 1 2 length�1

Figure 5.3: Vector Abstract Data Type. A vector is represented by header information plus array of
designated length.

following error measure:

E(m; b) =
X
i=1;n

(mxi + b� yi)
2
:

An algorithm for computingm andb can be derived by finding the derivatives ofE(m; b) with respect tom andb
and setting them to 0.End Aside.

5.3 Program Example

To demonstrate how an abstract program can be systematically transformed into more efficient code, con-
sider the simple vector data structure, shown in Figure 5.3. A vector is represented with two blocks of
memory. The header is a structure declared as follows:

code/opt/vec.h

1 /* Create abstract data type for vector */
2 typedef struct {
3 int len;
4 data_t *data;
5 } vec_rec, *vec_ptr;

code/opt/vec.h

The declaration uses data typedata t to designate the data type of the underlying elements. In our eval-
uation, we measure the performance of our code for data typesint, float, and double. We do this by
compiling and running the program separately for different type declarations, for example:

typedef int data_t;

In addition to the header, we allocate an array oflen objects of typedata t to hold the actual vector
elements.

Figure 5.4 shows some basic procedures for generating vectors, accessing vector elements, and determining
the length of a vector. An important feature to note is thatget_vec_element, the vector access routine,
performs bounds checking for every vector reference. This code is similar to the array representations used
in many other languages, including Java. Bounds checking reduces the chances of program error, but, as we
will see, significantly affects program performance.

As an optimization example, consider the code shown in Figure 5.5, which combines all of the elements
in a vector into a single value according to some operation. By using different definitions of compile-time
constantsIDENT andOPER, the code can be recompiled to perform different operations on the data.

In particular, using the declarations

210 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

code/opt/vec.c

1 /* Create vector of specified length */
2 vec_ptr new_vec(int len)
3 {
4 /* allocate header structure */
5 vec_ptr result = (vec_ptr) malloc(sizeof(vec_rec));
6 if (!result)
7 return NULL; /* Couldn’t allocate storage */
8 result->len = len;
9 /* Allocate array */

10 if (len > 0) {
11 data_t *data = (data_t *)calloc(len, sizeof(data_t));
12 if (!data) {
13 free((void *) result);
14 return NULL; /* Couldn’t allocate storage */
15 }
16 result->data = data;
17 }
18 else
19 result->data = NULL;
20 return result;
21 }
22

23 /*
24 * Retrieve vector element and store at dest.
25 * Return 0 (out of bounds) or 1 (successful)
26 */
27 int get_vec_element(vec_ptr v, int index, data_t *dest)
28 {
29 if (index < 0 || index >= v->len)
30 return 0;
31 *dest = v->data[index];
32 return 1;
33 }
34

35 /* Return length of vector */
36 int vec_length(vec_ptr v)
37 {
38 return v->len;
39 }

code/opt/vec.c

Figure 5.4:Implementation of Vector Abstract Data Type. In the actual program, data typedata t is
declared to beint, float, or double
.

5.3. PROGRAM EXAMPLE 211

code/opt/combine.c

1 /* Implementation with maximum use of data abstraction */
2 void combine1(vec_ptr v, data_t *dest)
3 {
4 int i;
5

6 *dest = IDENT;
7 for (i = 0; i < vec_length(v); i++) {
8 data_t val;
9 get_vec_element(v, i, &val);

10 *dest = *dest OPER val;
11 }
12 }

code/opt/combine.c

Figure 5.5: Initial Implementation of Combining Operation. Using different declarations of identity
elementIDENT and combining operationOPER, we can measure the routine for different operations.

#define IDENT 0
#define OPER +

we sum the elements of the vector. Using the declarations:

#define IDENT 1
#define OPER *

we compute the product of the vector elements.

As a starting point, here are the CPE measurements forcombine1 running on an Intel Pentium III, trying
all combinations of data type and combining operation. In our measurements, we found that the timings
were generally equal for single and double-precision floating point data. We therefore show only the mea-
surements for single precision.

Function Page Method Integer Floating Point
+ * + *

combine1 211 Abstract unoptimized 42.06 41.86 41.44 160.00
combine1 211 Abstract-O2 31.25 33.25 31.25 143.00

By default, the compiler generates code suitable for stepping with a symbolic debugger. Very little optimiza-
tion is performed since the intention is to make the object code closely match the computations indicated
in the source code. By simply setting the command line switch to ‘-O2’ we enable optimizations. As can
be seen, this significantly improves the program performance. In general, it is good to get into the habit of
enabling this level of optimization, unless the program is being compiled with the intention of debugging it.
For the remainder of our measurements we enable this level of compiler optimization.

212 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

code/opt/combine.c

1 /* Move call to vec_length out of loop */
2 void combine2(vec_ptr v, data_t *dest)
3 {
4 int i;
5 int length = vec_length(v);
6

7 *dest = IDENT;
8 for (i = 0; i < length; i++) {
9 data_t val;

10 get_vec_element(v, i, &val);
11 *dest = *dest OPER val;
12 }
13 }

code/opt/combine.c

Figure 5.6:Improving the Efficiency of the Loop Test. By moving the call tovec length out of the
loop test, we eliminate the need to execute it on every iteration.

Note also that the times are fairly comparable for the different data types and the different operations, with
the exception of floating-point multiplication. These very high cycle counts for multiplication are due to
an anomaly in our benchmark data. Identifying such anomalies is an important component of performance
analysis and optimization. We return to this issue in Section 5.11.1.

We will see that we can improve on this performance considerably.

5.4 Eliminating Loop Inefficiencies

Observe that procedurecombine1, as shown in Figure 5.5, calls functionvec_length as the test condi-
tion of thefor loop. Recall from our discussion of loops that the test condition must be evaluated on every
iteration of the loop. On the other hand, the length of the vector does not change as the loop proceeds. We
could therefore compute the vector length only once and use this value in our test condition.

Figure 5.6 shows a modified version, calledcombine2, that calls vec length at the beginning and
assigns the result to a local variablelength. This local variable is then used in the test condition of the for
loop. Surprisingly, this small change has a significant effect on program performance.

Function Page Method Integer Floating Point
+ * + *

combine1 211 Abstract-O2 31.25 33.25 31.25 143.00
combine2 212 Move vec length 22.61 21.25 21.15 135.00

As the table above shows, we eliminate around 10 clock cycles for each vector element with this simple
transformation.

5.4. ELIMINATING LOOP INEFFICIENCIES 213

This optimization is an instance of a general class of optimizations known ascode motion. They involve
identifying a computation that is performed multiple times, (e.g., within a loop), but such that the result of
the computation will not change. We can therefore move the computation to an earlier section of the code
that does not get evaluated as often. In this case, we moved the call tovec length from within the loop
to just before the loop.

Optimizing compilers attempt to perform code motion. Unfortunately, as discussed previously, they are
typically very cautious about making transformations that change where or how many times a procedure is
called. They cannot reliably detect whether or not a function will have side effects, and so they assume that
it might. For example, ifvec length had some side effect, thencombine1 andcombine2 could have
different behaviors. In cases such as these, the programmer must help the compiler by explicitly performing
the code motion.

As an extreme example of the loop inefficiency seen incombine1, consider the procedurelower1 shown
in Figure 5.7. This procedure is styled after routines submitted by several students as part of a network
programming project. Its purpose is to convert all of the upper-case letters in a string to lower case. The
procedure steps through the string, converting each upper-case character to lower case.

The library procedurestrlen is called as part of the loop test oflower1. A simple version of strlen
is also shown in Figure 5.7. Since strings in C are null-terminated character sequences,strlen must step
through the sequence until it hits a null character. For a string of lengthn, strlen takes time proportional
to n. Sincestrlen is called on each of then iterations oflower1, the overall run time of lower1 is
quadratic in the string length.

This analysis is confirmed by actual measurements of the procedure for different length strings, as shown
Figure 5.8. The graph of the run time forlower1 rises steeply as the string length increases. The lower part
of the figure shows the run times for eight different lengths (not the same as shown in the graph), each of
which is a power of two. Observe that forlower1 each doubling of the string length causes a quadrupling
of the run time. This is a clear indicator of quadratic complexity. For a string of length 262,144,lower1
requires a full 3.1 minutes of CPU time.

Functionlower2 shown in Figure 5.7 is identical to that oflower1, except that we have moved the call
to strlen out of the loop. The performance improves dramatically. For a string length of 262,144, the
function requires just 0.006 seconds—over 30,000 times faster thanlower1. Each doubling of the string
length causes a doubling of the run time—a clear indicator of linear complexity. For longer strings, the run
time improvement will be even greater.

In an ideal world, a compiler would recognize that each call tostrlen in the loop test will return the same
result, and hence the call could be moved out of the loop. This would require a very sophisticated analysis,
sincestrlen checks the elements of the string and these values are changing aslower1 proceeds. The
compiler would need to detect that even though the characters within the string are changing, none are being
set from nonzero to zero, or vice-versa. Such an analysis is well beyond that attempted by even the most
aggressive compilers. Programmers must do such transformations themselves.

This example illustrates a common problem in writing programs, in which a seemingly trivial piece of code
has a hidden asymptotic inefficiency. One would not expect a lower-case conversion routine to be a limiting
factor in a program’s performance. Typically, programs are tested and analyzed on small data sets, for
which the performance oflower1 is adequate. When the program is ultimately deployed, however, it is

214 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

code/opt/lower.c

1 /* Convert string to lower case: slow */
2 void lower1(char *s)
3 {
4 int i;
5

6 for (i = 0; i < strlen(s); i++)
7 if (s[i] >= ’A’ && s[i] <= ’Z’)
8 s[i] -= (’A’ - ’a’);
9 }

10

11 /* Convert string to lower case: faster */
12 void lower2(char *s)
13 {
14 int i;
15 int len = strlen(s);
16

17 for (i = 0; i < len; i++)
18 if (s[i] >= ’A’ && s[i] <= ’Z’)
19 s[i] -= (’A’ - ’a’);
20 }
21

22 /* Implementation of library function strlen */
23 /* Compute length of string */
24 size_t strlen(const char *s)
25 {
26 int length = 0;
27 while (*s != ’\0’) {
28 s++;
29 length++;
30 }
31 return length;
32 }

code/opt/lower.c

Figure 5.7:Lower-Case Conversion Routines.The two procedures have radically different performance.

5.4. ELIMINATING LOOP INEFFICIENCIES 215

0

50

100

150

200

250

0 50000 100000 150000 200000 250000

String Length

C
P

U
 S

ec
o

n
d

s

lower1

lower2

Function String Length
8,192 16,384 32,768 65,536 131,072 262,144

lower1 0.15 0.62 3.19 12.75 51.01 186.71
lower2 0.0002 0.0004 0.0008 0.0016 0.0031 0.0060

Figure 5.8:Comparative Performance of Lower-Case Conversion Routines.The original codelower1
has quadratic asymptotic complexity due to an inefficient loop structure. The modified codelower2 has
linear complexity.

216 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

entirely possible that the procedure could be applied to a string of one million characters, for whichlower1
would over require nearly one hour of CPU time. All of a sudden this benign piece of code has become
a major performance bottleneck. By contrast,lower2 would complete in well under one second. Stories
abound of major programming projects in which problems of this sort occur. Part of the job of a competent
programmer is to avoid ever introducing such asymptotic inefficiency.

Practice Problem 5.2:

Consider the following functions:

int min(int x, int y) { return x < y ? x : y; }
int max(int x, int y) { return x < y ? y : x; }
void incr(int *xp, int v) { *xp += v; }
int square(int x) { return x*x; }

Here are three code fragments that call these functions

A. for (i = min(x, y); i < max(x, y); incr(&i, 1))
t += square(i);

B. for (i = max(x, y) - 1; i >= min(x, y); incr(&i, -1))
t += square(i);

C. int low = min(x, y);
int high = max(x, y);

for (i = low; i < high; incr(&i, 1))
t += square(i);

Assumex equals 10 andy equals 100. Fill in the table below indicating the number of times each of the
four functions is called for each of these code fragments.

Code min max incr square
A.
B.
C.

5.5 Reducing Procedure Calls

As we have seen, procedure calls incur substantial overhead and block most forms of program optimiza-
tion. We can see in the code forcombine2 (Figure 5.6) thatget vec element is called on every loop
iteration to retrieve the next vector element. This procedure is especially costly since it performs bounds
checking. Bounds checking might be a useful feature when dealing with arbitrary array accesses, but a
simple analysis of the code forcombine2 shows that all references will be valid.

Suppose instead that we add a functionget vec start to our abstract data type. This function returns
the starting address of the data array, as shown in Figure 5.9. We could then write the procedure shown as
combine3 in this figure, having no function calls in the inner loop. Rather than making a function call

5.5. REDUCING PROCEDURE CALLS 217

code/opt/vec.c

1 data_t *get_vec_start(vec_ptr v)
2 {
3 return v->data;
4 }

code/opt/vec.c

code/opt/combine.c

1 /* Direct access to vector data */
2 void combine3(vec_ptr v, data_t *dest)
3 {
4 int i;
5 int length = vec_length(v);
6 data_t *data = get_vec_start(v);
7

8 *dest = IDENT;
9 for (i = 0; i < length; i++) {

10 *dest = *dest OPER data[i];
11 }
12 }

code/opt/combine.c

Figure 5.9:Eliminating Function Calls within the Loop. The resulting code runs much faster, at some
cost in program modularity.

218 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

to retrieve each vector element, it accesses the array directly. A purist might say that this transformation
seriously impairs the program modularity. In principle, the user of the vector abstract data type should not
even need to know that the vector contents are stored as an array, rather than as some other data structure
such as a linked list. A more pragmatic programmer would argue the advantage of this transformation based
on the following experimental results:

Function Page Method Integer Floating Point
+ * + *

combine2 212 Move vec length 20.66 21.25 21.15 135.00
combine3 217 Direct data access 6.00 9.00 8.00 117.00

There is a improvement of up to a factor of 3.5X. For applications where performance is a significant issue,
one must often compromise modularity and abstraction for speed. It is wise to include documentation on
the transformations applied, and the assumptions that led to them, in case the code needs to be modified
later.

Aside: Expressing relative performance.
The best way to express a performance improvement is as a ratio of the formTold=Tnew , whereTold is the time
required for the original version andTnew is the time required by the modified version. This will be a number greater
than 1.0 if any real improvement occurred. We use the suffix ‘X’ to indicate such a ratio, where the factor “3.5X” is
expressed verbally as “3.5 times.”

The more traditional way of expressing relative change as a percentage works well when the change is small, but its
definition is ambiguous. Should it be100 � (Told �Tnew)=Tnew or possibly100 � (Told �Tnew)=Told , or something
else? In addition, it is less instructive for large changes. Saying that “performance improved by 250%” is more
difficult to comprehend than simply saying that the performance improved by a factor of 3.5.End Aside.

5.6 Eliminating Unneeded Memory References

The code forcombine3 accumulates the value being computed by the combining operation at the location
designated by pointerdest. This attribute can be seen by examining the assembly code generated for the
compiled loop, with integers as the data type and multiplication as the combining operation. In this code,
register%ecx points todata, %edxcontains the value ofi , and%edi points todest.

combine3: type=INT, OPER = *

dest in %edi, data in %ecx, i in %edx, length in %esi

1 .L18: loop:

2 movl (%edi),%eax Read *dest

3 imull (%ecx,%edx,4),%eax Multiply by data[i]

4 movl %eax,(%edi) Write *dest

5 incl %edx i++

6 cmpl %esi,%edx Compare i:length

7 jl .L18 If <, goto loop

Instruction 2 reads the value stored atdest and instruction 4 writes back to this location. This seems
wasteful, since the value read by instruction 1 on the next iteration will normally be the value that has just
been written.

5.6. ELIMINATING UNNEEDED MEMORY REFERENCES 219

code/opt/combine.c

1 /* Accumulate result in local variable */
2 void combine4(vec_ptr v, data_t *dest)
3 {
4 int i;
5 int length = vec_length(v);
6 data_t *data = get_vec_start(v);
7 data_t x = IDENT;
8

9 *dest = IDENT;
10 for (i = 0; i < length; i++) {
11 x = x OPER data[i];
12 }
13 *dest = x;
14 }

code/opt/combine.c

Figure 5.10:Accumulating Result in Temporary. This eliminates the need to read and write intermediate
values on every loop iteration.

This leads to the optimization shown ascombine4 in Figure 5.10 where we introduce a temporary variable
x that is used in the loop to accumulate the computed value. The result is stored at*dest only after the
loop has been completed. As the following assembly code for the loop shows, the compiler can now use
register%eax to hold the accumulated value. Comparing to the loop forcombine3, we have reduced the
memory operations per iteration from two reads and one write to just a single read. Registers%ecx and
%edxare used as before, but there is no need to reference*dest.

combine4: type=INT, OPER = *

data in %eax, x in %ecx, i in %edx, length in %esi

1 .L24: loop:

2 imull (%eax,%edx,4),%ecx Multiply x by data[i]

3 incl %edx i++

4 cmpl %esi,%edx Compare i:length

5 jl .L24 If <, goto loop

We see a significant improvement in program performance:

Function Page Method Integer Floating Point
+ * + *

combine3 217 Direct data access 6.00 9.00 8.00 117.00
combine4 219 Accumulate in temporary 2.00 4.00 3.00 5.00

The most dramatic decline is in the time for floating-point multiplication. Its time becomes comparable to
the times for the other combinations of data type and operation. We will examine the cause for this sudden
decrease in Section 5.11.1.

220 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

Again, one might think that a compiler should be able to automatically transform thecombine3 code
shown in Figure 5.9 to accumulate the value in a register, as it does with the code forcombine4 shown in
Figure 5.10.

In fact, however, the two functions can have different behavior due to memory aliasing. Consider, for
example, the case of integer data with multiplication as the operation and 1 as the identity element. Letv
be a vector consisting of the three elements[2; 3; 5] and consider the following two function calls:

combine3(v, get_vec_start(v) + 2);
combine4(v, get_vec_start(v) + 2);

That is, we create an alias between the last element of the vector and the destination for storing the result.
The two functions would then execute as follows:

Function Initial Before Loop i = 0 i = 1 i = 2 Final
combine3 [2; 3; 5] [2; 3; 1] [2; 3; 2] [2; 3; 6] [2; 3; 36] [2; 3; 36]
combine4 [2; 3; 5] [2; 3; 5] [2; 3; 5] [2; 3; 5] [2; 3; 5] [2; 3; 30]

As shown above,combine3 accumulates its result at the destination, which in this case is the final vector
element. This value is therefore set first to 1, then to2 � 1 = 2, and then to3 � 2 = 6. On the final iteration
this value is then multiplied by itself to yield a final value of 36. For the case ofcombine4, the vector
remains unchanged until the end, when the final element is set to the computed result1 � 2 � 3 � 5 = 30.

Of course, our example showing the distinction betweencombine3 andcombine4 is highly contrived.
One could argue that the behavior ofcombine4 more closely matches the intention of the function descrip-
tion. Unfortunately, an optimizing compiler cannot make a judgement about the conditions under which a
function might be used and what the programmer’s intentions might be. Instead, when givencombine3 to
compile, it is obligated to preserve its exact functionality, even if this means generating inefficient code.

5.7 Understanding Modern Processors

Up to this point, we have applied optimizations that did not rely on any features of the target machine. They
simply reduced the overhead of procedure calls and eliminated some of the critical “optimization blockers”
that cause difficulties for optimizing compilers. As we seek to push the performance further, we must begin
to consider optimizations that make more use of the means by which processors execute instructions and
the capabilities of particular processors. Getting every last bit of performance requires a detailed analysis
of the program as well as code generation tuned for the target processor. Nonetheless, we can apply some
basic optimizations that will yield an overall performance improvement on a large class of processors. The
detailed performance results we report here may not hold for other machines, but the general principles of
operation and optimization apply to a wide variety of machines.

To understand ways to improve performance, we require a simple operational model of how modern pro-
cessors work. Due to the large number of transistors that can be integrated onto a single chip, modern
microprocessors employ complex hardware that attempts to maximize program performance. One result is
that their actual operation is far different from the view that is perceived by looking at assembly-language
programs. At the assembly-code level, it appears as if instructions are executed one at a time, where each

5.7. UNDERSTANDING MODERN PROCESSORS 221

ExecutionExecution

Functional
Units

Instruction ControlInstruction Control

Integer/
Branch

FP
Add

FP
Mult/Div

Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Prediction
OK?

DataData

Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Register
Updates

Figure 5.11: Block Diagram of a Modern Processor. The Instruction Control Unit is responsible for
reading instructions from memory and generating a sequence of primitive operations. The Execution Unit
then performs the operations and indicates whether the branches were correctly predicted.

instruction involves fetching values from registers or memory, performing an operation, and storing results
back to a register or memory location. In the actual processor, a number of instructions are evaluated si-
multaneously. In some designs, there can be 80 or more instructions “in flight.” Elaborate mechanisms
are employed to make sure the behavior of this parallel execution exactly captures the sequential semantic
model required by the machine-level program.

5.7.1 Overall Operation

Figure 5.11 shows a very simplified view of a modern microprocessor. Our hypothetical processor design
is based loosely on the Intel “P6” microarchitecture [28], the basis for the Intel PentiumPro, Pentium II and
Pentium III processors. The newer Pentium 4 has a different microarchitecture, but it has a similar overall
structure to the one we present here. The P6 microarchitecture typifies the high-end processors produced
by a number of manufacturers since the late 1990s. It is described in the industry as beingsuperscalar,
which means it can perform multiple operations on every clock cycle, andout-of-ordermeaning that the

222 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

order in which instructions execute need not correspond to their ordering in the assembly program. The
overall design has two main parts. TheInstruction Control Unit(ICU) is responsible for reading a sequence
of instructions from memory and generating from these a set of primitive operations to perform on program
data. TheExecution Unit(EU) then executes these operations.

The ICU reads the instructions from aninstruction cache—a special, high-speed memory containing the
most recently accessed instructions. In general, the ICU fetches well ahead of the currently executing
instructions, so that it has enough time to decode these and send operations down to the EU. One problem,
however, is that when a program hits a branch,1 there are two possible directions the program might go.
The branch can betaken, with control passing to the branch target. Alternatively, the branch can benot
taken, with control passing to the next instruction in the instruction sequence. Modern processors employ
a technique known asbranch prediction, where they guess whether or not a branch will be taken, and
they also predict the target address for the branch. Using a technique known asspeculative execution, the
processor begins fetching and decoding instructions at where it predicts the branch will go, and even begins
executing these operations before it has been determined whether or not the branch prediction was correct.
If it later determines that the branch was predicted incorrectly, it resets the state to that at the branch point
and begins fetching and executing instructions in the other direction. A more exotic technique would be
to begin fetching and executing instructions for both possible directions, later discarding the results for the
incorrect direction. To date, this approach has not been considered cost effective. The block labeledFetch
Control incorporates branch prediction to perform the task of determining which instructions to fetch.

The Instruction Decodinglogic takes the actual program instructions and converts them into a set of prim-
itive operations. Each of these operations performs some simple computational task such as adding two
numbers, reading data from memory, or writing data to memory. For machines with complex instructions,
such as an IA32 processor, an instruction can be decoded into a variable number of operations. The details
vary from one processor design to another, but we attempt to describe a typical implementation. In this
machine, decoding the instruction

addl %eax,%edx

yields a single addition operation, whereas decoding the instruction

addl %eax,4(%edx)

yields three operations: one toload a value from memory into the processor, one to add the loaded value to
the value in register%eax, and one tostorethe result back to memory. This decoding splits instructions to
allow a division of labor among a set of dedicated hardware units. These units can then execute the different
parts of multiple instructions in parallel. For machines with simple instructions, the operations correspond
more closely to the original instructions.

The EU receives operations from the instruction fetch unit. Typically, it can receive a number of them on
each clock cycle. These operations are dispatched to a set offunctional unitsthat perform the actual opera-
tions. These functional units are specialized to handle specific types of operations. Our figure illustrates a
typical set of functional units. It is styled after those found in recent Intel processors. The units in the figure
are as follows:

1We use the term “branch” specifically to refer to conditional jump instructions. Other instructions that can transfer control to
multiple destinations, such as procedure return and indirect jumps, provide similar challenges for the processor.

5.7. UNDERSTANDING MODERN PROCESSORS 223

Integer/Branch: Performs simple integer operations (add, test, compare, logical). Also processes branches,
as is discussed below.

General Integer: Can handle all integer operations, including multiplication and division.

Floating-Point Add: Handles simple floating-point operations (addition, format conversion).

Floating-Point Multiplication/Division: Handles floating-point multiplication and division. More com-
plex floating-point instructions, such transcendental functions, are converted into sequences of oper-
ations.

Load: Handles operations that read data from the memory into the processor. The functional unit has an
adder to perform address computations.

Store: Handles operations that write data from the processor to the memory. The functional unit has an
adder to perform address computations.

As shown in the figure, the load and store units access memory via adata cache, a high-speed memory
containing the most recently accessed data values.

With speculative execution, the operations are evaluated, but the final results are not stored in the program
registers or data memory until the processor can be certain that these instructions should actually have been
executed. Branch operations are sent to the EU not to determine where the branch should go, but rather to
determine whether or not they were predicted correctly. If the prediction was incorrect, the EU will discard
the results that have been computed beyond the branch point. It will also signal to the Branch Unit that the
prediction was incorrect and indicate the correct branch destination. In this case the Branch Unit begins
fetching at the new location. Such amispredictionincurs a significant cost in performance. It takes a while
before the new instructions can be fetched, decoded, and sent to the execution units. We explore this further
in Section 5.12.

Within the ICU, theRetirement Unitkeeps track of the ongoing processing and makes sure that it obeys
the sequential semantics of the machine-level program. Our figure shows aRegister File, containing the
integer and floating-point registers, as part of the Retirement Unit, because this unit controls the updating
of these registers. As an instruction is decoded, information about it is placed in a first-in, first-out queue.
This information remains in the queue until one of two outcomes occurs. First, once the operations for the
instruction have completed and any branch points leading to this instruction are confirmed as having been
correctly predicted, the instruction can beretired, with any updates to the program registers being made. If
some branch point leading to this instruction was mispredicted, on the other hand, the instruction will be
flushed, discarding any results that may have been computed. By this means, mispredictions will not alter
the program state.

As we have described, any updates to the program registers occur only as instructions are being retired, and
this takes place only after the processor can be certain that any branches leading to this instruction have
been correctly predicted. To expedite the communication of results from one instruction to another, much
of this information is exchanged among the execution units, shown in the figure as “Operation Results.” As
the arrows in the figure show, the execution units can send results directly to each other.

The most common mechanism for controlling the communication of operands among the execution units
is calledregister renaming. When an instruction that updates registerr is decoded, atag t is generated

224 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

Operation Latency Issue Time
Integer Add 1 1
Integer Multiply 4 1
Integer Divide 36 36
Floating-Point Add 3 1
Floating-Point Multiply 5 2
Floating-Point Divide 38 38
Load (Cache Hit) 3 1
Store (Cache Hit) 3 1

Figure 5.12:Performance of Pentium III Arithmetic Operations. Latency represents the total number
of cycles for a single operation. Issue time denotes the number of cycles between successive, independent
operations. (Obtained from Intel literature).

giving a unique identifier to the result of the operation. An entry(r; t) is added to a table maintaining the
association between each program register and the tag for an operation that will update this register. When
a subsequent instruction using registerr as an operand is decoded, the operation sent to the Execution Unit
will contain t as the source for the operand value. When some execution unit completes the first operation,
it generates a result(v; t) indicating that the operation with tagt produced valuev. Any operation waiting
for t as a source will then usev as the source value. By this mechanism, values can be passed directly from
one operation to another, rather than being written to and read from the register file. The renaming table
only contains entries for registers having pending write operations. When a decoded instruction requires a
registerr, and there is no tag associated with this register, the operand is retrieved directly from the register
file. With register renaming, an entire sequence of operations can be performed speculatively, even though
the registers are updated only after the processor is certain of the branch outcomes.

5.7.2 Functional Unit Performance

Figure 5.12 documents the performance of some of basic operations for an Intel Pentium III. These timings
are typical for other processors as well. Each operation is characterized by two cycle counts: thelatency,
indicating the total number of cycles the functional unit requires to complete the operation; and theissue
time, indicating the number of cycles between successive, independent operations. The latencies range from
one cycle for basic integer operations; several cycles for loads, stores, integer multiplication, and the more
common floating-point operations; and then to many cycles for division and other complex operations.

As the third column in Figure 5.12 shows, several functional units of the processor arepipelined, meaning
that they can start on a new operation before the previous one is completed. The issue time indicates the
number of cycles between successive operations for the unit. In a pipelined unit, the issue time is smaller
than the latency. A pipelined function unit is implemented as a series of stages, each of which performs
part of the operation. For example, a typical floating-point adder contains three stages: one to process the
exponent values, one to add the fractions, and one to round the final result. The operations can proceed
through the stages in close succession rather than waiting for one operation to complete before the next
begins. This capability can only be exploited if there are successive, logically independent operations to

5.7. UNDERSTANDING MODERN PROCESSORS 225

be performed. As indicated, most of the units can begin a new operation on every clock cycle. The only
exceptions are the floating-point multiplier, which requires a minimum of two cycles between successive
operations, and the two dividers, which are not pipelined at all.

Circuit designers can create functional units with a range of performance characteristics. Creating a unit
with short latency or issue time requires more hardware, especially for more complex functions such as
multiplication and floating-point operations. Since there is only a limited amount of space for these units on
the microprocessor chip, the CPU designers must carefully balance the number of functional units and their
individual performance to achieve optimal overall performance. They evaluate many different benchmark
programs and dedicate the most resources to the most critical operations. As Figure 5.12 indicates, integer
multiplication and floating-point multiplication and addition were considered important operations in design
of the Pentium III, even though a significant amount of hardware is required to achieve the low latencies
and high degree of pipelining shown. On the other hand, division is relatively infrequent, and difficult to
implement with short latency or issue time, and so these operations are relatively slow.

5.7.3 A Closer Look at Processor Operation

As a tool for analyzing the performance of a machine level program executing on a modern processor,
we have developed a more detailed textual notation to describe the operations generated by the instruction
decoder, as well as a graphical notation to show the processing of operations by the functional units. Neither
of these notations exactly represents the implementation of a specific, real-life processor. They are simply
methods to help understand how a processor can take advantage of parallelism and branch prediction in
executing a program.

Translating Instructions into Operations

We present our notation by working withcombine4 (Figure 5.10), our fastest code up to this point as an
example. We focus just on the computation performed by the loop, since this is the dominating factor in
performance for large vectors. We consider the cases of integer data with both multiplication and addition
as the combining operations. The compiled code for this loop with multiplication consists of four instruc-
tions. In this code, register%eax holds the pointerdata, %edx holds i , %ecx holdsx , and%esi holds
length.

combine4: type=INT, OPER = *

data in %eax, x in %ecx, i in %edx, length in %esi

1 .L24: loop:

2 imull (%eax,%edx,4),%ecx Multiply x by data[i]

3 incl %edx i++

4 cmpl %esi,%edx Compare i:length

5 jl .L24 If <, goto loop

Every time the processor executes the loop, the instruction decoder translates these four instructions into a
sequence of operations for the Execution Unit. On the first iteration, withi equal to 0, our hypothetical
machine would issue the following sequence of operations:

226 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

Assembly Instructions Execution Unit Operations
.L24:

imull (%eax,%edx,4),%ecx load (%eax, %edx.0, 4) ! t.1
imull t.1, %ecx.0 ! %ecx.1

incl %edx incl %edx.0 ! %edx.1
cmpl %esi,%edx cmpl %esi, %edx.1 ! cc.1
jl .L24 jl-taken cc.1

In our translation, we have converted the memory reference by the multiply instruction into an explicitload
instruction that reads the data from memory into the processor. We have also assignedoperand labelsto
the values that change each iteration. These labels are a stylized version of the tags generated by register
renaming. Thus, the value in register%ecx is identified by the label%ecx.0 at the beginning of the loop,
and by%ecx.1 after it has been updated. The register values that do not change from one iteration to the
next would be obtained directly from the register file during decoding. We also introduce the labelt.1 to
denote the value read by theload operation and passed to theimull operation, and we explicitly show
the destination of the operation. Thus, the pair of operations

load (%eax, %edx.0, 4) ! t.1
imull t.1, %ecx.0 ! %ecx.1

indicates that the processor first performs aload operation, computing the address using the value of%eax
(which does not change during the loop), and the value stored in%edx at the start of the loop. This will
yield a temporary value, which we labelt.1. The multiply operation then takes this value and the value of
%ecx at the start of the loop and produces a new value for%ecx. As this example illustrates, tags can be
associated with intermediate values that are never written to the register file.

The operation

incl %edx.0 ! %edx.1

indicates that the increment operation adds one to the value of%edx at the start of the loop to generate a
new value for this register.

The operation

cmpl %esi, %edx.1 ! cc.1

indicates that the compare operation (performed by either integer unit) compares the value in%esi (which
does not change in the loop) with the newly computed value for%edx. It then sets the condition codes,
identified with the explicit labelcc.1. As this example illustrates, the processor can use renaming to track
changes to the condition code registers.

Finally, the jump instruction was predicted taken. The jump operation

jl-taken cc.1

5.7. UNDERSTANDING MODERN PROCESSORS 227

Execution Unit Operations
load (%eax, %edx.0, 4) ! t.1
imull t.1, %ecx.0 ! %ecx.1
incl %edx.0 ! %edx.1
cmpl %esi, %edx.1 ! cc.1
jl-taken cc.1

cc.1

t.1

load

%ecx.1

incl

cmpl

jl

%edx.0

%edx.1

%ecx.0

imull

Figure 5.13:Operations for First Iteration of Inner Loop of combine4 for integer multiplication.
Memory reads are explicitly converted to loads. Register names are tagged with instance numbers.

checks whether the newly computed values for the condition codes (cc.1) indicate this was the correct
choice. If not, then it signals the ICU to begin fetching instructions at the instruction following thejl.
To simplify the notation, we omit any information about the possible jump destinations. In practice, the
processor must keep track of the destination for the unpredicted direction, so that it can begin fetching from
there in the event the prediction is incorrect.

As this example translation shows, our operations mimic the structure of the assembly-language instructions
in many ways, except that they refer to their source and destination operations by labels that identify different
instances of the registers. In the actual hardware, register renaming dynamically assigns tags to indicate
these different values. Tags are bit patterns rather than symbolic names such as “%edx.1,” but they serve
the same purpose.

Processing of Operations by the Execution Unit

Figure 5.13 shows the operations in two forms: that generated by the instruction decoder and as acompu-
tation graphwhere operations are represented by rounded boxes and arrows indicate the passing of data
between operations. We only show the arrows for the operands that change from one iteration to the next,
since only these values are passed directly between functional units.

The height of each operator box indicates how many cycles the operation requires, that is, the latency of that
particular function. In this case, integer multiplicationimull requires four cycles, load requires three, and
the other operations require one. In demonstrating the timing of a loop, we position the blocks vertically
to represent the times when operations are performed, with time increasing in the downward direction. We
can see that the five operations for the loop form two parallel chains, indicating two series of computations
that must be performed in sequence. The chain on the left processes the data, first reading an array element
from memory and then multiplying it times the accumulated product. The chain on the right processes the
loop indexi , first incrementing it and then comparing it tolength. The jump operation checks the result
of this comparison to make sure the branch was correctly predicted. Note that there are no outgoing arrows

228 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

Execution Unit Operations
load (%eax, %edx.0, 4) ! t.1
addl t.1, %ecx.0 ! %ecx.1
incl %edx.0 ! %edx.1
cmpl %esi, %edx.1 ! cc.1
jl-taken cc.1

cc.1

t.1

%ecx.i +1

incl

cmpl

jl

load

%edx.0

%edx.1

%ecx.0

addl
%ecx.1

load

Figure 5.14:Operations for First Iteration of Inner Loop of combine4 for Integer Addition. Com-
pared to multiplication, the only change is that the addition operation requires only one cycle.

from the jump operation box. If the branch was correctly predicted, no other processing is required. If the
branch was incorrectly predicted, then the branch function unit will signal the instruction fetch control unit,
and this unit will take corrective action. In either case, the other operations do not depend on the outcome
of the jump operation.

Figure 5.14 shows the same translation into operations but with integer addition as the combining operation.
As the graphical depiction shows, all of the operations, except load, now require just one cycle.

Scheduling of Operations with Unlimited Resources

To see how a processor would execute a series of iterations, imagine first a processor with an unlimited
number of functional units and with perfect branch prediction. Each operation could then begin as soon as
its data operands were available. The performance of such a processor would be limited only by the latencies
and throughputs of the functional units, and the data dependencies in the program. Figure 5.15 shows the
computation graph for the first three iterations of the loop incombine4 with integer multiplication on such
a machine. For each iteration, there is a set of five operations with the same configuration as those in Figure
5.13, with appropriate changes to the operand labels. The arrows from the operators of one iteration to those
of another show the data dependencies between the different iterations.

Each operator is placed vertically at the highest position possible, subject to the constraint that no arrows can
point upward, since this would indicate information flowing backward in time. Thus, theload operation
of one iteration can begin as soon as theincl operation of the previous iteration has generated an updated
value of the loop index.

The computation graph shows the parallel execution of operations by the Execution Unit. On each cycle,
all of the operations on one horizontal line of the graph execute in parallel. The graph also demonstrates
out-of-order, speculative execution. For example, theincl operation in one iteration is executed before
the jl instruction of the previous iteration has even begun. We can also see the effect of pipelining. Each
iteration requires at least seven cycles from start to end, but successive iterations are completed every 4
cycles. Thus, the effective processing rate is one iteration every 4 cycles, giving a CPE of 4.0.

The four-cycle latency of integer multiplication constrains the performance of the processor for this pro-
gram. Eachimull operation must wait until the previous one has completed, since it needs the result of

5.7. UNDERSTANDING MODERN PROCESSORS 229

cc.1

cc.2%ecx.0

%edx.3
t.1

imull

%ecx.1

incl

cmpl

jl

%edx.0

i=0

load

t.1

imull

%ecx.1

incl

cmpl

jl

%edx.0

i=0

load

t.2

imull

%ecx.2

incl

cmpl

jl

%edx.1

i=1

load

t.2

imull

%ecx.2

incl

cmpl

jl

%edx.1

i=1

load

cc.3

t.3

imull

%ecx.3

incl

cmpl

jl

%edx.2

i=2

load

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

cc.1

cc.2

Iteration 3

Iteration 2

Iteration 1

Figure 5.15:Scheduling of Operations for Integer Multiplication with Unlimited Number of Execution
Units. The 4 cycle latency of the multiplier is the performance-limiting resource.

230 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

%edx.0

t.1

%ecx.i +1

incl

cmpl

jl

addl
%ecx.1

i=0

load
cc.1

%edx.0

t.1

%ecx.i +1

incl

cmpl

jl

addl
%ecx.1

i=0

load
cc.1

%edx.1

t.2

%ecx.i +1

incl

cmpl

jl

addl
%ecx.2

i=1

load
cc.2

%edx.1

t.2

%ecx.i +1

incl

cmpl

jl

addl
%ecx.2

i=1

load
cc.2

%edx.2

t.3

%ecx.i +1

incl

cmpl

jl

addl
%ecx.3

i=2

load
cc.3

%edx.2

t.3

%ecx.i +1

incl

cmpl

jl

addl
%ecx.3

i=2

load
cc.3

%edx.3

t.4

%ecx.i +1

incl

cmpl

jl

addl
%ecx.4

i=3

load
cc.4

%edx.3

t.4

%ecx.i +1

incl

cmpl

jl

addl
%ecx.4

i=3

load
cc.4

%ecx.0

%edx.4

Cycle

1

2

3

4

5

6

7

Cycle

1

2

3

4

5

6

7

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Figure 5.16:Scheduling of Operations for Integer Addition with Unbounded Resource Constraints.
With unbounded resources the processor could achieve a CPE of 1.0.

this multiplication before it can begin. In our figure, the multiplication operations begin on cycles 4, 8, and
12. With each succeeding iteration, a new multiplication begins every fourth cycle.

Figure 5.16 shows the first four iterations ofcombine4 for integer addition on a machine with an un-
bounded number of functional units. With a single-cycle combining operation, the program could achieve a
CPE of 1.0. We see that as the iterations progress, the Execution Unit would perform parts of seven oper-
ations on each clock cycle. For example, in cycle 4 we can see that the machine is executing theaddl for
iteration 1; different parts of theload operations for iterations 2, 3, and 4; thejl for iteration 2; thecmpl
for iteration 3; and theincl for iteration 4.

Scheduling of Operations with Resource Constraints

Of course, a real processor has only a fixed set of functional units. Unlike our earlier examples, where
the performance was constrained only by the data dependencies and the latencies of the functional units,
performance becomes limited by resource constraints as well. In particular, our processor has only two units
capable of performing integer and branch operations. In contrast, the graph of Figure 5.15 has three of these
operations in parallel on cycles 3 and four in parallel on cycle 4.

Figure 5.17 shows the scheduling of the operations forcombine4 with integer multiplication on a resource-
constrained processor. We assume that the general integer unit and the branch/integer unit can each begin
a new operation on every clock cycle. It is possible to have more than two integer or branch operations
executing in parallel, as shown in cycle 6, because theimull operation is in its third cycle by this point.

With constrained resources, our processor must have somescheduling policythat determines which oper-
ation to perform when it has more than one choice. For example, in cycle 3 of the graph of Figure 5.15,
we show three integer operations being executed: thejl of iteration 1, thecmpl of iteration 2, and the
incl of iteration 3. For Figure 5.17, we must delay one of these operations. We do so by keeping track of

5.7. UNDERSTANDING MODERN PROCESSORS 231

cc.1

cc.2%ecx.0

%edx.4

t.1

imull

%ecx.1

incl

cmpl

jl

%edx.0

i=0

load

t.1

imull

%ecx.1

incl

cmpl

jl

%edx.0

i=0

load

t.2

imull

%ecx.2

incl

cmpl

jl

%edx.1

i=1

load

t.2

imull

%ecx.2

incl

cmpl

jl

%edx.1

i=1

load

cc.3

t.3

imull

%ecx.3

incl

cmpl

jl

%edx.2

i=2

load

cc.3

t.3

imull

%ecx.3

incl

cmpl

jl

%edx.2

i=2

load

Iteration 3

Iteration 2

Iteration 1
t.4

imull

%ecx.4

incl

cmpl

jl

i=3

load
cc.4

Iteration 4

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 5.17:Scheduling of Operations for Integer Multiplication with Actual Resource Constraints.
The multiplier latency remains the performance-limiting factor.

232 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

Iteration 4

Iteration 5

Iteration 6

Iteration 7

Iteration 8

%ecx.3

%edx.8

%edx.3

t.4
%ecx.i +1

incl

cmpl

jladdl

%ecx.4

i=3

load

cc.4

%edx.3

t.4
%ecx.i +1

incl

cmpl

jladdl

%ecx.4

i=3

load

cc.4

%edx.4

t.5
%ecx.i +1

incl

cmpl

jladdl
%ecx.5

i=4

load

cc.5

%edx.4

t.5
%ecx.i +1

incl

cmpl

jladdl
%ecx.5

i=4

load

cc.5

cc.6

%edx.7

t.8
%ecx.i +1

incl

cmpl

jladdl

%ecx.8

i=7

load

cc.8

%edx.7

t.8
%ecx.i +1

incl

cmpl

jladdl

%ecx.8

i=7

load

cc.8

%edx.5

t.6

incl

cmpl

jl

addl

%ecx.6

load

i=5

%edx.5

t.6

incl

cmpl

jl

addl

%ecx.6

load

i=5

6

7

8

9

10

11

12

Cycle

13

14

15

16

17

6

7

8

9

10

11

12

Cycle

13

14

15

16

17

18

cc.6

%edx.6

t.7

cmpl

jl

addl

%ecx.7

load

cc.7

i=6

incl

%edx.6

t.7

cmpl

jl

addl

%ecx.7

load

cc.7

i=6

incl

Figure 5.18:Scheduling of Operations for Integer Addition with Actual Resource Constraints. The
limitation to two integer units constrains performance to a CPE of 2.0.

the program orderfor the operations, that is, the order in which the operations would be performed if we
executed the machine-level program in strict sequence. We then give priority to the operations according to
their program order. In this example, we would defer theincl operation, since any operation of iteration 3
is later in program order than those of iterations 1 and 2. Similarly, in cycle 4, we would give priority to the
imull operation of iteration 1 and thejl of iteration 2 over that of theincl operation of iteration 3.

For this example, the limited number of functional units does not slow down our program. Performance is
still constrained by the four-cycle latency of integer multiplication.

For the case of integer addition, the resource constraints impose a clear limitation on program performance.
Each iteration requires four integer or branch operations, and there are only two functional units for these
operations. Thus, we cannot hope to sustain a processing rate any better than two cycles per iteration. In
creating the graph for multiple iterations ofcombine4 for integer addition, an interesting pattern emerges.
Figure 5.18 shows the scheduling of operations for iterations 4 through 8. We chose this range of iterations
because it shows a regular pattern of operation timings. Observe how the timing of all operations in iterations
4 and 8 is identical, except that the operations in iteration 8 occur eight cycles later. As the iterations proceed,
the patterns shown for iterations 4 to 7 would keep repeating. Thus, we complete four iterations every eight

5.8. REDUCING LOOP OVERHEAD 233

cycles, achieving the optimum CPE of 2.0.

Summary of combine4 Performance

We can now consider the measured performance ofcombine4 for all four combinations of data type and
combining operations:

Function Page Method Integer Floating Point
+ * + *

combine4 219 Accumulate in temporary 2.00 4.00 3.00 5.00

With the exception of integer addition, these cycle times nearly match the latency for the combining oper-
ation, as shown in Figure 5.12. Our transformations to this point have reduced the CPE value to the point
where the time for the combining operation becomes the limiting factor.

For the case of integer addition, we have seen that the limited number of functional units for branch and
integer operations limits the achievable performance. With four such operations per iteration, and just two
functional units, we cannot expect the program to go faster than 2 cycles per iteration.

In general, processor performance is limited by three types of constraints. First, the data dependencies in
the program force some operations to delay until their operands have been computed. Since the functional
units have latencies of one or more cycles, this places a lower bound on the number of cycles in which a
given sequence of operations can be performed. Second, the resource constraints limit how many operations
can be performed at any given time. We have seen that the limited number of functional units is one such
resource constraint. Other constraints include the degree of pipelining by the functional units, as well as
limitations of other resources in the ICU and the EU. For example, an Intel Pentium III can only decode
three instructions on every clock cycle. Finally, the success of the branch prediction logic constrains the
degree to which the processor can work far enough ahead in the instruction stream to keep the execution
unit busy. Whenever a misprediction occurs, a significant delay occurs getting the processor restarted at the
correct location.

5.8 Reducing Loop Overhead

The performance ofcombine4 for integer addition is limited by the fact that each iteration contains four
instructions, with only two functional units capable of performing them. Only one of these four instructions
operates on the program data. The others are part of the loop overhead of computing the loop index and
testing the loop condition.

We can reduce overhead effects by performing more data operations in each iteration, via a technique known
asloop unrolling. The idea is to access and combine multiple array elements within a single iteration. The
resulting program requires fewer iterations, leading to reduced loop overhead.

Figure 5.19 shows a version of our combining code using three-way loop unrolling. The first loop steps
through the array three elements at a time. That is, the loop indexi is incremented by three on each
iteration, and the combining operation is applied to array elementsi, i+ 1, andi+ 2 in a single iteration.

234 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

code/opt/combine.c

1 /* Unroll loop by 3 */
2 void combine5(vec_ptr v, data_t *dest)
3 {
4 int length = vec_length(v);
5 int limit = length-2;
6 data_t *data = get_vec_start(v);
7 data_t x = IDENT;
8 int i;
9

10 /* Combine 3 elements at a time */
11 for (i = 0; i < limit; i+=3) {
12 x = x OPER data[i] OPER data[i+1] OPER data[i+2];
13 }
14

15 /* Finish any remaining elements */
16 for (; i < length; i++) {
17 x = x OPER data[i];
18 }
19 *dest = x;
20 }

code/opt/combine.c

Figure 5.19:Unrolling Loop by 3. Loop unrolling can reduce the effect of loop overhead.

5.8. REDUCING LOOP OVERHEAD 235

Execution Unit Operations
load (%eax, %edx.0, 4) ! t.1a
addl t.1a, %ecx.0c ! %ecx.1a
load 4(%eax, %edx.0, 4) ! t.1b
addl t.1b, %ecx.1a ! %ecx.1b
load 8(%eax, %edx.0, 4) ! t.1c
addl t.1c, %ecx.1b ! %ecx.1c
addl %edx.0, 3 ! %edx.1
cmpl %esi, %edx.1 ! cc.1
jl-taken cc.1

%edx.0

%edx.1

%ecx.0c

cc.1

t.1a

%ecx.i +1

addl

cmpl

jl

addl

%ecx.1c

addl

addl

t.1b

t.1c

%ecx.1a

%ecx.1b

load

load

load

cc.1

t.1a

%ecx.i +1

addl

cmpl

jl

addl

%ecx.1c

addl

addl

t.1b

t.1c

%ecx.1a

%ecx.1b

load

load

load

Figure 5.20:Operations for First Iteration of Inner Loop of Three-Way Unrolled Integer Addition.
With this degree of loop unrolling we can combine three array elements using six integer/branch operations.

In general, the vector length will not be a multiple of 3. We want our code to work correctly for arbitrary
vector lengths. We account for this requirement in two ways. First, we make sure the first loop does not
overrun the array bounds. For a vector of lengthn, we set the loop limit to ben � 2. We are then assured
that the loop will only be executed when the loop indexi satisfiesi < n� 2, and hence the maximum array
index i+ 2 will satisfy i + 2 < (n� 2) + 2 = n. In general, if the loop is unrolled byk, we set the upper
limit to ben� k + 1. The maximum loop indexi + k � 1 will then be less thann. In addition to this, we
add a second loop to step through the final few elements of the vector one at a time. The body of this loop
will be executed between 0 and 2 times.

To better understand the performance of code with loop unrolling, let us look at the assembly code for the
inner loop and its translation into operations.

Assembly Instructions Execution Unit Operations
.L49:

addl (%eax,%edx,4),%ecx load (%eax, %edx.0, 4) ! t.1a
addl t.1a, %ecx.0c ! %ecx.1a

addl 4(%eax,%edx,4),%ecx load 4(%eax, %edx.0, 4) ! t.1b
addl t.1b, %ecx.1a ! %ecx.1b

addl 8(%eax,%edx,4),%ecx load 8(%eax, %edx.0, 4) ! t.1c
addl t.1c, %ecx.1b ! %ecx.1c

addl %edx,3 addl %edx.0, 3 ! %edx.1
cmpl %esi,%edx cmpl %esi, %edx.1 ! cc.1
jl .L49 jl-taken cc.1

As mentioned earlier, loop unrolling by itself will only help the performance of the code for the case of
integer sum, since our other cases are limited by the latency of the functional units. For integer sum, three-
way unrolling allows us to combine three elements with six integer/branch operations, as shown in Figure
5.20. With two functional units for these operations, we could potentially achieve a CPE of 1.0. Figure 5.21

236 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

i=6

cc.3

t.3a

%ecx.i +1

addl

cmpl

jl

addl

%ecx.3c

addl

addl

t.3b

t.3c

%ecx.3a

%ecx.3b

load

load

load

%ecx.2c

i=9

cc.4

t.4a

%ecx.i +1

addl

cmpl

jl

addl

%ecx.4c

addl

addl

t.4b

t.4c

%ecx.4a

%ecx.4b

load

load

load

cc.4

t.4a

%ecx.i +1

addl

cmpl

jl

addl

%ecx.4c

addl

addl

t.4b

t.4c

%ecx.4a

%ecx.4b

load

load

load

%edx.3

%edx.2

%edx.4

5

6

7

8

9

10

11

Cycle

12

13

14

15

5

6

7

8

9

10

11

Cycle

12

13

14

15

Iteration 3

Iteration 4

Figure 5.21:Scheduling of Operations for Three-Way Unrolled Integer Sum with Bounded Resource
Constraints. In principle, the procedure can achieve a CPE of 1.0. The measured CPE, however, is 1.33.

5.8. REDUCING LOOP OVERHEAD 237

shows that once we reach iteration 3 (i = 6), the operations would follow a regular pattern. The operations
of iteration 4 (i = 9) have the same timings, but shifted by three cycles. This would indeed yield a CPE of
1.0.

Our measurement for this function shows a CPE of 1.33, that is, we require four cycles per iteration. Evi-
dently some resource constraint we did not account for in our analysis delays the computation by one addi-
tional cycle per iteration. Nonetheless, this performance represents an improvement over the code without
loop unrolling.

Measuring the performance for different degrees of unrolling yields the following values for the CPE

Vector Length Degree of Unrolling
1 2 3 4 8 16

CPE 2.00 1.50 1.33 1.50 1.25 1.06

As these measurements show, loop unrolling can reduce the CPE. With the loop unrolled by a factor of two,
each iteration of the main loop requires three clock cycles, giving a CPE of3=2 = 1:5. As we increase
the degree of unrolling, we generally get better performance, nearing the theoretical CPE limit of 1.0. It
is interesting to note that the improvement is not monotonic—unrolling by three gives better performance
than unrolling by four. Evidently the scheduling of operations on the execution units is less efficient for the
latter case.

Our CPE measurements do not account for overhead factors such as the cost of the procedure call and of
setting up the loop. With loop unrolling, we introduce a new source of overhead—the need to finish any
remaining elements when the vector length is not divisible by the degree of unrolling. To investigate the
impact of overhead, we measure thenet CPEfor different vector lengths. The net CPE is computed as
the total number of cycles required by the procedure divided by the number of elements. For the different
degrees of unrolling, and for two different vector lengths we obtain the following:

Vector Length Degree of Unrolling
1 2 3 4 8 16

CPE 2.00 1.50 1.33 1.50 1.25 1.06
31 Net CPE 4.02 3.57 3.39 3.84 3.91 3.66
1024 Net CPE 2.06 1.56 1.40 1.56 1.31 1.12

The distinction between CPE and net CPE is minimal for long vectors, as seen with the measurements for
length 1024, but the impact is significant for short vectors, as seen with the measurements for length 31.
Our measurements of the net CPE for a vector of length 31 demonstrate one drawback of loop unrolling.
Even with no unrolling, the net CPE of 4.02 is considerably higher than the 2.06 measured for long vectors.
The overhead of starting and completing the loop becomes far more significant when the loop is executed
a smaller number of times. In addition, the benefit of loop unrolling is less significant. Our unrolled code
must start and stop two loops, and it must complete the final elements one at a time. The overhead decreases
with increased loop unrolling, while the number of operations performed in the final loop increases. With a
vector length of 1024, performance generally improves as the degree of unrolling increases. With a vector
length of 31, the best performance is achieved by unrolling the loop by only a factor of three.

A second drawback of loop unrolling is that it increases the amount of object code generated. The object
code forcombine4 requires 63 bytes, whereas the object code with the loop unrolled by a factor of 16

238 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

requires 142 bytes. In this case, that seems like a small price to pay for code that runs nearly twice as fast.
In other cases, however, the optimum position in this time-space tradeoff is not so clear.

5.9 Converting to Pointer Code

Before proceeding further, let us attempt one more transformation that can sometimes improve program
performance, at the expense of program readability. One of the unique features of C is the ability to create
and reference pointers to arbitrary program objects. Pointer arithmetic, in fact, has a close connection to
array referencing. The combination of pointer arithmetic and referencing given by the expression*(a+i)
is exactly equivalent to the array referencea[i]. At times, we can improve the performance of a program
by using pointers rather than arrays.

Figure 5.22 shows an example of converting the procedurescombine4 andcombine5 to pointer code,
giving procedurescombine4p andcombine5p, respectively. Instead of keeping pointerdata fixed at
the beginning of the vector, we move it with each iteration. The vector elements are then referenced by a
fixed offset (between 0 and 2) ofdata. Most significantly, we can eliminate the iteration variablei from
the procedure. To detect when the loop should terminate, we compute a pointerdend to be an upper bound
on pointerdata.

Comparing the performance of these procedures to their array counterparts yields mixed results:

Function Page Method Integer Floating Point
+ * + *

combine4 219 Accumulate in temporary 2.00 4.00 3.00 5.00
combine4p 239 Pointer version 3.00 4.00 3.00 5.00
combine5 234 Unroll loop�3 1.33 4.00 3.00 5.00
combine5p 239 Pointer version 1.33 4.00 3.00 5.00
combine5x4 Unroll loop�4 1.50 4.00 3.00 5.00
combine5px4 Pointer version 1.25 4.00 3.00 5.00

For most of the cases, the array and pointer versions have the exact same performance. With pointer code, the
CPE for integer sum with no unrolling actually gets worse by one cycle. This result is somewhat surprising,
since the inner loops for the pointer and array versions are very similar, as shown in Figure 5.23. It is hard to
imagine why the pointer code requires an additional clock cycle per iteration. Just as mysteriously, versions
of the procedures with four-way loop unrolling yield a one-cycle-per-iteration improvement with pointer
code, giving a CPE of 1.25 (five cycles per iteration) rather then 1.5 (six cycles per iteration).

In our experience, the relative performance of pointer versus array code depends on the machine, the com-
piler, and even the particular procedure. We have seen compilers that apply very advanced optimizations
to array code but only minimal optimizations to pointer code. For the sake of readability, array code is
generally preferable.

Practice Problem 5.3:
At times,GCC does its own version of converting array code to pointer code. For example, with integer
data and addition as the combining operation, it generates the following code for the inner loop of a
variant ofcombine5 that uses eight-way loop unrolling:

5.9. CONVERTING TO POINTER CODE 239

code/opt/combine.c

1 /* Accumulate in local variable, pointer version */
2 void combine4p(vec_ptr v, data_t *dest)
3 {
4 int length = vec_length(v);
5 data_t *data = get_vec_start(v);
6 data_t *dend = data+length;
7 data_t x = IDENT;
8

9 for (; data < dend; data++)
10 x = x OPER *data;
11 *dest = x;
12 }

code/opt/combine.c

(a) Pointer version ofcombine4.

code/opt/combine.c

1 /* Unroll loop by 3, pointer version */
2 void combine5p(vec_ptr v, data_t *dest)
3 {
4 data_t *data = get_vec_start(v);
5 data_t *dend = data+vec_length(v);
6 data_t *dlimit = dend-2;
7 data_t x = IDENT;
8

9 /* Combine 3 elements at a time */
10 for (; data < dlimit; data += 3) {
11 x = x OPER data[0] OPER data[1] OPER data[2];
12 }
13

14 /* Finish any remaining elements */
15 for (; data < dend; data++) {
16 x = x OPER data[0];
17 }
18 *dest = x;
19 }

code/opt/combine.c

(b) Pointer version ofcombine5

Figure 5.22:Converting Array Code to Pointer Code. In some cases, this can lead to improved perfor-
mance.

240 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

combine4: type=INT, OPER = ’+’

data in %eax, x in %ecx, i in %edx, length in %esi

1 .L24: loop:

2 addl (%eax,%edx,4),%ecx Add data[i] to x

3 incl %edx i++

4 cmpl %esi,%edx Compare i:length

5 jl .L24 If <, goto loop

(a) Array code

combine4p: type=INT, OPER = ’+’

data in %eax, x in %ecx, dend in %edx

1 .L30: loop:

2 addl (%eax),%ecx Add data[0] to x

3 addl $4,%eax data++

4 cmpl %edx,%eax Compare data:dend

5 jb .L30 If <, goto loop

(b) Pointer code

Figure 5.23:Pointer Code Performance Anomaly.Although the two programs are very similar in struc-
ture, the array code requires two cycles per iteration, while the pointer code requires three.

1 .L6:
2 addl (%eax),%edx
3 addl 4(%eax),%edx
4 addl 8(%eax),%edx
5 addl 12(%eax),%edx
6 addl 16(%eax),%edx
7 addl 20(%eax),%edx
8 addl 24(%eax),%edx
9 addl 28(%eax),%edx

10 addl $32,%eax
11 addl $8,%ecx
12 cmpl %esi,%ecx
13 jl .L6

Observe how register%eax is being incremented by 32 on each iteration.

Write C code for a procedurecombine5px8 that shows how pointers, loop variables, and termination
conditions are being computed by this code. Show the general form with arbitrary data and combining
operation in the style of Figure 5.19. Describe how it differs from our handwritten pointer code (Figure
5.22).

5.10. ENHANCING PARALLELISM 241

code/opt/combine.c

1 /* Unroll loop by 2, 2-way parallelism */
2 void combine6(vec_ptr v, data_t *dest)
3 {
4 int length = vec_length(v);
5 int limit = length-1;
6 data_t *data = get_vec_start(v);
7 data_t x0 = IDENT;
8 data_t x1 = IDENT;
9 int i;

10

11 /* Combine 2 elements at a time */
12 for (i = 0; i < limit; i+=2) {
13 x0 = x0 OPER data[i];
14 x1 = x1 OPER data[i+1];
15 }
16

17 /* Finish any remaining elements */
18 for (; i < length; i++) {
19 x0 = x0 OPER data[i];
20 }
21 *dest = x0 OPER x1;
22 }

code/opt/combine.c

Figure 5.24:Unrolling Loop by 2 and Using Two-Way Parallelism. This approach makes use of the
pipelining capability of the functional units.

5.10 Enhancing Parallelism

At this point, our programs are limited by the latency of the functional units. As the third column in Figure
5.12 shows, however, several functional units of the processor arepipelined, meaning that they can start on
a new operation before the previous one is completed. Our code cannot take advantage of this capability,
even with loop unrolling, since we are accumulating the value as a single variablex . We cannot compute a
new value ofx until the preceding computation has completed. As a result, the processor willstall, waiting
to begin a new operation until the current one has completed. This limitation shows clearly in Figures 5.15
and 5.17. Even with unbounded processor resources, the multiplier can only produce a new result every four
clock cycles. Similar limitations occur with floating-point addition (three cycles) and multiplication (five
cycles).

5.10.1 Loop Splitting

For a combining operation that is associative and commutative, such as integer addition or multiplication, we
can improve performance by splitting the set of combining operations into two or more parts and combining

242 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

Execution Unit Operations
load (%eax, %edx.0, 4) ! t.1a
imull t.1a, %ecx.0 ! %ecx.1
load 4(%eax, %edx.0, 4) ! t.1b
imull t.1b, %ebx.0 ! %ebx.1
addl $2, %edx.0 ! %edx.1
cmpl %esi, %edx.1 ! cc.1
jl-taken cc.1

%edx.1

%ecx.0

%ebx.0

cc.1

t.1a

imull

%ecx.1

addl

cmpl

jl

%edx.0

imull

%ebx.1

t.1b

load

load
cc.1

t.1a

imull

%ecx.1

addl

cmpl

jl

%edx.0

imull

%ebx.1

t.1b

load

load

Figure 5.25:Operations for First Iteration of Inner Loop of Two-Way Unrolled, Two-Way Parallel
Integer Multiplication. The two multiplication operations are logically independent.

the results at the end. For example, letPn denote the product of elementsa0; a1; : : : ; an�1:

Pn =
n�1Y
i=0

ai

Assumingn is even, we can also write this asPn = PEn�POn, wherePEn is the product of the elements
with even indices, andPOn is the product of the elements with odd indices:

PEn =

n=2�2Y
i=0

a2i

POn =

n=2�2Y
i=0

a2i+1

Figure 5.24 shows code that uses this method. It uses both two-way loop unrolling to combine more ele-
ments per iteration, and two-way parallelism, accumulating elements with even index in variablex0, and
elements with odd index in variablex1. As before, we include a second loop to accumulate any remaining
array elements for the case where the vector length is not a multiple of 2. We then apply the combining
operation tox0 andx1 to compute the final result.

To see how this code yields improved performance, let us consider the translation of the loop into operations
for the case of integer multiplication:

5.10. ENHANCING PARALLELISM 243

Assembly Instructions Execution Unit Operations
.L151:

imull (%eax,%edx,4),%ecx load (%eax, %edx.0, 4) ! t.1a
imull t.1a, %ecx.0 ! %ecx.1

imull 4(%eax,%edx,4),%ebx load 4(%eax, %edx.0, 4) ! t.1b
imull t.1b, %ebx.0 ! %ebx.1

addl $2,%edx addl $2, %edx.0 ! %edx.1
cmpl %esi,%edx cmpl %esi, %edx.1 ! cc.1
jl .L151 jl-taken cc.1

Figure 5.25 shows a graphical representation of these operations for the first iteration (i = 0). As this
diagram illustrates, the two multiplications in the loop are independent of each other. One has register
%ecx as its source and destination (corresponding to program variablex0), while the other has register
%ebx as its source and destination (corresponding to program variablex1). The second multiplication can
start just one cycle after the first. This makes use of the pipelining capabilities of both the load unit and the
integer multiplier.

Figure 5.26 shows a graphical representation of the first three iterations (i = 0, 2, and4) for integer multi-
plication. For each iteration, the two multiplications must wait until the results from the previous iteration
have been computed. Still, the machine can generate two results every four clock cycles, giving a theoretical
CPE of 2.0. In this figure we do not take into account the limited set of integer functional units, but this
does not prove to be a limitation for this particular procedure.

Comparing loop unrolling alone to loop unrolling with two-way parallelism, we obtain the following per-
formance:

Function Page Method Integer Floating Point
+ * + *

Unroll �2 1.50 4.00 3.00 5.00
combine6 241 Unroll �2, Parallelism�2 1.50 2.00 2.00 2.50

For integer sum, parallelism does not help, as the latency of integer addition is only one clock cycle. For
integer and floating-point product, however, we reduce the CPE by a factor of two. We are essentially
doubling the use of the functional units. For floating-point sum, some other resource constraint is limiting
our CPE to 2.0, rather than the theoretical value of 1.5.

We have seen earlier that two’s complement arithmetic is commutative and associative, even when overflow
occurs. Hence for an integer data type, the result computed bycombine6 will be identical to that computed
by combine5 under all possible conditions. Thus, an optimizing compiler could potentially convert the
code shown incombine4 first to a two-way unrolled variant ofcombine5 by loop unrolling, and then
to that ofcombine6 by introducing parallelism. This is referred to asiteration splitting in the optimizing
compiler literature. Many compilers do loop unrolling automatically, but relatively few do iteration splitting.

On the other hand, we have seen that floating-point multiplication and addition are not associative. Thus,
combine5 andcombine6 could potentially produce different results due to rounding or overflow. Imag-
ine, for example, a case where all the elements with even indices were numbers with very large absolute
value, while those with odd indices were very close to 0.0. Then productPEn might overflow, orPOn

might underflow, even though the final productPn does not. In most real-life applications, however, such

244 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

%edx.3%ecx.0

%ebx.0

i=0

i=2

cc.1

t.1a

imull

%ecx.1

addl

cmpl

jl

%edx.0

imull

%ebx.1

t.1b

load

load
cc.1

t.1a

imull

%ecx.1

addl

cmpl

jl

%edx.0

imull

%ebx.1

t.1b

load

load
cc.2

t.2a

imull

%ecx.2

addl

cmpl

jl

%edx.1

imull

%ebx.2

t.2b

load

load
cc.2

t.2a

imull

%ecx.2

addl

cmpl

jl

%edx.1

imull

%ebx.2

t.2b

load

load

i=4

cc.3

t.3a

imull

%ecx.3

addl

cmpl

jl

%edx.2

imull

%ebx.3

t.3b

load

load

14

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Iteration 1

Iteration 2

Iteration 3

Figure 5.26:Scheduling of Operations for Two-Way Unrolled, Two-Way Parallel Integer Multiplica-
tion with Unlimited Resources. The multiplier can now generate two values every 4 cycles.

5.10. ENHANCING PARALLELISM 245

patterns are unlikely. Since most physical phenomena are continous, numerical data tend to be reasonably
smooth and well-behaved. Even when there are discontinuities, they do not generally cause periodic patterns
that lead to a condition such as that sketched above. It is unlikely that summing the elements in strict order
gives fundamentally better accuracy than does summing two groups independently and then adding those
sums together. For most applications, achieving a performance gain of 2X outweighs the risk of generating
different results for strange data patterns. Nevertheless, a program developer should check with potential
users to see if there are particular conditions that may cause the revised algorithm to be unacceptable.

Just as we can unroll loops by an arbitrary factork, we can also increase the parallelism to any factorp such
thatk is divisible byp. The following are some results for different degrees of unrolling and parallelism:

Method Integer Floating Point
+ * + *

Unroll �2 1.50 4.00 3.00 5.00
Unroll �2, Parallelism�2 1.50 2.00 2.00 2.50
Unroll �4 1.50 4.00 3.00 5.00
Unroll �4, Parallelism�2 1.50 2.00 1.50 2.50
Unroll �8 1.25 4.00 3.00 5.00
Unroll �8, Parallelism�2 1.25 2.00 1.50 2.50
Unroll �8, Parallelism�4 1.25 1.25 1.61 2.00
Unroll �8, Parallelism�8 1.75 1.87 1.87 2.07
Unroll �9, Parallelism�3 1.22 1.33 1.66 2.00

As this table shows, increasing the degree of loop unrolling and the degree of parallelism helps program
performance up to some point, but it yields diminishing improvement or even worse performance when
taken to an extreme. In the next section, we will describe two reasons for this phenomenon.

5.10.2 Register Spilling

The benefits of loop parallelism are limited by the ability to express the computation in assembly code. In
particular, the IA32 instruction set only has a small number of registers to hold the values being accumulated.
If we have a degree of parallelismp that exceeds the number of available registers, then the compiler will
resort tospilling, storing some of the temporary values on the stack. Once this happens, the performance
drops dramatically. This occurs for our benchmarks when we attempt to havep = 8. Our measurements
show the performance for this case is worse than that forp = 4.

For the case of the integer data type, there are only eight total integer registers available. Two of these (%ebp
and%esp) point to regions of the stack. With the pointer version of the code, one of the remaining six holds
the pointerdata, and one holds the stopping positiondend. This leaves only four integer registers for
accumulating values. With the array version of the code, we require three registers to hold the loop indexi ,
the stopping indexlimit, and the array address data. This leaves only three registers for accumulating
values. For the floating-point data type, we need two of eight registers to hold intermediate values, leaving
six for accumulating values. Thus, we could have a maximum parallelism of six before register spilling
occurs.

This limitation to eight integer and eight floating-point registers is an unfortunate artifact of the IA32 instruc-

246 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

tion set. The renaming scheme described previously eliminates the direct correspondence between register
names and the actual location of the register data. In a modern processor, register names serve simply to
identify the program values being passed between the functional units. IA32 provides only a small number
of such identifiers, constraining the amount of parallelism that can be expressed in programs.

The occurrence of spilling can be seen by examining the assembly code. For example, within the first loop
for the code with eight-way parallelism we see the following instruction sequence:

type=INT, OPER = ’*’

x6 in -12(%ebp), data+i in %eax

1 movl -12(%ebp),%edi Get x6 from stack

2 imull 24(%eax),%edi Multiply by data[i+6]

3 movl %edi,-12(%ebp) Put x6 back

In this code, a stack location is being used to holdx6, one of the eight local variables used to accumulate
sums. The code loads it into a register, multiplies it by one of the data elements, and stores it back to the
same stack location. As a general rule, any time a compiled program shows evidence of register spilling
within some heavily used inner loop, it might be preferable to rewrite the code so that fewer temporary
values are required. These include explicitly declared local variables as well as intermediate results being
saved to avoid recomputation.

Practice Problem 5.4:

The following shows the code generated from a variant ofcombine6 that uses eight-way loop unrolling
and four-way parallelism.

1 .L152:
2 addl (%eax),%ecx
3 addl 4(%eax),%esi
4 addl 8(%eax),%edi
5 addl 12(%eax),%ebx
6 addl 16(%eax),%ecx
7 addl 20(%eax),%esi
8 addl 24(%eax),%edi
9 addl 28(%eax),%ebx

10 addl $32,%eax
11 addl $8,%edx
12 cmpl -8(%ebp),%edx
13 jl .L152

A. What program variable has being spilled onto the stack?

B. At what location on the stack?

C. Why is this a good choice of which value to spill?

With floating-point data, we want to keep all of the local variables in the floating-point register stack. We
also need to keep the top of stack available for loading data from memory. This limits us to a degree of
parallelism less than or equal to 7.

5.11. PUTTING IT TOGETHER: SUMMARY OF RESULTS FOR OPTIMIZING COMBINING CODE247

Function Page Method Integer Floating Point
+ * + *

combine1 211 Abstract unoptimized 42.06 41.86 41.44 160.00
combine1 211 Abstract-O2 31.25 33.25 31.25 143.00
combine2 212 Movevec length 20.66 21.25 21.15 135.00
combine3 217 Direct data access 6.00 9.00 8.00 117.00
combine4 219 Accumulate in temporary 2.00 4.00 3.00 5.00
combine5 234 Unroll �4 1.50 4.00 3.00 5.00

Unroll �16 1.06 4.00 3.00 5.00
combine6 241 Unroll �2, Parallelism�2 1.50 2.00 2.00 2.50

Unroll �4, Parallelism�2 1.50 2.00 1.50 2.50
Unroll �8, Parallelism�4 1.25 1.25 1.50 2.00

Worst:Best 39.7 33.5 27.6 80.0

Figure 5.27:Comparative Result for All Combining Routines. The best performing version is shown in
bold face.

5.10.3 Limits to Parallelism

For our benchmarks, the main performance limitations are due to the capabilities of the functional units.
As Figure 5.12 shows, the integer multiplier and the floating-point adder can only initiate a new operation
every clock cycle. This, plus a similar limitation on the load unit limits these cases to a CPE of 1.0. The
floating-point multiplier can only initiate a new operation every two clock cycles. This limits this case to a
CPE of 2.0. Integer sum is limited to a CPE of 1.0, due to the limitations of the load unit. This leads to the
following comparison between the achieved performance versus the theoretical limits:

Method Integer Floating Point
+ * + *

Achieved 1.06 1.25 1.50 2.00
Theoretical Limit 1.00 1.00 1.00 2.00

In this table, we have chosen the combination of unrolling and parallelism that achieves the best perfor-
mance for each case. We have been able to get close to the theoretical limit for integer sum and product
and for floating-point product. Some machine-dependent factor limits the achieved CPE for floating-point
multiplication to 1.50 rather than the theoretical limit of 1.0.

5.11 Putting it Together: Summary of Results for Optimizing Combining
Code

We have now considered six versions of the combining code, some of which had multiple variants. Let us
pause to take a look at the overall effect of this effort, and how our code would do on a different machine.

Figure 5.27 shows the measured performance for all of our routines plus several other variants. As can

248 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

be seen, we achieve maximum performance for the integer sum by simply unrolling the loop many times,
whereas we achieve maximum performance for the other operations by introducing some, but not too much,
parallelism. The overall performance gain of 27.6X and better from our original code is quite impressive.

5.11.1 Floating-Point Performance Anomaly

One of the most striking features of Figure 5.27 is the dramatic drop in the cycle time for floating-point
multiplication when we go fromcombine3, where the product is accumulated in memory, tocombine4
where the product is accumulated in a floating-point register. By making this small change, the code sud-
denly runs 23.4 times faster. When an unexpected result such as this one arises, it is important to hypothesize
what could cause this behavior and then devise a series of tests to evaluate this hypothesis.

Examining the table, it appears that something strange is happening for the case of floating-point multipli-
cation when we accumulate the results in memory. The performance is far worse than for floating-point
addition or integer multiplication, even though the number of cycles for the functional units are comparable.
On an IA32 processor, all floating-point operations are performed in extended 80-bit) precision, and the
floating-point registers store values in this format. Only when the value in a register is written to memory is
it converted to 32-bit (float) or 64-bit (double) format.

Examining the data used for our measurements, the source of the problem becomes clear. The measurements
were performed on a vector of length 1024 having elementi equal toi + 1. Hence, we are attempting to
compute1024!, which is approximately5:4 � 102639. Such a large number can be represented in the
extended-precision floating-point format (it can represent numbers up to around104932), but it far exceeds
what can be represented as a single precision (up to around1038) or double precision (up to around10308).
The single precision case overflows when we reachi = 34, while the double precision case overflows when
we reachi = 171. Once we reach this point, every execution of the statement

*dest = *dest OPER val;

in the inner loop ofcombine3 requires reading the value+1, from dest, multiplying this by val to
get+1 and then storing this back atdest. Evidently, some part of this computation requires much longer
than the normal five clock cycles required by floating-point multiplication. In fact, running measurements
on this operation we find it takes between 110 and 120 cycles to multiply a number by infinity. Most likely,
the hardware detected this as a special case and issued atrap that caused a software routine to perform the
actual computation. The CPU designers felt such an occurrence would be sufficiently rare that they did not
need to deal with it as part of the hardware design. Similar behavior could happen with underflow.

When we run the benchmarks on data for which every vector element equals1:0, combine3 achieves a
CPE of 10.00 cycles for both double and single precision. This is much more in line with the times measured
for the other data types and operations, and comparable to the time forcombine4.

This example illustrates one of the challenges of evaluating program performance. Measurements can be
strongly affected by characteristics of the data and operating conditions that initially seem insignificant.

5.12. BRANCH PREDICTION AND MISPREDICTION PENALTIES 249

Function Page Method Integer Floating Point
+ * + *

combine1 211 Abstract unoptimized 40.14 47.14 52.07 53.71
combine1 211 Abstract-O2 25.08 36.05 37.37 32.02
combine2 212 Movevec length 19.19 32.18 28.73 32.73
combine3 217 Direct data access 6.26 12.52 13.26 13.01
combine4 219 Accumulate in temporary 1.76 9.01 8.01 8.01
combine5 234 Unroll �4 1.51 9.01 6.32 6.32

Unroll �16 1.25 9.01 6.33 6.22
combine6 241 Unroll �4, Parallelism�2 1.19 4.69 4.44 4.45

Unroll �8, Parallelism�4 1.15 4.12 2.34 2.01
Unroll �8, Parallelism�8 1.11 4.24 2.36 2.08

Worst:Best 36.2 11.4 22.3 26.7

Figure 5.28:Comparative Result for All Combining Routines Running on a Compaq Alpha 21164
Processor.The same general optimization techniques are useful on this machine as well.

5.11.2 Changing Platforms

Although we presented our optimization strategies in the context of a specific machine and compiler, the
general principles also apply to other machine and compiler combinations. Of course, the optimal strategy
may be very machine dependent. As an example, Figure 5.28 shows performance results for a Compaq
Alpha 21164 processor for conditions comparable to those for a Pentium III shown in Figure 5.27. These
measurements were taken for code generated by the Compaq C compiler, which applies more advanced
optimizations thanGCC. Observe how the cycle times generally decline as we move down the table, just
as they did for the other machine. We see that we can effectively exploit a higher (eight-way) degree of
parallelism, because the Alpha has 32 integer and 32 floating-point registers. As this example illustrates, the
general principles of program optimization apply to a variety of different machines, even if the particular
combination of features leading to optimum performance depend on the specific machine.

5.12 Branch Prediction and Misprediction Penalties

As we have mentioned, modern processors work well ahead of the currently executing instructions, read-
ing new instructions from memory, and decoding them to determine what operations to perform on what
operands. Thisinstruction pipeliningworks well as long as the instructions follow in a simple sequence.
When a branch is encountered, however, the processor must guess which way the branch will go. For the
case of a conditional jump, this means predicting whether or not the branch will be taken. For an instruction
such as an indirect jump (as we saw in the code to jump to an address specified by a jump table entry) or
a procedure return, this means predicting the target address. In this discussion, we focus on conditional
branches.

In a processor that employsspeculative execution, the processor begins executing the instructions at the
predicted branch target. It does this in a way that avoids modifying any actual register or memory locations

250 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

code/opt/absval.c

1 int absval(int val)
2 {
3 return (val<0) ? -val : val;
4 }

code/opt/absval.c

(a) C code.

1 absval:
2 pushl %ebp
3 movl %esp,%ebp
4 movl 8(%ebp),%eax Get val

5 testl %eax,%eax Test it

6 jge .L3 If >0, goto end

7 negl %eax Else, negate it

8 .L3: end:

9 movl %ebp,%esp
10 popl %ebp
11 ret

(b) Assembly code.

Figure 5.29:Absolute Value CodeWe use this to measure the cost of branch misprediction.

until the actual outcome has been determined. If the prediction is correct, the processor simply “commits”
the results of the speculatively executed instructions by storing them in registers or memory. If the prediction
is incorrect, the processor must discard all of the speculatively executed results, and restart the instruction
fetch process at the correct location. A significantbranch penaltyis incurred in doing this, because the
instruction pipeline must be refilled before useful results are generated.

Once upon a time, the technology required to support speculative execution was considered too costly and
exotic for all but the most advanced supercomputers. Since around 1998, integrated circuit technology has
made it possible to put so much circuitry on one chip that some can be dedicated to supporting branch
prediction and speculative execution. At this point, almost every processor in a desktop or server machine
supports speculative execution.

In optimizing our combining procedure, we did not observe any performance limitation imposed by the loop
structure. That is, it appeared that the only limiting factor to performance was due to the functional units.
For this procedure, the processor was generally able to predict the direction of the branch at the end of the
loop. In fact, if it predicted the branch will always be taken, the processor would be correct on all but the
final iteration.

Many schemes have been devised for predicting branches, and many studies have been made on their per-
formance. A common heuristic is to predict that any branch to a lower address will be taken, while any
branch to a higher address will not be taken. Branches to lower addresses are used to close loops, and since
loops are usually executed many times, predicting these branches as being taken is generally a good idea.
Forward branches, on the other hand, are used for conditional computation. Experiments have shown that
the backward-taken, forward-not-taken heuristic is correct around 65% of the time. Predicting all branches
as being taken, on the other other hand, has a success rate of only around 60%. Far more sophisticated
strategies have been devised, requiring greater amounts of hardware. For example, the Intel Pentium II and
III processors use a branch prediction strategy that is claimed to be correct between 90% and 95% of the
time [29].

We can run experiments to test the branch predication capability of a processor and the cost of a mispredic-
tion. We use the absolute value routine shown in Figure 5.29 as our test case. This figure also shows the
compiled form. For nonnegative arguments, the branch will be taken to skip over the negation instruction.

5.12. BRANCH PREDICTION AND MISPREDICTION PENALTIES 251

We time this function computing the absolute value of every element in an array, with the array consisting
of various patterns of of+1s and�1s. For regular patterns (e.g., all+1s, all�1s, or alternating+1 and
�1s), we find the function requires between 13.01 and 13.41 cycles. We use this as our estimate of the
performance with perfect branch condition. On an array set to random patterns of+1s and�1s, we find
that the function requires 20.32 cycles. One principle of random processes is that no matter what strategy
one uses to guess a sequence of values, if the underlying process is truly random, then we will be right only
50% of the time. For example, no matter what strategy one uses to guess the outcome of a coin toss, as long
as the coin toss is fair, our probability of success is only 0.5. Thus, we can see that a mispredicted branch
with this processor incurs a penalty of around 14 clock cycles, since a misprediction rate of 50% causes the
function to run an average of 7 cycles slower. This means that calls toabsval require between 13 and 27
cycles depending on the success of the branch predictor.

This penalty of 14 cycles is quite large. For example, if our prediction accuracy were only 65%, then the
processor would waste, on average,14 � 0:35 = 4:9 cycles for every branch instruction. Even with the 90
to 95% prediction accuracy claimed for the Pentium II and III, around one cycle is wasted for every branch
due to mispredictions. Studies of actual programs show that branches constitute around 14 to 16% of all
executed instructions in typical “integer” programs (i.e., those that do not process numeric data), and around
3 to 12% of all executed instructions in typical numeric programs[31, Sect. 3.5]. Thus, any wasted time due
to inefficient branch handling can have a significant effect on processor performance.

Many data dependent branches are not at all predictable. For example, there is no basis for guessing whether
an argument to our absolute value routine will be positive or negative. To improve performance on code
involving conditional evaluation, many processor designs have been extended to includeconditional move
instructions. These instructions allow some forms of conditionals to be implemented without any branch
instructions.

With the IA32 instruction set, a number of differentcmov instructions were added starting with the Pen-
tiumPro. These are supported by all recent Intel and Intel-compatible processors. These instructions perform
an operation similar to the C code:

if (COND)
x = y;

wherey is the source operand andx is the destination operand. The conditionCONDdetermining whether
the copy operation takes place is based on some combination of condition code values, similar to the test and
conditional jump instructions. As an example, thecmovll instruction performs a copy when the condition
codes indicate a value less than zero. Note that the first ‘l ’ of this instruction indicates “less,” while the
second is theGAS suffix for long word.

The following assembly code shows how to implement absolute value with conditional move.

1 movl 8(%ebp),%eax Get val as result

2 movl %eax,%edx Copy to %edx

3 negl %edx Negate %edx

4 testl %eax,%eax Test val

Conditionally move %edx to %eax

5 cmovll %edx,%eax If < 0, copy %edx to result

252 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

As this code shows, the strategy is to setval as a return value, compute-val, and conditionally move it to
register%eax to change the return value whenval is negative. Our measurements of this code shows that
it runs for 13.7 cycles regardless of the data patterns. This clearly yields better overall performance than a
procedure that requires between 13 and 27 cycles.

Practice Problem 5.5:

A friend of yours has written an optimizing compiler that makes use of conditional move instructions.
You try compiling the following C code:

1 /* Dereference pointer or return 0 if null */
2 int deref(int *xp)
3 {
4 return xp ? *xp : 0;
5 }

The compiler generates the following code for the body of the procedure.

1 movl 8(%ebp),%edx Get xp

2 movl (%edx),%eax Get *xp as result

3 testl %edx,%edx Test xp

4 cmovll %edx,%eax If 0, copy 0 to result

Explain why this code does not provide a valid implementation ofderef

The current version ofGCC does not generate any code using conditional moves. Due to a desire to remain
compatible with earlier 486 and Pentium processors, the compiler does not take advantage of these new
features. In our experiments, we used the handwritten assembly code shown above. A version usingGCC’s
facility to embed assembly code within a C program (Section 3.15) required 17.1 cycles due to poorer
quality code generation.

Unfortunately, there is not much a C programmer can do to improve the branch performance of a program,
except to recognize that data-dependent branches incur a high cost in terms of performance. Beyond this,
the programmer has little control over the detailed branch structure generated by the compiler, and it is hard
to make branches more predictable. Ultimately, we must rely on a combination of good code generation by
the compiler to minimize the use of conditional branches, and effective branch prediction by the processor
to reduce the number of branch mispredictions.

5.13 Understanding Memory Performance

All of the code we have written, and all the tests we have run, require relatively small amounts of memory.
For example, the combining routines were measured over vectors of length 1024, requiring no more than
8,096 bytes of data. All modern processors contain one or morecachememories to provide fast access to
such small amounts of memory. All of the timings in Figure 5.12 assume that the data being read or written

5.13. UNDERSTANDING MEMORY PERFORMANCE 253

code/opt/list.c

1 typedef struct ELE {
2 struct ELE *next;
3 int data;
4 } list_ele, *list_ptr;
5

6 static int list_len(list_ptr ls)
7 {
8 int len = 0;
9

10 for (; ls; ls = ls->next)
11 len++;
12 return len;
13 }

code/opt/list.c

Figure 5.30:Linked List Functions. These illustrate the latency of the load operation.

is contained in cache. In Chapter 6, we go into much more detail about how caches work and how to write
code that makes best use of the cache.

In this section, we will further investigate the performance of load and store operations while maintaining
the assumption that the data being read or written are held in cache. As Figure 5.12 shows, both of these
units have a latency of 3, and an issue time of 1. All of our programs so far have used only load operations,
and they have had the property that the address of one load depended on incrementing some register, rather
than as the result of another load. Thus, as shown in Figures 5.15 to 5.18, 5.21 and 5.26, the load operations
could take advantage of pipelining to initiate new load operations on every cycle. The relatively long latency
of the load operation has not had any adverse affect on program performance.

5.13.1 Load Latency

As an example of code whose performance is constrained by the latency of the load operation, consider the
function list_len, shown in Figure 5.30. This function computes the length of a linked list. In the loop
of this function, each successive value of variablels depends on the value read by the pointer reference
ls->next. Our measurements show that functionlist_len has a CPE of 3.00, which we claim is a
direct reflection of the latency of the load operation. To see this, consider the assembly code for the loop,
and the translation of its first iteration into operations:

Assembly Instructions Execution Unit Operations
.L27:

incl %eax incl %eax.0 ! %eax.1
movl (%edx),%edx load (%edx.0) ! %edx.1
testl %edx,%edx testl %edx.1,%edx.1 ! cc.1
jne .L27 jne-taken cc.1

254 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

i=0

Cycle

1

2

3

4

5

6

7

8

9

10

11

Cycle

1

2

3

4

5

6

7

8

9

10

11

cc.1

%edx.1

load

incl

testl

jne

%eax.0

%edx.0

cc.2

%edx.2

load

incl

testl

jne

Iteration 1

cc.3

%edx.3

load

incl

testl

jne

%eax.1

%eax.2

%eax.3

Iteration 2

Iteration 3

i=1

i=2

Figure 5.31:Scheduling of Operations for List Length Function. The latency of the load operation limits
the CPE to a minimum of 3.0.

5.13. UNDERSTANDING MEMORY PERFORMANCE 255

code/opt/copy.c

1 /* Set element of array to 0 */
2 static void array_clear(int *src, int *dest, int n)
3 {
4 int i;
5

6 for (i = 0; i < n; i++)
7 dest[i] = 0;
8 }
9

10 /* Set elements of array to 0, unrolling by 8 */
11 static void array_clear_8(int *src, int *dest, int n)
12 {
13 int i;
14 int len = n - 7;
15

16 for (i = 0; i < len; i+=8) {
17 dest[i] = 0;
18 dest[i+1] = 0;
19 dest[i+2] = 0;
20 dest[i+3] = 0;
21 dest[i+4] = 0;
22 dest[i+5] = 0;
23 dest[i+6] = 0;
24 dest[i+7] = 0;
25 }
26 for (; i < n; i++)
27 dest[i] = 0;
28 }

code/opt/copy.c

Figure 5.32:Functions to Clear Array. These illustrate the pipelining of the store operation.

Each successive value of register%edxdepends on the result of a load operation having%edxas an operand.
Figure 5.31 shows the scheduling of operations for the first three iterations of this function. As can be seen,
the latency of the load operation limits the CPE to 3.0.

5.13.2 Store Latency

In all of our examples so far, we have interacted with the memory only by using the load operation to
read from a memory location into a register. Its counterpart, thestoreoperation, writes a register value to
memory. As Figure 5.12 indicates, this operation also has a nominal latency of three cycles, and an issue
time of one cycle. However, its behavior, and its interactions with load operations, involve several subtle
issues.

As with the load operation, in most cases the store operation can operate in a fully pipelined mode, beginning

256 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

code/opt/copy.c

1 /* Write to dest, read from src */
2 static void write_read(int *src, int *dest, int n)
3 {
4 int cnt = n;
5 int val = 0;
6

7 while (cnt--) {
8 *dest = val;
9 val = (*src)+1;

10 }
11 }

code/opt/copy.c

cnt

a

3

Initial

–10 17

0val

2

Iter. 1

0 17

1

1

Iter. 2

1 17

2

0

Iter. 3

2 17

3

Example B: write_read(&a[0],&a[0],3)

cnt

a

3

Initial

–10 17

0val

2

Iter. 1

0 17

1

1

Iter. 2

1 17

2

0

Iter. 3

2 17

3

cnt

a

3

Initial

–10 17

0

3

Initial

–10 17

0val

2

Iter. 1

0 17

1

2

Iter. 1

0 17

1

1

Iter. 2

1 17

2

1

Iter. 2

1 17

2

0

Iter. 3

2 17

3

0

Iter. 3

2 17

3

Example B: write_read(&a[0],&a[0],3)

cnt

a

3

Initial

–10 17

0val

2

Iter. 1

–10 0

–9

1

Iter. 2

–10 –9

–9

0

Iter. 3

–10 –9

–9

Example A: write_read(&a[0],&a[1],3)

cnt

a

3

Initial

–10 17

0val

2

Iter. 1

–10 0

–9

1

Iter. 2

–10 –9

–9

0

Iter. 3

–10 –9

–9

cnt

a

3

Initial

–10 17

0

3

Initial

–10 17

0val

2

Iter. 1

–10 0

–9

2

Iter. 1

–10 0

–9

1

Iter. 2

–10 –9

–9

1

Iter. 2

–10 –9

–9

0

Iter. 3

–10 –9

–9

0

Iter. 3

–10 –9

–9

Example A: write_read(&a[0],&a[1],3)

Figure 5.33:Code to Write and Read Memory Locations, Along with Illustrative Executions. This
function highlights the interactions between stores and loads when argumentssrc anddest are equal.

a new store on every cycle. For example, consider the functions shown in Figure 5.32 that set the elements
of an arraydest of lengthn to zero. Our measurements for the first version show a CPE of 2.00. Since
each iteration requires a store operation, it is clear that the processor can begin a new store operation at
least once every two cycles. To probe further, we try unrolling the loop eight times, as shown in the code
for array_clear_8. For this one we measure a CPE of 1.25. That is, each iteration requires around ten
cycles and issues eight store operations. Thus, we have nearly achieved the optimum limit of one new store
operation per cycle.

Unlike the other operations we have considered so far, the store operation does not affect any register values.
Thus, by their very nature a series of store operations must be independent from each other. In fact, only
a load operation is affected by the result of a store operation, since only a load can read back the memory
location that has been written by the store. The functionwrite_read shown in Figure 5.33 illustrates
the potential interactions between loads and stores. This figure also shows two example executions of this

5.13. UNDERSTANDING MEMORY PERFORMANCE 257

Load Unit Store Unit

Data Cache

DataAddress

Store Buffer

Address

Data

DataAddress

Matching
Addresses

Address Data

Figure 5.34:Detail of Load and Store Units.The store unit maintains a buffer of pending writes. The load
unit must check its address with those in the store unit to detect a write/read dependency.

function, when it is called for a two-element arraya, with initial contents�10 and17, and with argument
cnt equal to 3. These executions illustrate some subtleties of the load and store operations.

In example A of Figure 5.33, argumentsrc is a pointer to array elementa[0], while dest is a pointer
to array elementa[1]. In this case, each load by the pointer reference*src will yield the value�10.
Hence, after two iterations, the array elements will remain fixed at�10 and�9, respectively. The result of
the read fromsrc is not affected by the write todest. Measuring this example, but over a larger number
of iterations, gives a CPE of 2.00.

In example B of Figure 5.33(a), both argumentssrc anddest are pointers to array elementa[0]. In this
case, each load by the pointer reference*src will yield the value stored by the previous execution of the
pointer reference*dest. As a consequence, a series of ascending values will be stored in this location. In
general, if functionwrite_read is called with argumentssrc anddest pointing to the same memory
location, and with argumentcnt having some valuen > 0, the net effect is to set the location ton � 1.
This example illustrates a phenomenon we will callwrite/read dependency—the outcome of a memory read
depends on a very recent memory write. Our performance measurements show that example B has a CPE
of 6.00. The write/read dependency causes a slowdown in the processing.

To see how the processor can distinguish between these two cases and why one runs slower than another,
we must take a more detailed look at the load and store execution units, as shown in Figure 5.34. The store
unit contains astore buffercontaining the addresses and data of the store operations that have been issued
to the store unit, but have not yet been completed, where completion involves updating the data cache. This
buffer is provided so that a series of store operations can be executed without having to wait for each one to
update the cache. When a load operation occurs, it must check the entries in the store buffer for matching
addresses. If it finds a match, it retrieves the corresponding data entry as the result of the load operation.

The assembly code for the inner loop, and its translation into operations during the first iteration, is as
follows:

258 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

Cycle

1

2

3

4

5

6

7

Cycle

1

2

3

4

5

6

7

Iteration 1

cc.1

%edx.1b

load

decl

incl

jnc

%eax.0

%eax.1

%edx.1a

store
addr

store
data

%edx.0
≠

cc.2

%edx.2b

load

decl

incl

jnc

%eax.2

%edx.2a

store
addr

store
data

≠

Iteration 2

Figure 5.35:Timing of write read for Example A. The store and load operations have different ad-
dresses, and so the load can proceed without waiting for the store.

Assembly Instructions Execution Unit Operations
.L32:

movl %edx,(%ecx) storeaddr (%ecx)
storedata %edx.0

movl (%ebx),%edx load (%ebx) ! %edx.1a
incl %edx incl %edx.1a ! %edx.1b
decl %eax decl $eax.0 ! %eax.1
jnc .L32 jnc-taken cc.1

Observe that the instructionmovl %edx,(%ecx) is translated into two operations: thestoreaddr
instruction computes the address for the store operation, creates an entry in the store buffer, and sets the
address field for that entry. Thestoredata instruction sets the data field for the entry. Since there is only
one store unit, and store operations are processed in program order, there is no ambiguity about how the two
operations match up. As we will see, the fact that these two computations are performed independently can
be important to program performance.

Figure 5.35 shows the timing of the operations for the first two iterations ofwrite_read for the case of
example A. As indicated by the dotted line between thestoreaddr and load operations, thestore-
addr operation creates an entry in the store buffer, which is then checked by theload. Since these are
unequal, the load proceeds to read the data from the cache. Even though the store operation has not been
completed, the processor can detect that it will affect a different memory location than the load is trying to
read. This process is repeated on the second iteration as well. Here we can see that thestoredata oper-
ation must wait until the result from the previous iteration has been loaded and incremented. Long before
this, thestoreaddr operation and theload operations can match up their adddresses, determine they are
different, and allow the load to proceed. In our computation graph, we show the load for the second iteration
beginning just one cycle after the load from the first. If continued for more iterations, we would find the

5.13. UNDERSTANDING MEMORY PERFORMANCE 259

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

Cycle

1

2

3

4

5

6

7

8

9

10

11

12

Iteration 1

cc.1

%edx.1b

decl

incl

jnc

%eax.0

%eax.1

%edx.1a

store
addr

%edx.0
=

cc.2

%edx.2b

load

decl

incl

jnc

%eax.2

%edx.2a

store
addr

=

Iteration 2

load

store
data

store
data

Figure 5.36:Timing of write read for Example B. The store and load operations have the same address,
and hence the load must wait until it can get the result from the store.

graph indicates a CPE of 1.0. Evidentally, some other resource constraint limits the actual performance to a
CPE of 2.0.

Figure 5.36 shows the timing of the operations for the first two iterations ofwrite_read for the case
of example B. Again, the dotted line between thestoreaddr and load operations indicates that the
thestoreaddr operation creates an entry in the store buffer which is then checked by theload. Since
these are equal, the load must wait until thestoredata operation has completed, and then it gets the data
from the store buffer. This waiting is indicated in the graph by a much more elongated box for theload
operation. In addition, we show a dashed arrow from thestoredata to theload operations to indicate
that the result of thestoredata is passed to theload as its result. Our timings of these operations are
drawn to reflect the measured CPE of 6.0. Exactly how this timing arises is not totally clear, however, and
so these figures are intended to be more illustrative than factual. In general, the processor/memory interface
is one of the most complex portions of a processor design. Without access to detailed documentation and
machine analysis tools, we can only give a hypothetical description of the actual behavior.

As these two examples show, the implementation of memory operations involves many subtleties. With
operations on registers, the processor can determine which instructions will affect which others as they are
being decoded into operations. With memory operations, on the other hand, the processor cannot predict
which will affect which others until the load and store addresses have been computed. Since memory

260 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

operations make up a significant fraction of the program, the memory subsystem is optimized to run with
greater parallelism for independent memory operations.

Practice Problem 5.6:

As another example of code with potential load-store interactions, consider the following function to
copy the contents of one array to another:

1 static void copy_array(int *src, int *dest, int n)
2 {
3 int i;
4

5 for (i = 0; i < n; i++)
6 dest[i] = src[i];
7 }

Supposea is an array of length 1000 initialized so that each elementa[i] equalsi.

A. What would be the effect of the callcopy_array(a+1,a,999) ?

B. What would be the effect of the callcopy_array(a,a+1,999) ?

C. Our performance measurements indicate that the call of part A has a CPE of 3.00, while the call
of part B has a CPE of 5.00. To what factor do you attribute this performance difference?

D. What performance would you expect for the callcopy_array(a,a,999) ?

5.14 Life in the Real World: Performance Improvement Techniques

Although we have only considered a limited set of applications, we can draw important lessons on how to
write efficient code. We have described a number of basic strategies for optimizing program performance:

1. High-level design. Choose appropriate algorithms and data structures for the problem at hand. Be es-
pecially vigilant to avoid algorithms or coding techniques that yield asymptotically poor performance.

2. Basic coding principles. Avoid optimization blockers so that a compiler can generate efficient code.

(a) Eliminate excessive function calls. Move computations out of loops when possible. Consider
selective compromises of program modularity to gain greater efficiency.

(b) Eliminate unnecessary memory references. Introduce temporary variables to hold intermediate
results. Store a result in an array or global variable only when the final value has been computed.

3. Low-level optimizations.

(a) Try various forms of pointer versus array code.

(b) Reduce loop overhead by unrolling loops.

(c) Find ways to make use of the pipelined functional units by techniques such as iteration splitting.

5.15. IDENTIFYING AND ELIMINATING PERFORMANCE BOTTLENECKS 261

A final word of advice to the reader is to be careful to avoid expending effort on misleading results. One
useful technique is to use checking code to test each version of the code as it is being optimized to make sure
no bugs are introduced during this process. Checking code applies a series of tests to the program and makes
sure it obtains the desired results. It is very easy to make mistakes when one is introducing new variables,
changing loop bounds, and making the code more complex overall. In addition, it is important to notice any
unusual or unexpected changes in performance. As we have shown, the selection of the benchmark data can
make a big difference in performance comparisons due to performance anomalies, and because we are only
executing short instruction sequences.

5.15 Identifying and Eliminating Performance Bottlenecks

Up to this point, we have only considered optimizing small programs, where there is some clear place in the
program that requires optimization. When working with large programs, even knowing where to focus our
optimizations efforts can be difficult. In this section we describe how to usecode profilers, analysis tools
that collect performance data about a program as it executes. We also present a general principle of system
optimization known asAmdahl’s Law.

5.15.1 Program Profiling

Programprofiling involves running a version of a program in which instrumentation code has been incor-
porated to determine how much time the different parts of the program require. It can be very useful for
identifying the parts of a program on which we should focus our optimization efforts. One strength of
profiling is that it can be performed while running the actual program on realistic benchmark data.

Unix systems provide the profiling programGPROF. This program generates two forms of information.
First, it determines how much CPU time was spent for each of the functions in the program. Second, it
computes a count of how many times each function gets called, categorized by which function performs the
call. Both forms of information can be quite useful. The timings give a sense of the relative importance of
the different functions in determining the overall run time. The calling information allows us to understand
the dynamic behavior of the program.

Profiling with GPROF requires three steps. We show this for a C programprog.c, to be running with
command line argumentfile.txt:

1. The program must be compiled and linked for profiling. WithGCC (and other C compilers) this
involves simply including the run-time flag ‘-pg’ on the command line:

unix> gcc -O2 -pg prog.c -o prog

2. The program is then executed as usual:

unix> ./prog file.txt

It runs slightly (up to a factor of two) slower than normal, but otherwise the only difference is that it
generates a filegmon.out.

262 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

3. GPROFis invoked to analyze the data ingmon.out.

unix> gprof prog

The first part of the profile report lists the times spent executing the different functions, sorted in descending
order. As an example, the following shows this part of the report for the first three functions in a program:

% cumulative self self total
time seconds seconds calls ms/call ms/call name
85.62 7.80 7.80 1 7800.00 7800.00 sort_words

6.59 8.40 0.60 946596 0.00 0.00 find_ele_rec
4.50 8.81 0.41 946596 0.00 0.00 lower1

Each row represents the time spent for all calls to some function. The first column indicates the percentage
of the overall time spent on the function. The second shows the cumulative time spent by the functions up
to and including the one on this row. The third shows the time spent on this particular function, and the
fourth shows how many times it was called (not counting recursive calls). In our example, the function
sort_words was called only once, but this single call required 7.80 seconds, while the functionlower1
was called 946,596 times, requiring a total of 0.41 seconds.

The second part of the profile report shows the calling history of the function. The following is the history
for a recursive functionfind_ele_rec:

4872758 find_ele_rec [5]
0.60 0.01 946596/946596 insert_string [4]

[5] 6.7 0.60 0.01 946596+4872758 find_ele_rec [5]
0.00 0.01 26946/26946 save_string [9]
0.00 0.00 26946/26946 new_ele [11]

4872758 find_ele_rec [5]

This history shows both the functions that calledfind_ele_rec, as well as the functions that it called. In
the upper part, we find that the function was actually called 5,819,354 times (shown as “946596+4872758”)—
4,872,758 times by itself, and 946,596 times by functioninsert_string (which itself was called
946,596 times). Functionfind_ele_rec in turn called two other functions:save_string andnew_ele,
each a total of 26,946 times.

From this calling information, we can often infer useful information about the program behavior. For exam-
ple, the functionfind_ele_rec is a recursive procedure that scans a linked list looking for a particular
string. Given that the ratio of recursive to top-level calls was 5.15, we can infer that it required scanning an
average of around 6 elements each time.

Some properties ofGPROFare worth noting:

� The timing is not very precise. It is based on a simpleinterval countingscheme, as will be discussed
in Chapter 9. In brief, the compiled program maintains a counter for each function recording the
time spent executing that function. The operating system causes the program to be interrupted at
some regular time intervalÆ. Typical values ofÆ range between 1.0 and 10.0 milliseconds. It then
determines what function the program was executing when the interrupt occurs and increments the

5.15. IDENTIFYING AND ELIMINATING PERFORMANCE BOTTLENECKS 263

counter for that function byÆ. Of course, it may happen that this function just started executing and
will shortly be completed, but it is assigned the full cost of the execution since the previous interrupt.
Some other function may run between two interrupts and therefore not be charged any time at all.

Over a long duration, this scheme works reasonably well. Statistically, every function should be
charged according to the relative time spent executing it. For programs that run for less than around
one second, however, the numbers should be viewed as only rough estimates.

� The calling information is quite reliable. The compiled program maintains a counter for each combi-
nation of caller and callee. The appropriate counter is incremented every time a procedure is called.

� By default, the timings for library functions are not shown. Instead, these times are incorporated into
the times for the calling functions.

5.15.2 Using a Profiler to Guide Optimization

As an example of using a profiler to guide program optimization, we created an application that involves
several different tasks and data structures. This application reads a text file, creates a table of unique words
and how many times each word occurs, and then sorts the words in descending order of occurrence. As
a benchmark, we ran it on a file consisting of the complete works of William Shakespeare. From this, we
determined that Shakespeare wrote a total of 946,596 words, of which 26,946 are unique. The most common
word was “the,” occurring 29,801 times. The word “love” occurs 2249 times, while “death” occurs 933.

Our program consists of the following parts. We created a series of versions, starting with naive algorithms
for the different parts, and then replacing them with more sophisticated ones:

1. Each word is read from the file and converted to lower case. Our initial version used the function
lower1 (Figure 5.7), which we know to have quadratic complexity.

2. A hash function is applied to the string to create a number between 0 ands� 1, for a hash table with
s buckets. Our initial function simply summed the ASCII codes for the characters modulos.

3. Each hash bucket is organized as a linked list. The program scans down this list looking for a matching
entry. If one is found, the frequency for this word is incremented. Otherwise, a new list element is
created. Our initial version performed this operation recursively, inserting new elements at the end of
the list.

4. Once the table has been generated, we sort all of the elements according to the frequencies. Our initial
version used insertion sort.

Figure 5.37 shows the profile results for different versions of our word-frequency analysis program. For
each version, we divide the time into five categories:

Sort Sorting the words by frequency.

List Scanning the linked list for a matching word, inserting a new element if necessary.

Lower Converting the string to lower case.

264 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

0

1

2

3

4

5

6

7

8

9

10

Initial Quicksort Iter First Iter Last Big Table Better Hash Linear Lower

C
P

U
 S

e
c

s
.. Rest

Hash

Lower

List

Sort

(a) All versions.

0

0.2

0.4

0.6

0 8.

1

1.2

1.4

1.6

1.8

2

Quicksort Iter First Iter Last Big Table Better Hash Linear Lower

C
P

U
 S

ec
o

n
d

s
. Rest

Hash

Lower

List

Sort

(b) All but the slowest version.

Figure 5.37:Profile Results for Different Version of Word Frequency Counting Program. Time is
divided according to the different major operations in the program.

5.15. IDENTIFYING AND ELIMINATING PERFORMANCE BOTTLENECKS 265

Hash Computing the hash function.

Rest The sum of all other functions.

As part (a) of the figure shows, our initial version requires over 9 seconds, with most of the time spent
sorting. This is not surprising, since insertion sort has quadratic complexity, and the program sorted nearly
27,000 values.

In our next version, we performed sorting using the library functionqsort, which is based on the quicksort
algorithm. This version is labeled “Quicksort” in the figure. The more efficient sorting algorithm reduces
the time spent sorting to become negligible, and the overall run time to around 1.2 seconds. Part (b) of the
figure shows the times for the remaining version on a scale where we can see them better.

With improved sorting, we now find that list scanning becomes the bottleneck. Thinking that the inefficiency
is due to the recursive structure of the function, we replaced it by an iterative one, shown as “Iter First.”
Surprisingly, the run time increases to around 1.8 seconds. On closer study, we find a subtle difference
between the two list functions. The recursive version inserted new elements at the end of the list, while the
iterative one inserted them at the front. To maximize performance, we want the most frequent words to occur
near the beginnings of the lists. That way, the function will quickly locate the common cases. Assuming
words are spread uniformly throughout the document, we would expect the first occurrence of a frequent
one come before that of a less frequent one. By inserting new words at the end, the first function tended to
order words in descending order of frequency, while the second function tended to do just the opposite. We
therefore created a third list scanning function that uses iteration but inserts new elements at the end of this
list. With this version, shown as “Iter Last,” the time dropped to around 1.0 seconds, just slightly better than
with the recursive version.

Next, we consider the hash table structure. The initial version had only 1021 buckets (typically, the num-
ber of buckets is chosen to be a prime number to enhance the ability of the hash function to distribute
keys uniformly among the buckets). For a table with 26,946 entries, this would imply an averageload
of 26946=1007 = 26:4. That explains why so much of the time is spent performing list operations—the
searches involve testing a significant number of candidate words. It also explains why the performance is so
sensitive to the list ordering. We then increased the number of buckets to 10,007, reducing the average load
to 2:70. Oddly enough, however, our overall run time increased to 1.11 seconds. The profile results indicate
that this additional time was mostly spent with the lower-case conversion routine, although this is highly
unlikely. Our run times are sufficiently short that we cannot expect very high accuracy with these timings.

We hypothesized that the poor performance with a larger table was due to a poor choice of hash function.
Simply summing the character codes does not produce a very wide range of values and does not differentiate
according to the ordering of the characters. For example, the words “god” and “dog” would hash to location
147 + 157 + 144 = 448, since they contain the same characters. The word “foe” would also hash to this
location, since146 + 157 + 145 = 448. We switched to a hash function that uses shift andEXCLUSIVE-OR

operations. With this version, shown as “Better Hash,” the time drops to 0.84 seconds. A more systematic
approach would be to study the distribution of keys among the buckets more carefully, making sure that it
comes close to what one would expect if the hash function had a uniform output distribution.

Finally, we have reduced the run time to the point where one half of the time is spent performing lower-case
conversion. We have already seen that functionlower1 has very poor performance, especially for long
strings. The words in this document are short enough to avoid the disasterous consequences of quadratic pe-

266 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

formance; the longest word (“honorificabilitudinitatibus”) is 27 characters long. Still, switching tolower2,
shown as “Linear Lower” yields a significant performance, with the overall time dropping to 0.52 seconds.

With this exercise, we have shown that code profiling can help drop the time required for a simple application
from 9.11 seconds down to 0.52—a factor of 17.5 improvement. The profiler helps us focus our attentionon
the most time-consuming parts of the program and also provides useful information about the procedure call
structure.

We can see that profiling is a useful tool to have in the toolbox, but it should not be the only one. The
timing measurements are imperfect, especially for shorter (under one second) run times. The results apply
only to the particular data tested. For example, if we had run the original function on data consisting of a
smaller number of longer strings, we would have found that the lower-case conversion routine was the major
performance bottleneck. Even worse, if only profiled documents with short words, we might never never
detect hidden performance killers such as the quadratic performance oflower1. In general, profiling can
help us optimize fortypical cases, assuming we run the program on representative data, but we should also
make sure the program will have respectable performance for all possible cases. This is mainly involves
avoiding algorithms (such as insertion sort) and bad programming practices (such aslower1) that yield
poor asymptotic performance.

5.15.3 Amdahl’s Law

Gene Amdahl, one of the early pioneers in computing, made a simple, but insightful observation about the
effectiveness of improving the performance of one part of a system. This observation is therefore called
Amdahl’s Law. The main idea is that when we speed up one part of a system, the effect on the overall
system performance depends on both how significant this part was and how much it sped up. Consider a
system where executing some application requires timeTold . Suppose, some part of the system requires
a fraction� of this time, and that we improve its performance by a factor ofk. That is, the component
originally required time�Told , and it now requires time(�Told)=k. The overall execution time will be:

Tnew = (1� �)Told + (�Told)=k

= Told [(1� �) + �=k]:

From this, we can compute the speedupS = Told=Tnew as:

S =
1

(1� �) + �=k
(5.1)

As an example, consider the case where a part of the system that initially consumed 60% of the time
(� = 0:6) is sped up by a factor of 3 (k = 10). Then we get a speedup of1=[0:4 + 0:6=3] = 1:67.
Thus, even though we made a substantial improvement to a major part of the system, our net speedup was
significantly less. This is the major insight of Amdahl’s Law—to significantly speed up the entire system,
we must improve the speed of a very large fraction of the overall system.

Practice Problem 5.7:

The marketing department at your company has promised your customers that the next software re-
lease will show a 2X performance improvement. You have been assigned the task of delivering on that

5.16. SUMMARY 267

promise. You have determined that only 80% of the system can be improved. How much (i.e., what
value ofk) would you need to improve this part to meet the overall performance target?

One interesting special case of Amdahl’s Law is to consider the case wherek = 1. That is, we are able
to take some part of the system and speed it up to the point where it takes a negligible amount of time. We
then get

S1 =
1

(1� �)
(5.2)

So, for example, if we can speed up 60% of the system to the point where it requires close to no time, our net
speedup will still only be1=0:4 = 2:5. We saw this performance with our dictionary program as we replaced
insertion sort by quicksort. The initial version spent 7.8 of its 9.1 seconds performing insertion sort, giving
� = :86. With quicksort, the time spent sorting becomes negligible, giving a predicted speedup of 7.1. In
fact the actual speedup was higher:9:11=1:22 = 7:5, due to inaccuracies in the profiling measurements for
the initial version. We were able to gain a large speedup because sorting constituted a very large fraction of
the overall execution time.

Amdahl’s Law describes a general principle for improving any process. In addition to applying to speeding
up computer systems, it can guide company trying to reduce the cost of manufacturing razor blades, or to
a student trying to improve his or her gradepoint average. Perhaps it is most meaningful in the world of
computers, where we routinely improve performance by factors of two or more. Such high factors can only
be obtained by optimizing a large part of the system.

5.16 Summary

Although most presentations on code optimization describe how compilers can generate efficient code, much
can be done by an application programmer to assist the compiler in this task. No compiler can replace an
inefficient algorithm or data structure by a good one, and so these aspects of program design should remain
a primary concern for programmers. We have also see that optimization blockers, such as memory aliasing
and procedure calls, seriously restrict the ability of compilers to perform extensive optimizations. Again,
the programmer must take primary responsibility in eliminating these.

Beyond this, we have studied a series of techniques, including loop unrolling, iteration splitting, and pointer
arithmetic. As we get deeper into the optimization, it becomes important to study the generated assembly
code, and to try to understand how the computation is being performed by the machine. For execution on
a modern, out-of-order processor, much can be gained by analyzing how the program would execute on a
machine with unlimited processing resources, but where the latencies and the issue times of the functional
units match those of the target processor. To refine this analysis, we should also consider such resource
constraints as the number and types of functional units.

Programs that involve conditional branches or complex interactions with the memory system are more
difficult to analyze and optimize than the simple loop programs we first considered. The basic strategy
is to try to make loops more predictable and to try to reduce interactions between store and load operations.

When working with large programs, it becomes important to focus our optimization efforts on the parts that
consume the most time. Code profilers and related tools can help us systematically evaluate and improve

268 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

program performance. We describedGPROF, a standard Unix profiling tool. More sophisticated profilers
are available, such as theVTUNE program development system from Intel. These tools can break down the
execution time below the procedure level, to measure performance of eachbasic blockof the program. A
basic block is a sequence of instructions with no conditional operations.

Amdahl’s Law provides a simple, but powerful insight into the performance gains obtained by improving
just one part of the system. The gain depends both on how much we improve this part and how large a
fraction of the overall time this part originally required.

Bibliographic Notes

Many books have been written about compiler optimization techniques. Muchnick’s book is considered the
most comprehensive [52]. Wadleigh and Crawford’s book on software optimization [81] covers some of the
material we have, but also describes the process of getting high performance on parallel machines.

Our presentation of the operation of an out-of-order processor is fairly brief and abstract. More complete
descriptions of the general principles can be found in advanced computer architecture textbooks, such as
the one by Hennessy and Patterson [31, Ch. 4]. Shriver and Smith give a detailed presentation of an AMD
processor [65] that bears many similarities to the one we have described.

Amdahl’s Law is presented in most books on computer architecture. With its major focus on quantitative
system evaluation, Hennessy and Patterson’s book [31] provides a particularly good treatment.

Homework Problems

Homework Problem 5.8[Category 2]:

Suppose that we wish to write a procedure that computes the inner product of two vectors. An abstract
version of the function has a CPE of 54 for both integer and floating-point data. By doing the same sort of
transformations we did to transform the abstract programcombine1 into the more efficientcombine4,
we get the following code:

1 /* Accumulate in temporary */
2 void inner4(vec_ptr u, vec_ptr v, data_t *dest)
3 {
4 int i;
5 int length = vec_length(u);
6 data_t *udata = get_vec_start(u);
7 data_t *vdata = get_vec_start(v);
8 data_t sum = (data_t) 0;
9

10 for (i = 0; i < length; i++) {
11 sum = sum + udata[i] * vdata[i];
12 }
13 *dest = sum;
14 }

5.16. SUMMARY 269

Our measurements show that this function requires 3.11 cycles per iteration for integer data. The assembly
code for the inner loop is:

udata in %esi, vdata in %ebx, i in %edx, sum in %ecx, length in %edi

1 .L24: loop:

2 movl (%esi,%edx,4),%eax Get udata[i]

3 imull (%ebx,%edx,4),%eax Multiply by vdata[i]

4 addl %eax,%ecx Add to sum

5 incl %edx i++

6 cmpl %edi,%edx Compare i:length

7 jl .L24 If <, goto loop

Assume that integer multiplication is performed by the general integer functional unit and that this unit is
pipelined. This means that one cycle after a multiplication has started, a new integer operation (multiplica-
tion or otherwise) can begin. Assume also that the Integer/Branch function unit can perform simple integer
operations.

A. Show a translation of these lines of assembly code into a sequence of operations. Themovl instruc-
tion translates into a singleload operation. Register%eaxgets updated twice in the loop. Label the
different versions%eax.1a and%eax.1b.

B. Explain how the function can go faster than the number of cycles required for integer multiplication.

C. Explain what factor limits the performance of this code to at best a CPE of 2.5.

D. For floating-point data, we get a CPE of 3.5. Without needing to examine the assembly code, describe
a factor that will limit the performance to at best 3 cycles per iteration.

Homework Problem 5.9[Category 1]:

Write a version of the inner product procedure described in Problem 5.8 that uses four-way loop unrolling.

Our measurements for this procedure give a CPE of 2.20 for integer data and 3.50 for floating point.

A. Explain why any version of any inner product procedure cannot achieve a CPE better than 2.

B. Explain why the performance for floating point did not improve with loop unrolling.

Homework Problem 5.10[Category 1]:

Write a version of the inner product procedure described in Problem 5.8 that uses four-way loop unrolling
and two-way parallelism.

Our measurements for this procedure give a CPE of 2.25 for floating-point data. Describe two factors that
limit the performance to a CPE of at best 2.0.

Homework Problem 5.11[Category 2]:

270 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

You’ve just joined a programming team that is trying to develop the world’s fastest factorial routine. Starting
with recursive factorial, they’ve converted the code to use iteration:

1 int fact(int n)
2 {
3 int i;
4 int result = 1;
5

6 for (i = n; i > 0; i--)
7 result = result * i;
8 return result;
9 }

By doing so, they have reduced the number of CPE for the function from63 to 4, measured on an Intel
Pentium III (really!). Still, they would like to do better.

One of the programmers heard about loop unrolling. She generated the following code:

1 int fact_u2(int n)
2 {
3 int i;
4 int result = 1;
5 for (i = n; i > 0; i-=2) {
6 result = (result * i) * (i-1);
7 }
8 return result;
9 }

Unfortunately, the team discovered that this code returns 0 for some values of argumentn.

A. For what values ofn will fact_u2 andfact return different values?

B. Show how to fixfact_u2. Note that there is a special trick for this procedure that involves just
changing a loop bound.

C. Benchmarkingfact_u2 shows no improvement in performance. How would you explain that?

D. You modify the line inside the loop to read:

7 result = result * (i * (i - 1));

To everyone’s astonishment, the measured performance now has a CPE of2:5. How do you explain
this performance improvement?

Homework Problem 5.12[Category 1]:

Using the conditional move instruction, write assembly code for the body of the following function:

5.16. SUMMARY 271

1 /* Return maximum of x and y */
2 int max(int x, int y)
3 {
4 return (x < y) ? y : x;
5 }

Homework Problem 5.13[Category 2]:

Using conditional moves, the general technique for translating a statement of the form:

val = cond-expr ? then-expr : else-expr;

is to generate code of the form:

val = then-expr;
temp = else-expr;
test = cond-expr;
if (test) val = temp;

where the last line is implemented with a conditional move instruction. Using the example of Practice
Problem 5.5 as a guide, state the general requirements for this translation to be valid.

Homework Problem 5.14[Category 2]:

The following function computes the sum of the elements in a linked list:

1 static int list_sum(list_ptr ls)
2 {
3 int sum = 0;
4

5 for (; ls; ls = ls->next)
6 sum += ls->data;
7 return sum;
8 }

The assembly code for the loop, and its translation of the first iteration into operations yields the following:

Assembly Instructions Execution Unit Operations
.L43:

addl 4(%edx),%eax movl 4(%edx.0) ! t.1
addl t.1,%eax.0 ! %eax.1

movl (%edx),%edx load (%edx.0) ! %edx.1
testl %edx,%edx testl %edx.1,%edx.1 ! cc.1
jne .L43 jne-taken cc.1

272 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

A. Draw a graph showing the scheduling of operations for the first three iterations of the loop, in the
style of Figure 5.31. Recall that there is just one load unit.

B. Our measurements for this function give a CPE of 4.00. Is this consistent with the graph you drew in
part A?

Homework Problem 5.15[Category 2]:

The following function is a variant on the list sum function shown in Problem 5.14:

1 static int list_sum2(list_ptr ls)
2 {
3 int sum = 0;
4 list_ptr old;
5

6 while (ls) {
7 old = ls;
8 ls = ls->next;
9 sum += old->data;

10 }
11 return sum;
12 }

This code is written in such a way that the memory access to fetch the next list element comes before the
one to retrieve the data field from the current element.

The assembly code for the loop, and its translation of the first iteration into operations yields the following:

Assembly Instructions Execution Unit Operations
.L48:

movl %edx,%ecx
movl (%edx),%edx load (%edx.0) ! %edx.1
addl 4(%ecx),%eax movl 4(%edx.0) ! t.1

addl t.1,%eax.0 ! %eax.1
testl %edx,%edx testl %edx.1,%edx.1 ! cc.1
jne .L48 jne-taken cc.1

Note that the register move operationmovl %edx,%ecx does not require any operations to implement.
It is handled by simply associating the tagedx.0 with register%ecx, so that the later instructionaddl
4(%ecx),%eax is translated to useedx.0 as its source operand.

A. Draw a graph showing the scheduling of operations for the first three iterations of the loop, in the
style of Figure 5.31. Recall that there is just one load unit.

5.16. SUMMARY 273

B. Our measurements for this function give a CPE of 3.00. Is this consistent with the graph you drew in
part A?

C. How does this function make better use of the load unit than did the function of Problem 5.14?

274 CHAPTER 5. OPTIMIZING PROGRAM PERFORMANCE

Chapter 6

The Memory Hierarchy

To this point in our study of systems, we have relied on a simple model of a computer system as a CPU
that executes instructions and a memory system that holds instructions and data for the CPU. In our simple
model, the memory system is a linear array of bytes, and the CPU can access each memory location in a
constant amount of time. While this is an effective model as far as it goes, it does not reflect the way that
modern systems really work.

In practice, amemory systemis a hierarchy of storage devices with different capacities, costs, and access
times. Registers in the CPU hold the most frequently used data. Small, fast cache memories near the CPU
act as staging areas for a subset of the data and instructions stored in the relatively slow main memory. The
main memory stages data stored on large, slow disks, which in turn often serve as staging areas for data
stored on the disks or tapes of other machines connected by networks.

Memory hierarchies work because programs tend to access the storage at any particular level more fre-
quently than they access the storage at the next lower level. So the storage at the next level can be slower,
and thus larger and cheaper per bit. The overall effect is a large pool of memory that costs as much as the
cheap storage near the bottom of the hierarchy, but that serves data to programs at the rate of the fast storage
near the top of the hierarchy.

In contrast to the uniform access times in our simple system model, memory access times on a real system
can vary by factors of ten, or one hundred, or even one million. Unwary programmers who assume a
flat, uniform memory risk significant and inexplicable performance slowdowns in their programs. On the
other hand, wise programmers who understand the hierarchical nature of memory can use relatively simple
techniques to produce efficient programs with fast average memory access times.

In this chapter, we look at the most basic storage technologies of SRAM memory, DRAM memory, and
disks. We also introduce a fundamental property of programs known aslocality and show how locality
motivates the organization of memory as a hierarchy of devices. Finally, we focus on the design and per-
formance impact of the cache memories that act as staging areas between the CPU and main memory, and
show you how to use your understanding of locality and caching to make your programs run faster.

275

276 CHAPTER 6. THE MEMORY HIERARCHY

6.1 Storage Technologies

Much of the success of computer technology stems from the tremendous progress in storage technology.
Early computers had a few kilobytes of random-access memory. The earliest IBM PCs didn’t even have a
hard disk. That changed with the introduction of the IBM PC-XT in 1982, with its 10-megabyte disk. By the
year 2000, typical machines had 1000 times as much disk storage and the ratio was increasing by a factor
of 10 every two or three years.

6.1.1 Random-Access Memory

Random-access memory(RAM) comes in two varieties—staticanddynamic. Static RAM(SRAM) is faster
and significantly more expensive thanDynamic RAM(DRAM). SRAM is used for cache memories, both
on and off the CPU chip. DRAM is used for the main memory plus the frame buffer of a graphics system.
Typically, a desktop system will have no more than a few megabytes of SRAM, but hundreds or thousands
of megabytes of DRAM.

Static RAM

SRAM stores each bit in abistablememory cell. Each cell is implemented with a six-transistor circuit. This
circuit has the property that it can stay indefinitely in either of two different voltage configurations, orstates.
Any other state will be unstable—starting from there, the circuit will quickly move toward one of the stable
states. Such a memory cell is analogous to the inverted pendulum illustrated in Figure 6.1.

. ..Stable Left Stable Right

Unstable

Figure 6.1:Inverted pendulum. Like an SRAM cell, the pendulum has only two stable configurations, or
states.

The pendulum is stable when it is tilted either all the way to the left, or all the way to the right. From
any other position, the pendulum will fall to one side or the other. In principle, the pendulum could also
remain balanced in a vertical position indefinitely, but this state ismetastable—the smallest disturbance
would make it start to fall, and once it fell it would never return to the vertical position.

Due to its bistable nature, an SRAM memory cell will retain its value indefinitely, as long as it is kept
powered. Even when a disturbance, such as electrical noise, perturbs the voltages, the circuit will return to
the stable value when the disturbance is removed.

6.1. STORAGE TECHNOLOGIES 277

Dynamic RAM

DRAM stores each bit as charge on a capacitor. This capacitor is very small—typically around 30 femto-
farads, that is,30 � 10�15 farads. Recall, however, that a farad is a very large unit of measure. DRAM
storage can be made very dense—each cell consists of a capacitor and a single-access transistor. Unlike
SRAM, however, a DRAM memory cell is very sensitive to any disturbance. When the capacitor voltage is
disturbed, it will never recover. Exposure to light rays will cause the capacitor voltages to change. In fact,
the sensors in digital cameras and camcorders are essentially arrays of DRAM cells.

Various sources of leakage current cause a DRAM cell to lose its charge within a time period of around 10 to
100 milliseconds. Fortunately, for computers operating with clock cycles times measured in nanoseconds,
this retention time is quite long. The memory system must periodically refresh every bit of memory by
reading it out and then rewriting it. Some systems also use error-correcting codes, where the computer
words are encoded a few more bits (e.g., a 32-bit word might be encoded using 38 bits), such that circuitry
can detect and correct any single erroneous bit within a word.

Figure 6.2 summarizes the characteristics of SRAM and DRAM memory. SRAM is persistent as long as
power is applied to them. Unlike DRAM, no refresh is necessary. SRAM can be accessed faster than
DRAM. SRAM is not sensitive to disturbances such as light and electrical noise. The tradeoff is that SRAM
cells use more transistors than DRAM cells, and thus have lower densities, are more expensive, and consume
more power.

Transistors Relative Relative
per bit access time Persistent? Sensitive? Cost Applications

SRAM 6 1X Yes No 100X Cache memory
DRAM 1 10X No Yes 1X Main mem, frame buffers

Figure 6.2:Characteristics of DRAM and SRAM memory.

Conventional DRAMs

The cells (bits) in a DRAM chip are partitioned intod supercells, each consisting ofw DRAM cells. A
d � w DRAM stores a total ofdw bits of information. The supercells are organized as a rectangular array
with r rows andc columns, whererc = d. Each supercell has an address of the form(i; j), wherei denotes
the row, andj denotes the column.

For example, Figure 6.3 shows the organization of a16 � 8 DRAM chip with d = 16 supercells,w = 8
bits per supercell,r = 4 rows, andc = 4 columns. The shaded box denotes the supercell at address(2; 1).
Information flows in and out of the chip via external connectors calledpins. Each pin carries a 1-bit signal.
Figure 6.3 shows two of these sets of pins: 8data pins that can transfer one byte in or out of the chip, and
2 addr pins that carry 2-bit row and column supercell addresses. Other pins that carry control information
are not shown.

Aside: A note on terminology.
The storage community has never settled on a standard name for a DRAM array element. Computer architects tend
to refer to it as a “cell”, overloading the term with the DRAM storage cell. Circuit designers tend to refer to it as a

278 CHAPTER 6. THE MEMORY HIERARCHY

cols

rows

0 1 2 3

0

1

2

3

internal row buffer

DRAM chip

addr

data

supercell
(2,1)

2
/

8
/

memory
controller

(to CPU)

Figure 6.3:High level view of a 128-bit16� 8 DRAM chip.

“word”, overloading the term with a word of main memory. To avoid confusion, we have adopted the unambiguous
term “supercell”.End Aside.

Each DRAM chip is connected to some circuitry, known as thememory controller, that can transferw bits
at a time to and from each DRAM chip. To read the contents of supercell(i; j), the memory controller sends
the row addressi to the DRAM, followed by the column addressj. The DRAM responds by sending the
contents of supercell(i; j) back to the controller. The row addressi is called a RAS (Row Access Strobe)
request. The column addressj is called a CAS (Column Access Strobe) request. Notice that the RAS and
CAS requests share the same DRAM address pins.

For example, to read supercell(2; 1) from the16 � 8 DRAM in Figure 6.3, the memory controller sends
row address 2, as shown in Figure 6.4(a). The DRAM responds by copying the entire contents of row 2
into an internal row buffer. Next, the memory controller sends column address 1, as shown in Figure 6.4(b).
The DRAM responds by copying the 8 bits in supercell(2; 1) from the row buffer and sending them to the
memory controller.

RAS = 2

cols

rows

0 1 2 3

0

1

2

3

internal row buffer

DRAM chip

row 2

addr

data

2
/

8
/

memory
controller supercell

(2,1)

cols

rows

0 1 2 3

0

1

2

3

internal row buffer

DRAM chip

CAS = 1

addr

data

2
/

8
/

memory
controller

(a) Select row 2 (RAS request). (b) Select column 1 (CAS request).

Figure 6.4:Reading the contents of a DRAM supercell.

One reason circuit designers organize DRAMs as two-dimensional arrays instead of linear arrays is to reduce

6.1. STORAGE TECHNOLOGIES 279

the number of address pins on the chip. For example, if our example 128-bit DRAM were organized as a
linear array of 16 supercells with addresses 0 to 15, then the chip would need four address pins instead
of two. The disadvantage of the two-dimensional array organization is that addresses must be sent in two
distinct steps, which increases the access time.

Memory Modules

DRAM chips are packaged inmemory modulesthat plug into expansion slots on the main system board
(motherboard). Common packages include the 168-pinDual Inline Memory Module (DIMM), which trans-
fers data to and from the memory controller in 64-bit chunks, and the 72-pinSingle Inline Memory Module
(SIMM), which transfers data in 32-bit chunks.

Figure 6.5 shows the basic idea of a memory module. The example module stores a total of 64 MB
(megabytes) using eight 64-Mbit8M � 8 DRAM chips, numbered 0 to 7. Each supercell stores one byte of
main memory, and each 64-bit doubleword1 at byte addressA in main memory is represented by the eight
supercells whose corresponding supercell address is(i; j). In our example in Figure 6.5, DRAM 0 stores
the first (lower-order) byte, DRAM 1 stores the next byte, and so on.

: supercell (i,j)

031 78151623243263 394047485556

64-bit double word at main memory address A

addr (row = i, col = j)

data

64 MB
memory module
consisting of
8 8Mx8 DRAMs

Memory
controller

bits
0-7

DRAM 7

DRAM 0

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

64-bit doubleword to CPU chip

Figure 6.5:Reading the contents of a memory module.

To retrieve a 64-bit doubleword at memory addressA, the memory controller convertsA to a supercell
address(i; j) and sends it to the memory module, which then broadcastsi andj to each DRAM. In response,
each DRAM outputs the 8-bit contents of its(i; j) supercell. Circuitry in the module collects these outputs
and forms them into a 64-bit doubleword, which it returns to the memory controller.

1IA32 would call this 64-bit quantity a “quadword.”

280 CHAPTER 6. THE MEMORY HIERARCHY

Main memory can be aggregated by connecting multiple memory modules to the memory controller. In this
case, when the controller receives an addressA, the controller selects the modulek that containsA, converts
A to its (i; j) form, and sends(i; j) to modulek.

Practice Problem 6.1:

In the following, letr be the number of rows in a DRAM array,c the number of columns,br the number
of bits needed to address the rows, andbc the number of bits needed to address the columns. For each
of the following DRAMs, determine the power-of-two array dimensions that minimizemax(br; bc), the
maximum number of bits needed to address the rows or columns of the array.

Organization r c br bc max(br; bc)

16� 1

16� 4

128� 8

512� 4

1024� 4

Enhanced DRAMs

There are many kinds of DRAM memories, and new kinds appear on the market with regularity as man-
ufacturers attempt to keep up with rapidly increasing processor speeds. Each is based on the conventional
DRAM cell, with optimizations that improve the speed with which the basic DRAM cells can be accessed.

� Fast page mode DRAM (FPM DRAM). A conventional DRAM copies an entire row of supercells into
its internal row buffer, uses one, and then discards the rest. FPM DRAM improves on this by allowing
consecutive accesses to the same row to be served directly from the row buffer. For example, to read
four supercells from rowi of a conventional DRAM, the memory controller must send four RAS/CAS
requests, even though the row addressi is identical in each case. To read supercells from the same
row of an FPM DRAM, the memory controller sends an initial RAS/CAS request, followed by three
CAS requests. The initial RAS/CAS request copies rowi into the row buffer and returns the first
supercell. The next three supercells are served directly from the row buffer, and thus more quickly
than the initial supercell.

� Extended data out DRAM (EDO DRAM). An enhanced form of FPM DRAM that allows the individual
CAS signals to be spaced closer together in time.

� Synchronous DRAM (SDRAM). Conventional, FPM, and EDO DRAMs are asynchronous in the sense
that they communicate with the memory controller using a set of explicit control signals. SDRAM
replaces many of these control signals with the rising edges of the same external clock signal that
drives the memory controller. Without going into detail, the net effect is that an SDRAM can output
the contents of its supercells at a faster rate than its asynchronous counterparts.

� Double Data-Rate Synchronous DRAM (DDR SDRAM). DDR SDRAM is an enhancement of SDRAM
that doubles the speed of the DRAM by using both clock edges as control signals.

6.1. STORAGE TECHNOLOGIES 281

� Video RAM (VRAM). Used in the frame buffers of graphics systems. VRAM is similar in spirit to
FPM DRAM. Two major differences are that (1) VRAM output is produced by shifting the entire
contents of the internal buffer in sequence, and (2) VRAM allows concurrent reads and writes to the
memory. Thus the system can be painting the screen with the pixels in the frame buffer (reads) while
concurrently writing new values for the next update (writes).

Aside: Historical popularity of DRAM technologies.
Until 1995, most PC’s were built with FPM DRAMs. From 1996-1999, EDO DRAMs dominated the market while
FPM DRAMs all but disappeared. SDRAMs first appeared in 1995 in high-end systems, and by 2001 most PC’s
were built with SDRAMs.End Aside.

Nonvolatile Memory

DRAMs and SRAMs arevolatile in the sense that they lose their information if the supply voltage is turned
off. Nonvolatile memories, on the other hand, retain their information even when they are powered off.
There are a variety of nonvolatile memories. For historical reasons, they are referred to collectively as
read-only memories (ROMs), even though some types of ROMs can be written to as well as read. ROMs
are distinguished by the number of times they can be reprogrammed (written to) and by the mechanism for
reprogramming them.

A programmable ROM (PROM)can be programmed exactly once. PROMs include a sort of fuse with each
memory cell that can be blown once by zapping it with a high current. Anerasable programmable ROM
(EPROM)has a small transparent window on the outside of the chip that exposes the memory cells to outside
light. The EPROM is reprogrammed by placing it in a special device that shines ultraviolet light onto the
storage cells. An EPROM can be reprogrammed on the order of 1,000 times. Anelectrically-erasable
PROM (EEPROM)is akin to an EPROM, but it has an internal structure that allows it to be reprogrammed
electrically. Unlike EPROMs, EEPROMs do not require a physically separate programming device, and
thus can be reprogrammed in-place on printed circuit cards. An EEPROM can be reprogrammed on the
order of105 times.Flash memoryis a family of small nonvolatile memory cards, based on EEPROMs, that
can be plugged in and out of a desktop machine, handheld device, or video game console.

Programs stored in ROM devices are often referred to asfirmware. When a computer system is powered up,
it runs firmware stored in a ROM. Some systems provide a small set of primitive input and output functions
in firmware, for example, a PC’s BIOS (basic input/output system) routines. Complicated devices such as
graphics cards and disk drives also rely on firmware to translate I/O (input/output) requests from the CPU.

Accessing Main Memory

Data flows back and forth between the processor and the DRAM main memory over shared electrical con-
duits calledbuses. Each transfer of data between the CPU and memory is accomplished with a series of
steps called abus transaction. A read transactiontransfers data from the main memory to the CPU. Awrite
transactiontransfers data from the CPU to the main memory.

A bus is a collection of parallel wires that carry address, data, and control signals. Depending on the
particular bus design, data and address signals can share the same set of wires, or they can use different

282 CHAPTER 6. THE MEMORY HIERARCHY

sets. Also, more than two devices can share the same bus. The control wires carry signals that synchronize
the transaction and identify what kind of transaction is currently being performed. For example, is this
transaction of interest to the main memory, or to some other I/O device such as a disk controller? Is the
transaction a read or a write? Is the information on the bus an address or a data item?

Figure 6.6 shows the configuration of a typical desktop system. The main components are the CPU chip,
a chipset that we will call anI/O bridge (which includes the memory controller), and the DRAM memory
modules that comprise main memory. These components are connected by a pair of buses: asystem busthat
connects the CPU to the I/O bridge, and amemory busthat connects the I/O bridge to the main memory.

main
memory

I/O
bridge

bus interface

ALU

register file

CPU chip

system bus memory bus

Figure 6.6:Typical bus structure that connects the CPU and main memory.

The I/O bridge translates the electrical signals of the system bus into the electrical signals of the memory
bus. As we will see, the I/O bridge also connects the system bus and memory bus to an I/O bus that is shared
by I/O devices such as disks and graphics cards. For now, though, we will focus on the memory bus.

Consider what happens when the CPU performs a load operation such as

movl A,%eax

where the contents of addressA are loaded into register%eax. Circuitry on the CPU chip called thebus
interface initiates a read transaction on the bus. The read transaction consists of three steps. First, the
CPU places the addressA on the system bus. The I/O bridge passes the signal along to the memory bus
(Figure 6.7(a)). Next, the main memory senses the address signal on the memory bus, reads the address
from the memory bus, fetches the data word from the DRAM, and writes the data to the memory bus. The
I/O bridge translates the memory bus signal into a system bus signal, and passes it along to the system bus
(Figure 6.7(b)). Finally, the CPU senses the data on the system bus, reads it from the bus, and copies it to
register%eax (Figure 6.7(c)).

Conversely, when the CPU performs a store instruction such as

movl %eax,A

where the contents of register%eax are written to addressA, the CPU initiates a write transaction. Again,
there are three basic steps. First, the CPU places the address on the system bus. The memory reads the
address from the memory bus and waits for the data to arrive (Figure 6.8(a)). Next, the CPU copies the data
word in %eax to the system bus (Figure 6.8(b)). Finally, the main memory reads the data word from the
memory bus and stores the bits in the DRAM (Figure 6.8(c)).

6.1. STORAGE TECHNOLOGIES 283

ALU

register file

bus interface

A
0

Ax

main memory
I/O bridge

%eax

(a) CPU places addressA on the memory bus.

ALU

register file

bus interface

x 0

Ax

main memory

%eax

I/O bridge

(b) Main memory readsA from the bus, retrieves wordx, and places it on the bus.

x
ALU

register file

bus interface x

main memory
0

A

%eax

I/O bridge

(c) CPU reads wordx from the bus, and copies it into register%eax.

Figure 6.7:Memory read transaction for a load operation: movl A,%eax.

284 CHAPTER 6. THE MEMORY HIERARCHY

y
ALU

register file

bus interface

A

main memory
0

A

%eax

I/O bridge

(a) CPU places addressA on the memory bus. Main memory reads it and waits for the data word.

y
ALU

register file

bus interface

y

main memory
0

A

%eax

I/O bridge

(b) CPU places data wordy on the bus.

y
ALU

register file

bus interface y

main memory
0

A

%eax

I/O bridge

(c) Main memory reads data wordy from the bus and stores it at addressA.

Figure 6.8:Memory write transaction for a store operation: movl %eax,A.

6.1. STORAGE TECHNOLOGIES 285

6.1.2 Disk Storage

Disks are workhorse storage devices that hold enormous amounts of data, on the order of tens to hundreds
of gigabytes, as opposed to the hundreds or thousands of megabytes in a RAM-based memory. However,
it takes on the order of milliseconds to read information from a disk, a hundred thousand times longer than
from DRAM and a million times longer than from SRAM.

Disk Geometry

Disks are constructed fromplatters. Each platter consists of two sides, orsurfaces, that are coated with
magnetic recording material. A rotatingspindle in the center of the platter spins the platter at a fixed
rotational rate, typically between 5400 and 15,000revolutions per minute (RPM). A disk will typically
contain one or more of these platters encased in a sealed container.

Figure 6.9(a) shows the geometry of a typical disk surface. Each surface consists of a collection of con-
centric rings calledtracks. Each track is partitioned into a collection ofsectors. Each sector contains an
equal number of data bits (typically 512 bytes) encoded in the magnetic material on the sector. Sectors are
separated bygapswhere no data bits are stored. Gaps store formatting bits that identify sectors.

spindle

surface
tracks

track k

sectors

gaps

(a) Single-platter view.

surface 0

surface 1
surface 2

surface 3
surface 4

surface 5

cylinder k

spindle

platter 0

platter 1

platter 2

(b) Multiple-platter view.

Figure 6.9:Disk geometry.

A disk consists of one or more platters stacked on top of each other and encased in a sealed package, as
shown in Figure 6.9(b). The entire assembly is often referred to as adisk drive, although we will usually
refer to it as simply adisk.

Disk manufacturers often describe the geometry of multiple-platter drives in terms ofcylinders, where a
cylinder is the collection of tracks on all the surfaces that are equidistant from the center of the spindle.
For example, if a drive has three platters and six surfaces, and the tracks on each surface are numbered
consistently, then cylinderk is the collection of the six instances of trackk.

286 CHAPTER 6. THE MEMORY HIERARCHY

Disk Capacity

The maximum number of bits that can be recorded by a disk is known as itsmaximum capacity, or simply
capacity. Disk capacity is determined by the following technology factors:

� Recording density(bits=in): The number of bits that can be squeezed into a one-inch segment of a
track.

� Track density(tracks=in): The number of tracks that can be squeezed into a one-inch segment of the
radius extending from the center of the platter.

� Areal density(bits=in2): The product of the recording density and the track density.

Disk manufacturers work tirelessly to increase areal density (and thus capacity), and this is doubling every
few years. The original disks, designed in an age of low areal density, partitioned every track into the
same number of sectors, which was determined by the number of sectors that could be recorded on the
innermost track. To maintain a fixed number of sectors per track, the sectors were spaced further apart on
the outer tracks. This was a reasonable approach when areal densities were relatively low. However, as areal
densities increased, the gaps between sectors (where no data bits were stored) became unacceptably large.
Thus, modern high-capacity disks use a technique known asmultiple zone recording, where the set of tracks
is partitioned into disjoint subsets known asrecording zones. Each zone contains a contiguous collection
of tracks. Each track in a zone has the same number of sectors, which is determined by the number of
sectors that can be packed into the innermost track of the zone. Note that diskettes (floppy disks) still use
the old-fashioned approach, with a constant number of sectors per track.

The capacity of a disk is given by the following:

Disk capacity=
bytes
sector

� average # sectors
track

� # tracks
surface

� # surfaces
platter

� # platters
disk

For example, suppose we have a disk with 5 platters, 512 bytes per sector, 20,000 tracks per surface, and an
average of 300 sectors per track. Then the capacity of the disk is:

Disk capacity =
512 bytes

sector
� 300 sectors

track
� 20,000 tracks

surface
� 2 surfaces

platter
� 5 platters

disk
= 30,720,000,000 bytes

= 30.72 GB:

Notice that manufacturers express disk capacity in units of gigabytes (GB), where1 GB = 109 bytes.

Aside: How much is a gigabyte?
Unfortunately, the meanings of prefixes such as kilo (K), mega (M) and giga (G) depend on the context. For
measures that relate to the capacity of DRAMs and SRAMs, typicallyK = 210, M = 220 andG = 230. For
measures related to the capacity of I/O devices such as disks and networks, typicallyK = 103, M = 106 and
G = 109. Rates and throughputs usually use these prefix values as well.

Fortunately, for the back-of-the-envelope estimates that we typically rely on, either assumption works fine in prac-
tice. For example, the relative difference between220 = 1; 048; 576 and106 = 1; 000; 000 is small: (220 �
106)=106 � 5%. Similarly for 230 = 1; 073; 741; 824 and109 = 1; 000; 000; 000: (230 � 109)=109 � 7%. End
Aside.

6.1. STORAGE TECHNOLOGIES 287

Practice Problem 6.2:

What is the capacity of a disk with 2 platters, 10,000 cylinders, an average of 400 sectors per track, and
512 bytes per sector?

Disk Operation

Disks read and write bits stored on the magnetic surface using aread/write headconnected to the end of
an actuator arm, as shown in Figure 6.10(a). By moving the arm back and forth along its radial axis the
drive can position the head over any track on the surface. This mechanical motion is known as aseek. Once
the head is positioned over the desired track, then as each bit on the track passes underneath, the head can
either sense the value of the bit (read the bit) or alter the value of the bit (write the bit). Disks with multiple
platters have a separate read/write head for each surface, as shown in Figure 6.10(b). The heads are lined
up vertically and move in unison. At any point in time, all heads are positioned on the same cylinder.

By moving radially, the arm
can position the read/write
head over any track.

spindle

The disk surface
spins at a fixed
rotational rate

The read/write head
is attached to the end
of the arm and flies over
 the disk surface on
a thin cushion of air.

(a) Single-platter view

arm

read/write heads

spindle

(b) Multiple-platter view

Figure 6.10:Disk dynamics.

The read/write head at the end of the arm flies (literally) on a thin cushion of air over the disk surface at a
height of about 0.1 microns and a speed of about 80 km/h. This is analogous to placing the Sears Tower on
its side and flying it around the world at a height of 2.5 cm (1 inch) above the ground, with each orbit of the
earth taking only 8 seconds! At these tolerances, a tiny piece of dust on the surface is a huge boulder. If the
head were to strike one of these boulders, the head would cease flying and crash into the surface (a so-called
head crash). For this reason, disks are always sealed in airtight packages.

Disks read and write data in sector-sized blocks. Theaccess timefor a sector has three main components:
seek time, rotational latency, andtransfer time:

� Seek time:To read the contents of some target sector, the arm first positions the head over the track
that contains the target sector. The time required to move the arm is called theseek time. The seek
time,Tseek, depends on the previous position of the head and the speed that the arm moves across the
surface. The average seek time in modern drives,Tavg seek, measured by taking the mean of several

288 CHAPTER 6. THE MEMORY HIERARCHY

thousand seeks to random sectors, is typically on the order of 6 to 9 ms. The maximum time for a
single seek,Tmax seek, can be as high as 20 ms.

� Rotational latency: Once the head is in position over the track, the drive waits for the first bit of
the target sector to pass under the head. The performance of this step depends on the position of the
surface when the head arrives at the target sector, and the rotational speed of the disk. In the worst
case, the head just misses the target sector, and waits for the disk to make a full rotation. So the
maximum rotational latency in seconds is:

Tmax rotation =
1

RPM
� 60 secs

1 min

The average rotational latency,Tavg rotation, is simply half ofTmax rotation.

� Transfer time: When the first bit of the target sector is under the head, the drive can begin to read
or write the contents of the sector. The transfer time for one sector depends on the rotational speed
and the number of sectors per track. Thus, we can roughly estimate the average transfer time for one
sector in seconds as:

Tavg transfer =
1

RPM
� 1

(average # sectors/track)
� 60 secs

1 min

We can estimate the average time to access a the contents of a disk sector as the sum of the average seek
time, the average rotational latency, and the average transfer time. For example, consider a disk with the
following parameters:

Parameter Value

Rotational rate 7,200 RPM
Tavg seek 9 ms
Average # sectors/track 400

For this disk, the average rotational latency (in ms) is

Tavg rotation = 1/2� Tmax rotation

= 1/2� (60 secs / 7,200 RPM)� 1000 ms/sec

� 4 ms:

The average transfer time is

Tavg transfer = 60 / 7,200 RPM� 1 / 400 sectors/track� 1000 ms/sec

� 0.02 ms:

Putting it all together, the total estimated access time is

Taccess = Tavg seek + Tavg rotation + Tavg transfer

= 9 ms+ 4 ms+ 0.02 ms

= 13.02 ms:

This example illustrates some important points:

6.1. STORAGE TECHNOLOGIES 289

� The time to access the 512 bytes in a disk sector is dominated by the seek time and the rotational
latency. Accessing the first byte in the sector takes a long time, but the remaining bytes are essentially
free.

� Since the seek time and rotational latency are roughly the same, twice the seek time is a simple and
reasonable rule for estimating disk access time.

� The access time for a doubleword stored in SRAM is roughly 4 ns, and 60 ns for DRAM. Thus, the
time to read a 512-byte sector-sized block from memory is roughly 256 ns for SRAM and 4000 ns for
DRAM. The disk access time, roughly 10 ms, is about 40,000 times greater than SRAM, and about
2,500 times greater than DRAM. The difference in access times is even more dramatic if we compare
the times to access a single word.

Practice Problem 6.3:

Estimate the average time (in ms) to access a sector on the following disk:

Parameter Value

Rotational rate 15,000 RPM
Tavg seek 8 ms
Average # sectors/track 500

Logical Disk Blocks

As we have seen, modern disks have complex geometries, with multiple surfaces and different recording
zones on those surfaces. To hide this complexity from the operating system, modern disks present a simpler
view of their geometry as a sequence ofb sector-sizedlogical blocks, numbered0; 1; : : : ; b � 1. A small
hardware/firmware device in the disk, called thedisk controller, maintains the mapping between logical
block numbers and actual (physical) disk sectors.

When the operating system wants to perform an I/O operation such as reading a disk sector into main
memory, it sends a command to the disk controller asking it to read a particular logical block number.
Firmware on the controller performs a fast table lookup that translates the logical block number into a
(surface, track, sector)triple that uniquely identifies the corresponding physical sector. Hardware on the
controller interprets this triple to move the heads to the appropriate cylinder, waits for the sector to pass
under the head, gathers up the bits sensed by the head into a small buffer on the controller, and copies them
into main memory.

Aside: Formatted disk capacity.
Before a disk can be used to store data, it must beformattedby the disk controller. This involves filling in the
gaps between sectors with information that identifies the sectors, identifying any cylinders with surface defects and
taking them out of action, and setting aside a set of cylinders in each zone as spares that can be called into action if
one of more cylinders in the zone goes bad during the lifetime of the disk. Theformatted capacityquoted by disk
manufacturers is less than the maximum capacity because of the existence of these spare cylinders.End Aside.

290 CHAPTER 6. THE MEMORY HIERARCHY

Accessing Disks

Devices such as graphics cards, monitors, mice, keyboards, and disks are connected to the CPU and main
memory using anI/O bussuch as Intel’sPeripheral Component Interconnect(PCI) bus. Unlike the system
bus and memory buses, which are CPU-specific, I/O buses such as PCI are designed to be independent of
the underlying CPU. For example, PCs and Macintosh’s both incorporate the PCI bus. Figure 6.11 shows a
typical I/O bus structure (modeled on PCI) that connects the CPU, main memory, and I/O devices.

main
memory

I/O
bridge

bus interface

ALU

register file

CPU

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus Expansion slots for
other devices such
as network adapters.

Figure 6.11:Typical bus structure that connects the CPU, main memory, and I/O devices.

Although the I/O bus is slower than the system and memory buses, it can accommodate a wide variety of
third-party I/O devices. For example, the bus in Figure 6.11 has three different types of devices attached to
it.

� A Universal Serial Bus(USB) controller is a conduit for devices attached to the USB. A USB has a
throughput of 12 Mbits/s and is designed for slow to moderate speed serial devices such as keyboards,
mice, modems, digital cameras, joysticks, CD-ROM drives, and printers.

� A graphics card(or adapter) contains hardware and software logic that is responsible for painting the
pixels on the display monitor on behalf of the CPU.

� A disk controller contains the hardware and software logic for reading and writing disk data on behalf
of the CPU.

Additional devices such asnetwork adapterscan be attached to the I/O bus by plugging the adapter into
emptyexpansion slotson the motherboard that provide a direct electrical connection to the bus.

While a detailed description of how I/O devices work and how they are programmed is outside our scope,
we can give you a general idea. For example, Figure 6.12 summarizes the steps that take place when a CPU
reads data from a disk.

6.1. STORAGE TECHNOLOGIES 291

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

bus interface

(a) The CPU initiates a disk read by writing a command, logical block number, and destination memory
address to the memory-mapped address associated with the disk.

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

bus interface

(b) The disk controller reads the sector and performs a DMA transfer into main memory.

main
memory

ALU

register file

CPU chip

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

bus interface

(c) When the DMA transfer is complete, the disk controller notifies the CPU with an interrupt.

Figure 6.12:Reading a disk sector.

292 CHAPTER 6. THE MEMORY HIERARCHY

The CPU issues commands to I/O devices using a technique calledmemory-mapped I/O(Figure 6.12(a)). In
a system with memory-mapped I/O, a block of addresses in the address space is reserved for communicating
with I/O devices. Each of these addresses is known as anI/O port. Each device is associated with (or
mapped to) one or more ports when it is attached to the bus.

As a simple example, suppose that the disk controller is mapped to port0xa0. Then the CPU might initiate
a disk read by executing three store instructions to address0xa: The first of these instructions sends a
command word that tells the disk to initiate a read, along with other parameters such as whether to interrupt
the CPU when the read is finished. (We will discuss interrupts in Section 8.1). The second instruction
indicates the number of the logical block that should be read. The third instruction indicates the main
memory address where the contents of the disk sector should be stored.

After it issues the request, the CPU will typically do other work while the disk is performing the read.
Recall that a 1 GHz processor with a 1 ns clock cycle can potentially execute 16 million instructions in the
16 ms it takes to read the disk. Simply waiting and doing nothing while the transfer is taking place would
be enormously wasteful.

After the disk controller receives the read command from the CPU, it translates the logical block number
to a sector address, reads the contents of the sector, and transfers the contents directly to main memory,
without any intervention from the CPU (Figure 6.12(b)). This process where a device performs a read or
write bus transaction on its own, without any involvement of the CPU, is known asdirect memory access
(DMA). The transfer of data is known as aDMA transfer.

After the DMA transfer is complete and the contents of the disk sector are safely stored in main memory,
the disk controller notifies the CPU by sending an interrupt signal to the CPU (Figure 6.12(c)). The basic
idea is that an interrupt signals an external pin on the CPU chip. This causes the CPU to stop what it is
currently working on and to jump to an operating system routine. The routine records the fact that the I/O
has finished and then returns control to the point where the CPU was interrupted.

Aside: Anatomy of a commercial disk.
Disk manufacturers publish a lot of high-level technical information on their Web pages. For example, if we visit
the Web page for the IBM Ultrastar 36LZX disk, we can glean the geometry and performance information shown
in Figure 6.13.

Geometry attribute Value

Platters 6
Surfaces (heads) 12
Sector size 512 bytes
Zones 11
Cylinders 15,110
Recording density (max) 352,000 bits/in.
Track density 20,000 tracks/in.
Areal density (max) 7040 Mbits/sq. in.
Formatted capacity 36 GBbytes

Performance attribute Value

Rotational rate 10,000 RPM
Avg. rotational latency 2.99 ms
Avg. seek time 4.9 ms
Sustained transfer rate 21–36 MBytes/s

Figure 6.13:IBM Ultrastar 36LZX geometry and performance. Source:www.storage.ibm.com

Disk manufacturers often neglect to publish detailed technical information about the geometry of the individual
recording zones. However, storage researchers have developed a useful tool, called DIXtrac, that automatically
discovers a wealth of low-level information about the geometry and performance of SCSI disks [64]. For example,

6.1. STORAGE TECHNOLOGIES 293

DIXtrac is able to discover the detailed zone geometry of our example IBM disk, which we’ve shown in Figure 6.14.
Each row in the table characterizes one of the 11 zones on the disk surface, in terms of the number of sectors in the
zone, the range of logical blocks mapped to the sectors in the zone, and the range and number of cylinders in the
zone.

Zone Sectors Starting Ending Starting Ending Cylinders
number per track logical block logical block cylinder cylinder per zone

(outer) 0 504 0 2,292,096 1 380 380
1 476 2,292,097 11,949,751 381 2,078 1,698
2 462 11,949,752 19,416,566 2,079 3,430 1,352
3 420 19,416,567 36,409,689 3,431 6,815 3,385
4 406 36,409,690 39,844,151 6,816 7,523 708
5 392 39,844,152 46,287,903 7,524 8,898 1,375
6 378 46,287,904 52,201,829 8,899 10,207 1,309
7 364 52,201,830 56,691,915 10,208 11,239 1,032
8 352 56,691,916 60,087,818 11,240 12,046 807
9 336 60,087,819 67,001,919 12,047 13,768 1,722

(inner) 10 308 67,001,920 71,687,339 13,769 15,042 1,274

Figure 6.14: IBM Ultrastar 36LZX zone map. Source: DIXtrac automatic disk drive characterization
tool [64].

The zone map confirms some interesting facts about the IBM disk. First, more tracks are packed into the outer zones
(which have a larger circumference) than the inner zones. Second, each zone has more sectors than logical blocks
(check this yourself). The unused sectors form a pool of spare cylinders. If the recording material on a sector goes
bad, the disk controller will automatically and transparently remap the logical blocks on that cylinder to an available
spare. So we see that the notion of a logical block not only provides a simpler interface to the operating system, it
also provides a level of indirection that enables the disk to be more robust. This general idea of indirection is very
powerful, as we will see when we study virtual memory in Chapter 10.End Aside.

6.1.3 Storage Technology Trends

There are several important concepts to take away from our discussion of storage technologies.

� Different storage technologies have different price and performance tradeoffs.SRAM is somewhat
faster than DRAM, and DRAM is much faster than disk. On the other hand, fast storage is always
more expensive than slower storage. SRAM costs more per byte than DRAM. DRAM costs much
more than disk.

� The price and performance properties of different storage technologies are changing at dramatically
different rates.Figure 6.15 summarizes the price and performance properties of storage technologies
since 1980, when the first PCs were introduced. The numbers were culled from back issues of trade
magazines. Although they were collected in an informal survey, the numbers reveal some interesting
trends.

Since 1980, both the cost and performance of SRAM technology have improved at roughly the same
rate. Access times have decreased by a factor of about 100 and cost per megabyte by a factor of 200
(Figure 6.15(a)). However, the trends for DRAM and disk are much more dramatic and divergent.

294 CHAPTER 6. THE MEMORY HIERARCHY

While the cost per megabyte of DRAM has decreased by a factor of 8000 (almost four orders of
magnitude!), DRAM access times have decreased by only a factor of 6 or so (Figure 6.15(b)). Disk
technology has followed the same trend as DRAM and in even more dramatic fashion. While the cost
of a megabyte of disk storage has plummeted by a factor of 50,000 since 1980, access times have
improved much more slowly, by only a factor of 10 or so (Figure 6.15(c)). These startling long-term
trends highlight a basic truth of memory and disk technology: it is easier to increase density (and
thereby reduce cost) than to decrease access time.

Metric 1980 1985 1990 1995 2000 2000:1980

$/MB 19,200 2,900 320 256 100 190
Access (ns) 300 150 35 15 3 100

(a) SRAM trends

Metric 1980 1985 1990 1995 2000 2000:1980

$/MB 8,000 880 100 30 1 8,000
Access (ns) 375 200 100 70 60 6
Typical size (MB) 0.064 0.256 4 16 64 1,000

(b) DRAM trends

Metric 1980 1985 1990 1995 2000 2000:1980

$/MB 500 100 8 0.30 0.01 50,000
seek time (ms) 87 75 28 10 8 11
typical size (MB) 1 10 160 1,000 20,000 20,000

(c) Disk trends

Metric 1980 1985 1990 1995 2000 2000:1980

Intel CPU 8080 80286 80386 Pentium P-III —
CPU clock rate (MHz) 1 6 20 150 600 600
CPU cycle time (ns) 1,000 166 50 6 1.6 600

(d) CPU trends

Figure 6.15:Storage and processing technology trends.

� DRAM and disk access times are lagging behind CPU cycle times.As we see in Figure 6.15(d), CPU
cycle times improved by a factor of 600 between 1980 and 2000. While SRAM performance lags, it is
roughly keeping up. However, the gap between DRAM and disk performance and CPU performance
is actually widening. The various trends are shown quite clearly in Figure 6.16, which plots the access
and cycle times from Figure 6.15 on a semi-log scale.

As we will see in Section 6.4, modern computers make heavy use of SRAM-based caches to try to bridge the
processor-memory gap. This approach works because of a fundamental property of application programs
known aslocality, which we discuss next.

6.2. LOCALITY 295

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1980 1985 1990 1995 2000

Year

ns
Disk seek time

DRAM access time

SRAM access time

CPU cycle time

Figure 6.16:The increasing gap between DRAM, disk, and CPU speeds.

6.2 Locality

Well-written computer programs tend to exhibit goodlocality. That is, they tend to reference data items that
are near other recently referenced data items, or that were recently referenced themselves. This tendency,
known as the principle of locality, is an enduring concept that has enormous impact on the design and
performance of hardware and software systems.

Locality is typically described as having two distinct forms:temporal localityand spatial locality. In a
program with good temporal locality, a memory location that is referenced once is likely to be referenced
again multiple times in the near future. In a program with good spatial locality, if a memory location is
referenced once, then the program is likely to reference a nearby memory location in the near future.

Programmers should understand the principle of locality because, in general,programs with good locality
run faster than programs with poor locality. All levels of modern computer systems, from the hardware, to
the operating system, to application programs, are designed to exploit locality. At the hardware level, the
principle of locality allows computer designers to speed up main memory accesses by introducing small fast
memories known ascache memoriesthat hold blocks of the most recently referenced instructions and data
items. At the operating system level, the principle of locality allows the system to use the main memory as
a cache of the most recently referenced chunks of the virtual address space. Similarly, the operating system
uses main memory to cache the most recently used disk blocks in the disk file system. The principle of
locality also plays a crucial role in the design of application programs. For example, Web browsers exploit
temporal locality by caching recently referenced documents on a local disk. High volume Web servers hold
recently requested documents in front-end disk caches that satisfy requests for these documents without
requiring any intervention from the server.

6.2.1 Locality of References to Program Data

Consider the simple function in Figure 6.17(a) that sums the elements of a vector. Does this function have
good locality? To answer this question, we look at the reference pattern for each variable. In this example,
the sum variable is referenced once in each loop iteration, and thus there is good temporal locality with
respect tosum. On the other hand, sincesum is a scalar, there is no spatial locality with respect tosum.

296 CHAPTER 6. THE MEMORY HIERARCHY

1 int sumvec(int v[N])
2 {
3 int i, sum = 0;
4

5 for (i = 0; i < N; i++)
6 sum += v[i];
7 return sum;
8 }

(a)

Address 0 4 8 12 16 20 24 28
Contents v0 v1 v2 v3 v4 v5 v6 v7
Access order 1 2 3 4 5 6 7 8

(b)

Figure 6.17:(a) A function with good locality. (b) Reference pattern for vectorv (N = 8). Notice how
the vector elements are accessed in the same order that they are stored in memory.

As we see in Figure 6.17(b), the elements of vectorv are read sequentially, one after the other, in the order
they are stored in memory (we assume for convenience that the array starts at address 0). Thus, with respect
to variablev , the function has good spatial locality, but poor temporal locality since each vector element is
accessed exactly once. Since the function has either good spatial or temporal locality with respect to each
variable in the loop body, we can conclude that thesumvec function enjoys good locality.

A function such assumvec that visits each element of a vector sequentially is said to have astride-1
reference pattern(with respect to the element size). Visiting everykth element of a contiguous vector is
called astride-k reference pattern. Stride-1 reference patterns are a common and important source of spatial
locality in programs. In general, as the stride increases, the spatial locality decreases.

Stride is also an important issue for programs that reference multidimensional arrays. Consider thesumar-
rayrows function in Figure 6.18(a) that sums the elements of a two-dimensional array. The doubly nested
loop reads the elements of the array in row-major order. That is, the inner loop reads the elements of the first
row, then the second row, and so on. Thesumarrayrows function enjoys good spatial locality because

1 int sumarrayrows(int a[M][N])
2 {
3 int i, j, sum = 0;
4

5 for (i = 0; i < M; i++)
6 for (j = 0; j < N; j++)
7 sum += a[i][j];
8 return sum;
9 }

(a)

Address 0 4 8 12 16 20
Contents a00 a01 a02 a10 a11 a12
Access order 1 2 3 4 5 6

(b)

Figure 6.18: (a) Another function with good locality. (b) Reference pattern for array a (M = 2,
N = 3). There is good spatial locality because the array is accessed in the same row-major order that it is
stored in memory.

it references the array in the same row-major order that the array is stored (Figure 6.18(b)). The result is a
nice stride-1 reference pattern with excellent spatial locality.

6.2. LOCALITY 297

Seemingly trivial changes to a program can have a big impact on its locality. For example, thesumar-
raycols function in Figure 6.19(a) computes the same result as thesumarrayrows function in Fig-
ure 6.18(a). The only difference is that we have interchanged thei andj loops. What impact does inter-
changing the loops have on its locality? Thesumarraycols function suffers from poor spatial locality

1 int sumarraycols(int a[M][N])
2 {
3 int i, j, sum = 0;
4

5 for (j = 0; j < N; j++)
6 for (i = 0; i < M; i++)
7 sum += a[i][j];
8 return sum;
9 }

(a)

Address 0 4 8 12 16 20
Contents a00 a01 a02 a10 a11 a12
Access order 1 3 5 2 4 6

(b)

Figure 6.19: (a) A function with poor spatial locality. (b) Reference pattern for array a (M = 2,
N = 3). The function has poor spatial locality because it scans memory with a stride-(N � sizeof(int))
reference pattern.

because it scans the array column-wise instead of row-wise. Since C arrays are laid out in memory row-wise,
the result is a stride-(N � sizeof(int)) reference pattern, as shown in Figure 6.19(b).

6.2.2 Locality of Instruction Fetches

Since program instructions are stored in memory and must be fetched (read) by the CPU, we can also
evaluate the locality of a program with respect to its instruction fetches. For example, in Figure 6.17 the
instructions in the body of thefor loop are executed in sequential memory order, and thus the loop enjoys
good spatial locality. Since the loop body is executed multiple times, it also enjoys good temporal locality.

An important property of code that distinguishes it from program data is that it can not be modified at
runtime. While a program is executing, the CPU only reads its instructions from memory. The CPU never
overwrites or modifies these instructions.

6.2.3 Summary of Locality

In this section we have introduced the fundamental idea of locality and we have identified some simple rules
for qualitatively evaluating the locality in a program:

� Programs that repeatedly reference the same variables enjoy good temporal locality.

� For programs with stride-k reference patterns, the smaller the stride the better the spatial locality. Pro-
grams with stride-1 reference patterns have good spatial locality. Programs that hop around memory
with large strides have poor spatial locality.

298 CHAPTER 6. THE MEMORY HIERARCHY

� Loops have good temporal and spatial locality with respect to instruction fetches. The smaller the
loop body and the greater the number of loop iterations, the better the locality.

Later in this chapter, after we have learned about cache memories and how they work, we will show you
how to quantify the idea of locality in terms of cache hits and misses. It will also become clear to you why
programs with good locality typically run faster than programs with poor locality. Nonetheless, knowing
how to glance at a source code and getting a high-level feel for the locality in the program is a useful and
important skill for a programmer to master.

Practice Problem 6.4:

Permute the loops in the following function so that it scans the three-dimensional arraya with a stride-1
reference pattern.

1 int sumarray3d(int a[N][N][N])
2 {
3 int i, j, k, sum = 0;
4

5 for (i = 0; i < N; i++) {
6 for (j = 0; j < N; j++) {
7 for (k = 0; k < N; k++) {
8 sum += a[k][i][j];
9 }

10 }
11 }
12 return sum;
13 }

Practice Problem 6.5:

The three functions in Figure 6.20 perform the same operation with varying degrees of spatial locality.
Rank-order the functions with respect to the spatial locality enjoyed by each. Explain how you arrived
at your ranking.

6.3 The Memory Hierarchy

Sections 6.1 and 6.2 described some fundamental and enduring properties of storage technology and com-
puter software:

� Different storage technologies have widely different access times. Faster technologies cost more per
byte than slower ones and have less capacity. The gap between CPU and main memory speed is
widening.

� Well-written programs tend to exhibit good locality.

6.3. THE MEMORY HIERARCHY 299

1 #define N 1000
2

3 typedef struct {
4 int vel[3];
5 int acc[3];
6 } point;
7

8 point p[N];

1 void clear1(point *p, int n)
2 {
3 int i, j;
4

5 for (i = 0; i < n; i++) {
6 for (j = 0; j < 3; j++)
7 p[i].vel[j] = 0;
8 for (j = 0; j < 3; j++)
9 p[i].acc[j] = 0;

10 }
11 }

(a) An array ofstructs. (b) Theclear1 function.

1 void clear2(point *p, int n)
2 {
3 int i, j;
4

5 for (i = 0; i < n; i++) {
6 for (j = 0; j < 3; j++) {
7 p[i].vel[j] = 0;
8 p[i].acc[j] = 0;
9 }

10 }
11 }

1 void clear3(point *p, int n)
2 {
3 int i, j;
4

5 for (j = 0; j < 3; j++) {
6 for (i = 0; i < n; i++)
7 p[i].vel[j] = 0;
8 for (i = 0; i < n; i++)
9 p[i].acc[j] = 0;

10 }
11 }

(a) Theclear2 function. (b) Theclear3 function.

Figure 6.20:Code examples for Practice Problem 6.5.

300 CHAPTER 6. THE MEMORY HIERARCHY

In one of the happier coincidences of computing, these fundamental properties of hardware and software
complement each other beautifully. Their complementary nature suggests an approach for organizing mem-
ory systems, known as thememory hierarchy, that is used in all modern computer systems. Figure 6.21
shows a typical memory hierarchy. In general, the storage devices get faster, cheaper, and larger as we move

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper
(per byte)
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers.

Main memory holds disk
blocks retrieved from local
disks.

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved from
cache memory.

L2 cache holds cache lines
retrieved from memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

Figure 6.21:The memory hierarchy.

from higher to lowerlevels. At the highest level (L0) are a small number of fast CPU registers that the CPU
can access in a single clock cycle. Next are one or more small to moderate-sized SRAM-based cache mem-
ories that can be accessed in a few CPU clock cycles. These are followed by a large DRAM-based main
memory that can be accessed in tens to hundreds of clock cycles. Next are slow but enormous local disks.
Finally, some systems even include an additional level of disks on remote servers that can be accessed over
a network. For example, distributed file systems such as the Andrew File System (AFS) or the Network
File System (NFS) allow a program to access files that are stored on remote network-connected servers.
Similarly, the World Wide Web allows programs to access remote files stored on Web servers anywhere in
the world.

Aside: Other memory hierarchies.
We have shown you one example of a memory hierarchy, but other combinations are possible, and indeed common.
For example, many sites back up local disks onto archival magnetic tapes. At some of these sites, human operators
manually mount the tapes onto tape drives as needed. At other sites, tape robots handle this task automatically.
In either case, the collection of tapes represents a level in the memory hierarchy, below the local disk level, and
the same general principles apply. Tapes are cheaper per byte than disks, which allows sites to archive multiple
snapshots of their local disks. The tradeoff is that tapes take longer to access than disks.End Aside.

6.3. THE MEMORY HIERARCHY 301

6.3.1 Caching in the Memory Hierarchy

In general, acache(pronounced “cash”) is a small, fast storage device that acts as a staging area for the data
objects stored in a larger, slower device. The process of using a cache is known ascaching(pronounced
“cashing”).

The central idea of a memory hierarchy is that for eachk, the faster and smaller storage device at levelk

serves as a cache for the larger and slower storage device at levelk + 1. In other words, each level in the
hierarchy caches data objects from the next lower level. For example, the local disk serves as a cache for
files (such as Web pages) retrieved from remote disks over the network, the main memory serves as a cache
for data on the local disks, and so on, until we get to the smallest cache of all, the set of CPU registers.

Figure 6.22 shows the general concept of caching in a memory hierarchy. The storage at levelk + 1 is
partitioned into contiguous chunks of data objects calledblocks. Each block has a unique address or name
that distinguishes it from other blocks. Blocks can be either fixed-size (the usual case) or variable-sized
(e.g., the remote HTML files stored on Web servers). For example, the level-k + 1 storage in Figure 6.22 is
partitioned into 16 fixed-sized blocks, numbered 0 to 15.

4 9 14 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper storage
device at level k+1 is partitioned
into blocks.

Smaller, faster, more expensive
device at level k caches a
subset of the blocks from level k+1

Data is copied between
levels in block-sized transfer units

Level k:

Level k+1:

Figure 6.22:The basic principle of caching in a memory hierarchy.

Similarly, the storage at levelk is partitioned into a smaller set of blocks that are the same size as the blocks
at levelk + 1. At any point in time, the cache at levelk contains copies of a subset of the blocks from level
k + 1. For example, in Figure 6.22, the cache at levelk has room for four blocks and currently contains
copies of blocks 4, 9, 14, and 3.

Data is always copied back and forth between levelk and levelk + 1 in block-sizedtransfer units. It is
important to realize that while the block size is fixed between any particular pair of adjacent levels in the
hierarchy, other pairs of levels can have different block sizes. For example, in Figure 6.21, transfers between
L1 and L0 typically use 1-word blocks. Transfers between L2 and L1 (and L3 and L2) typically use blocks
of 4 to 8 words. And transfers between L4 and L3 use blocks with hundreds or thousands of bytes. In
general, devices lower in the hierarchy (further from the CPU) have longer access times, and thus tend to
use larger block sizes in order to amortize these longer access times.

302 CHAPTER 6. THE MEMORY HIERARCHY

Cache Hits

When a program needs a particular data objectd from levelk + 1, it first looks ford in one of the blocks
currently stored at levelk. If d happens to be cached at levelk, then we have what is called acache hit. The
program readsd directly from levelk, which by the nature of the memory hierarchy is faster than readingd

from levelk + 1. For example, a program with good temporal locality might read a data object from block
14, resulting in a cache hit from levelk.

Cache Misses

If, on the other hand, the data objectd is not cached at levelk, then we have what is called acache miss.
When there is a miss, the cache at levelk fetches the block containingd from the cache at levelk + 1,
possibly overwriting an existing block if the levelk cache is already full.

This process of overwriting an existing block is known asreplacingor evictingthe block. The block that is
evicted is sometimes referred to as avictim block. The decision about which block to replace is governed
by the cache’sreplacement policy.For example, a cache with arandom replacement policywould choose a
random victim block. A cache with a least-recently used (LRU) replacement policy would choose the block
that was last accessed the furthest in the past.

After the cache at levelk has fetched the block from levelk + 1, the program can readd from levelk as
before. For example, in Figure 6.22, reading a data object from block 12 in the levelk cache would result
in a cache miss because block 12 is not currently stored in the levelk cache. Once it has been copied from
levelk + 1 to levelk, block 12 will remain there in expectation of later accesses.

Kinds of Cache Misses

It is sometimes helpful to distinguish between different kinds of cache misses. If the cache at levelk is
empty, then any access of any data object will miss. An empty cache is sometimes referred to as acold
cache, and misses of this kind are calledcompulsory missesor cold misses. Cold misses are important
because they are often transient events that might not occur in steady state, after the cache has beenwarmed
up by repeated memory accesses.

Whenever there is a miss, the cache at levelk must implement someplacement policythat determines where
to place the block it has retrieved from levelk+1. The most flexible placement policy is to allow any block
from level k + 1 to be stored in any block at levelk. For caches high in the memory hierarchy (close to
the CPU) that are implemented in hardware and where speed is at a premium, this policy is usually too
expensive to implement because randomly placed blocks are expensive to locate.

Thus, hardware caches typically implement a more restricted placement policy that restricts a particular
block at levelk + 1 to a small subset (sometimes a singleton) of the blocks at levelk. For example, in
Figure 6.22, we might decide that a blocki at levelk + 1 must be placed in block (i mod 4) at levelk. For
example, blocks 0, 4, 8, and 12 at levelk + 1 would map to block 0 at levelk, blocks 1, 5, 9, and 13 would
map to block 1, and so on. Notice that our example cache in Figure 6.22 uses this policy.

Restrictive placement policies of this kind lead to a type of miss known as aconflict miss, where the cache

6.3. THE MEMORY HIERARCHY 303

is large enough to hold the referenced data objects, but because they map to the same cache block, the cache
keeps missing. For example, in Figure 6.22, if the program requests block 0, then block 8, then block 0,
then block 8, and so on, each of the references to these two blocks would miss in the cache at levelk, even
though this cache can hold a total of 4 blocks.

Programs often run as a sequence of phases (e.g., loops) where each phase accesses some reasonably con-
stant set of cache blocks. For example, a nested loop might access the elements of the same array over
and over again. This set of blocks is called theworking setof the phase. When the size of the working set
exceeds the size of the cache, the cache will experience what are known ascapacity misses. In other words,
the cache is just too small to handle this particular working set.

Cache Management

As we have noted, the essence of the memory hierarchy is that the storage device at each level is a cache
for the next lower level. At each level, some form of logic mustmanagethe cache. By this we mean that
something has to partition the cache storage into blocks, transfer blocks between different levels, decide
when there are hits and misses, and then deal with them. The logic that manages the cache can be hardware,
software, or a combination of the two.

For example, the compiler manages the register file, the highest level of the cache hierarchy. It decides when
to issue loads when there are misses, and determines which register to store the data in. The caches at levels
L1 and L2 are managed entirely by hardware logic built into the caches. In a system with virtual memory,
the DRAM main memory serves as a cache for data blocks stored on disk, and is managed by a combination
of operating system software and address translation hardware on the CPU. For a machine with a distributed
file system such as AFS, the local disk serves as a cache that is managed by the AFS client process running
on the local machine. In most cases, caches operate automatically and do not require any specific or explicit
actions from the program.

6.3.2 Summary of Memory Hierarchy Concepts

To summarize, memory hierarchies based on caching work because slower storage is cheaper than faster
storage and because programs tend to exhibit locality.

� Exploiting temporal locality. Because of temporal locality, the same data objects are likely to be
reused multiple times. Once a data object has been copied into the cache on the first miss, we can
expect a number of subsequent hits on that object. Since the cache is faster than the storage at the
next lower level, these subsequent hits can be served much faster than the original miss.

� Exploiting spatial locality.Blocks usually contain multiple data objects. Because of spatial locality,
we can expect that the cost of copying a block after a miss will be amortized by subsequent references
to other objects within that block.

Caches are used everywhere in modern systems. As you can see from Figure 6.23, caches are used in CPU
chips, operating systems, distributed file systems, and on the World-Wide Web. They are built from and
managed by various combinations of hardware and software. Note that there are a number of terms and

304 CHAPTER 6. THE MEMORY HIERARCHY

acronyms in Figure 6.23 that we haven’t covered yet. We include them here to demonstrate how common
caches are.

Type What cached Where cached Latency (cycles) Managed by

CPU registers 4-byte word On-chip CPU registers 0 Compiler
TLB Address translations On-chip TLB 0 Hardware
L1 cache 32-byte block On-chip L1 cache 1 Hardware
L2 cache 32-byte block Off-chip L2 cache 10 Hardware
Virtual memory 4-KB page Main memory 100 Hardware + OS
Buffer cache Parts of files Main memory 100 OS
Network buffer cache Parts of files Local disk 10,000,000 AFS/NFS client
Browser cache Web pages Local disk 10,000,000 Web browser
Web cache Web pages Remote server disks 1,000,000,000 Web proxy server

Figure 6.23:The ubiquity of caching in modern computer systems.Acronyms: TLB: Translation Looka-
side Buffer, MMU: Memory Management Unit, OS: Operating System, AFS: Andrew File System, NFS:
Network File System.

6.4 Cache Memories

The memory hierarchies of early computer systems consisted of only three levels: CPU registers, main
DRAM memory, and disk storage. However, because of the increasing gap between CPU and main memory,
system designers were compelled to insert a small SRAM memory, called anL1 cache(Level 1 cache),
between the CPU register file and main memory. In modern systems, the L1 cache is located on the CPU
chip (i.e., it is anon-chip cache), as shown in Figure 6.24. The L1 cache can be accessed nearly as fast as
the registers, typically in one or two clock cycles.

As the performance gap between the CPU and main memory continued to increase, system designers re-
sponded by inserting an additional cache, called anL2 cache, between the L1 cache and the main memory,
that can be accessed in a few clock cycles. The L2 cache can be attached to the memory bus, or it can be
attached to its owncache bus, as shown in Figure 6.24. Some high-performance systems, such as those
based on the Alpha 21164, will even include an additional level of cache on the memory bus, called anL3
cache, which sits between the L2 cache and main memory in the hierarchy. While there is considerable
variety in the arrangements, the general principles are the same.

I/O
bridge

bus interfaceL2 cache

ALU

register file

CPU chip

cache bus system bus memory bus

L1
cache

Figure 6.24:Typical bus structure for L1 and L2 caches.

6.4. CACHE MEMORIES 305

6.4.1 Generic Cache Memory Organization

Consider a computer system where each memory address hasm bits that formM = 2m unique addresses.
As illustrated in Figure 6.25(a), a cache for such a machine is organized as an array ofS = 2s cache sets.
Each set consists ofE cache lines. Each line consists of a datablock of B = 2b bytes, avalid bit that
indicates whether or not the line contains meaningful information, andt = m� (b+ s) tag bits(a subset of
the bits from the current block’s memory address) that uniquely identify the block stored in the cache line.

• • • B–110

• • • B–110

valid

valid

tag

tag
set 0:

B = 2b bytes
per cache block

E lines per set

S = 2s sets

t tag bits
per line

1 valid bit
per line

Cache size: C = B x E x S data bytes

• • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set 1: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set S-1: • • •

• • •

(a)

t bits s bits b bits

0m-1

tag set index block offset

Address:

(b)

Figure 6.25: General organization of cache(S;E;B;m). (a) A cache is an array of sets. Each set
contains one or more lines. Each line contains a valid bit, some tag bits, and a block of data. (b) The cache
organization induces a partition of them address bits intot tag bits,s set index bits, andb block offset bits.

In general, a cache’s organization can be characterized by the tuple(S;E;B;m). The size (or capacity) of a
cache,C, is stated in terms of the aggregate size of all the blocks. The tag bits and valid bit are not included.
Thus,C = S �E �B.

When the CPU is instructed by a load instruction to read a word from addressA of main memory, it sends
the addressA to the cache. If the cache is holding a copy of the word at addressA, it sends the word
immediately back to the CPU. So how does the cache know whether it contains a copy of the word at
addressA? The cache is organized so that it can find the requested word by simply inspecting the bits of the
address, similar to a hash table with an extremely simple hash function. Here is how it works.

306 CHAPTER 6. THE MEMORY HIERARCHY

The parametersS andB induce a partitioning of them address bits into the three fields shown in Fig-
ure 6.25(b). Thes set index bitsin A form an index into the array ofS sets. The first set is set 0, the second
set is set 1, and so on. When interpreted as an unsigned integer, the set index bits tell us which set the word
must be stored in. Once we know which set the word must be contained in, thet tag bits inA tell us which
line (if any) in the set contains the word. A line in the set contains the word if and only if the valid bit is set
and the tag bits in the line match the tag bits in the addressA. Once we have located the line identified by
the tag in the set identified by the set index, then theb block offset bitsgive us the offset of the word in the
B-byte data block.

As you may have noticed, descriptions of caches use a lot of symbols. Figure 6.26 summarizes these
symbols for your reference.

Fundamental parameters
Parameter Description

S = 2
s Number of sets

E Number of lines per set
B = 2

b Block size (bytes)
m = log2(M) Number of physical (main memory) address bits

Derived quantities
Parameter Description

M = 2
m Maximum number of unique memory addresses

s = log2(S) Number ofset index bits
b = log2(B) Number ofblock offset bits
t = m� (s+ b) Number oftag bits
C = B �E � S Cache size (bytes) not including overhead such as the valid and tag bits

Figure 6.26:Summary of cache parameters.

Practice Problem 6.6:

The following table gives the parameters for a number of different caches. For each cache, determine
the number of cache sets (S), tag bits (t), set index bits (s), and block offset bits (b).

Cache m C B E S t s b

1. 32 1024 4 1
2. 32 1024 8 4
3. 32 1024 32 32

6.4.2 Direct-Mapped Caches

Caches are grouped into different classes based onE, the number of cache lines per set. A cache with
exactly one line per set (E = 1) is known as adirect-mappedcache (see Figure 6.27). Direct-mapped

6.4. CACHE MEMORIES 307

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

E=1 lines per setcache block

cache block

cache block

Figure 6.27:Direct-mapped cache (E = 1). There is exactly one line per set.

caches are the simplest both to implement and to understand, so we will use them to illustrate some general
concepts about how caches work.

Suppose we have a system with a CPU, a register file, an L1 cache, and a main memory. When the CPU
executes an instruction that reads a memory wordw, it requests the word from the L1 cache. If the L1 cache
has a cached copy ofw, then we have an L1 cache hit, and the cache quickly extractsw and returns it to
the CPU. Otherwise, we have a cache miss and the CPU must wait while the L1 cache requests a copy of
the block containgw from the main memory. When the requested block finally arrives from memory, the
L1 cache stores the block in one of its cache lines, extracts wordw from the stored block, and returns it to
the CPU. The process that a cache goes through of determining whether a request is a hit or a miss, and
then extracting the requested word consists of three steps: (1)set selection, (2) line matching, and (3)word
extraction.

Set Selection in Direct-Mapped Caches

In this step, the cache extracts thes set index bits from the middle of the address forw. These bits are
interpreted as an unsigned integer that corresponds to a set number. In other words, if we think of the cache
as a one-dimensional array of sets, then the set index bits form an index into this array. Figure 6.28 shows
how set selection works for a direct-mapped cache. In this example, the set index bits000012 are interpreted
as an integer index that selects set 1.

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:
t bits s bits

0 0 0 0 1
0m-1

b bits

tag set index block offset

selected set

cache block

cache block

cache block

Figure 6.28:Set selection in a direct-mapped cache.

Line Matching in Direct-Mapped Caches

Now that we have selected some seti in the previous step, the next step is to determine if a copy of the
wordw is stored in one of the cache lines contained in seti. In a direct-mapped cache, this is easy and fast
because there is exactly one line per set. A copy ofw is contained in the line if and only if the valid bit is

308 CHAPTER 6. THE MEMORY HIERARCHY

set and the tag in the cache line matches the tag in the address ofw.

Figure 6.29 shows how line matching works in a direct-mapped cache. In this example, there is exactly one
cache line in the selected set. The valid bit for this line is set, so we know that the bits in the tag and block
are meaningful. Since the tag bits in the cache line match the tag bits in the address, we know that a copy
of the word we want is indeed stored in the line. In other words, we have a cache hit. On the other hand, if
either the valid bit were not set or the tags did not match, then we would have had a cache miss.

1

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i):

=1?

= ? (3) If (1) and (2), then
cache hit,

and block offset
selects

starting byte.

(1) The valid bit must be set

(2) The tag bits in the cache
line must match the

tag bits in the address

0110 w3w0 w1 w2

30 1 2 74 5 6

Figure 6.29:Line matching and word selection in a direct-mapped cache.Within the cache block,w0

denotes the low-order byte of the wordw, w1 the next byte, and so on.

Word Selection in Direct-Mapped Caches

Once we have a hit, we know thatw is somewhere in the block. This last step determines where the desired
word starts in the block. As shown in Figure 6.29, the block offset bits provide us with the offset of the first
byte in the desired word. Similar to our view of a cache as an array of lines, we can think of a block as an
array of bytes, and the byte offset as an index into that array. In the example, the block offset bits of1002
indicate that the copy ofw starts at byte 4 in the block. (We are assuming that words are 4 bytes long.)

Line Replacement on Misses in Direct-Mapped Caches

If the cache misses, then it needs to retrieve the requested block from the next level in the memory hierarchy
and store the new block in one of the cache lines of the set indicated by the set index bits. In general, if the
set is full of valid cache lines, then one of the existing lines must be evicted. For a direct-mapped cache,
where each set contains exactly one line, the replacement policy is trivial: the current line is replaced by the
newly fetched line.

Putting it Together: A Direct-Mapped Cache in Action

The mechanisms that a cache uses to select sets and identify lines are extremely simple. They have to be,
because the hardware must perform them in only a few nanoseconds. However, manipulating bits in this
way can be confusing to us humans. A concrete example will help clarify the process. Suppose we have a
direct-mapped cache where

(S;E;B;m) = (4; 1; 2; 4)

6.4. CACHE MEMORIES 309

In other words, the cache has four sets, one line per set, 2 bytes per block, and 4-bit addresses. We will also
assume that each word is a single byte. Of course, these assumptions are totally unrealistic, but they will
help us keep the example simple.

When you are first learning about caches, it can be very instructive to enumerate the entire address space
and partition the bits, as we’ve done in Figure 6.30 for our 4-bit example. There are some interesting things

Address Address bits
(decimal Tag bits Index bits Offset bits Block

equivalent) (t = 1) (s = 2) (b = 1) number

0 0 00 0 0
1 0 00 1 0
2 0 01 0 1
3 0 01 1 1
4 0 10 0 2
5 0 10 1 2
6 0 11 0 3
7 0 11 1 3
8 1 00 0 4
9 1 00 1 4
10 1 01 0 5
11 1 01 1 5
12 1 10 0 6
13 1 10 1 6
14 1 11 0 7
15 1 11 1 7

Figure 6.30:4-bit address for example direct-mapped cache

to notice about this enumerated space.

� The concatenation of the tag and index bits uniquely identifies each block in memory. For example,
block 0 consists of addresses 0 and 1, block 1 consists of addresses 2 and 3, block 2 consists of
addresses 4 and 5, and so on.

� Since there are eight memory blocks but only four cache sets, multiple blocks map to the same cache
set (i.e., they have the same set index). For example, blocks 0 and 4 both map to set 0, blocks 1 and 5
both map to set 1, and so on.

� Blocks that map to the same cache set are uniquely identified by the tag. For example, block 0 has a
tag bit of 0 while block 4 has a tag bit of 1, block 1 has a tag bit of 0 while block 5 has a tag bit of 1.

Let’s simulate the cache in action as the CPU performs a sequence of reads. Remember that for this example,
we are assuming that the CPU reads 1-byte words. While this kind of manual simulation is tedious and you
may be tempted to skip it, in our experience, students do not really understand how caches work until they
work their way through a few of them.

Initially, the cache is empty (i.e., each valid bit is 0).

310 CHAPTER 6. THE MEMORY HIERARCHY

set valid tag block[0] block[1]

0 0
1 0
2 0
3 0

Each row in the table represents a cache line. The first column indicates the set that the line belongs to, but
keep in mind that this is provided for convenience and is not really part of the cache. The next three columns
represent the actual bits in each cache line. Now let’s see what happens when the CPU performs a sequence
of reads:

1. Read word at address 0.Since the valid bit for set 0 is zero, this is a cache miss. The cache fetches
block 0 from memory (or a lower-level cache) and stores the block in set 0. Then the cache returns
m[0] (the contents of memory location 0) from block[0] of the newly fetched cache line.

set valid tag block[0] block[1]

0 1 0 m[0] m[1]
1 0
2 0
3 0

2. Read word at address 1.This is a cache hit. The cache immediately returns m[1] from block[1] of
the cache line. The state of the cache does not change.

3. Read word at address 13.Since the cache line in set 2 is not valid, this is a cache miss. The cache
loads block 6 into set 2 and returns m[13] from block[1] of the new cache line.

set valid tag block[0] block[1]

0 1 0 m[0] m[1]
1 0
2 1 1 m[12] m[13]
3 0

4. Read word at address 8.This is a miss. The cache line in set 0 is indeed valid, but the tags do not
match. The cache loads block 4 into set 0 (replacing the line that was there from the read of address
0) and returns m[8] from block[0] of the new cache line.

set valid tag block[0] block[1]

0 1 1 m[8] m[9]
1 0
2 1 1 m[12] m[13]
3 0

5. Read word at address 0.This is another miss, due to the unfortunate fact that we just replaced block
0 during the previous reference to address 8. This kind of miss, where we have plenty of room in the
cache but keep alternating references to blocks that map to the same set, is an example of a conflict
miss.

6.4. CACHE MEMORIES 311

set valid tag block[0] block[1]

0 1 0 m[0] m[1]
1 0
2 1 1 m[12] m[13]
3 0

Conflict Misses in Direct-Mapped Caches

Conflict misses are common in real programs and can cause baffling performance problems. Conflict misses
in direct-mapped caches typically occur when programs access arrays whose sizes are a power of two. For
example, consider a function that computes the dot product of two vectors:

1 float dotprod(float x[8], float y[8])
2 {
3 float sum = 0.0;
4 int i;
5

6 for (i = 0; i < 8; i++)
7 sum += x[i] * y[i];
8 return sum;
9 }

This function has good spatial locality with respect tox andy , and so we might expect it to enjoy a good
number of cache hits. Unfortunately, this is not always true.

Suppose that floats are 4 bytes, thatx is loaded into the 32 bytes of contiguous memory starting at address
0, and thaty starts immediately afterx at address 32. For simplicity, suppose that a block is 16 bytes (big
enough to hold four floats) and that the cache consists of two sets, for a total cache size of 32 bytes. We
will assume that the variablesum is actually stored in a CPU register and thus doesn’t require a memory
reference. Given these assumptions, eachx[i] andy[i] will map to the identical cache set:

Element Address Set index Element Address Set index

x[0] 0 0 y[0] 32 0
x[1] 4 0 y[1] 36 0
x[2] 8 0 y[2] 40 0
x[3] 12 0 y[3] 44 0
x[4] 16 1 y[4] 48 1
x[5] 20 1 y[5] 52 1
x[6] 24 1 y[6] 56 1
x[7] 28 1 y[7] 60 1

At runtime, the first iteration of the loop referencesx[0], a miss that causes the block containingx[0] –
x[3] to be loaded into set 0. The next reference is toy[0], another miss that causes the block containing
y[0]– y[3] to be copied into set 0, overwriting the values ofx that were copied in by the previous refer-
ence. During the next iteration, the reference tox[1] misses, which causes thex[0]– x[3] block to be

312 CHAPTER 6. THE MEMORY HIERARCHY

loaded back into set 0, overwriting they[0]– y[3] block. So now we have a conflict miss, and in fact each
subsequent reference tox andy will result in a conflict miss as wethrashback and forth between blocks
of x andy . The termthrashingdescribes any situation where a cache is repeatedly loading and evicting the
same sets of cache blocks.

The bottom line is that even though the program has good spatial locality and we have room in the cache to
hold the blocks for bothx[i] andy[i], each reference results in a conflict miss because the blocks map
to the same cache set. It is not unusual for this kind of thrashing to result in a slowdown by a factor of 2 or
3. And be aware that even though our example is extremely simple, the problem is real for larger and more
realistic direct-mapped caches.

Luckily, thrashing is easy for programmers to fix once they recognize what is going on. One easy solution
is to putB bytes of padding at the end of each array. For example, instead of definingx to be float
x[8], we define it to be float x[12]. Assuming y starts immediately afterx in memory, we have the
following mapping of array elements to sets:

Element Address Set index Element Address Set index

x[0] 0 0 y[0] 48 1
x[1] 4 0 y[1] 52 1
x[2] 8 0 y[2] 56 1
x[3] 12 0 y[3] 60 1
x[4] 16 1 y[4] 64 0
x[5] 20 1 y[5] 68 0
x[6] 24 1 y[6] 72 0
x[7] 28 1 y[7] 76 0

With the padding at the end ofx , x[i] andy[i] now map to different sets, which eliminates the thrashing
conflict misses.

Practice Problem 6.7:

In the previousdotprod example, what fraction of the total references tox andy will be hits once we
have padded arrayx?

Why Index With the Middle Bits?

You may be wondering why caches use the middle bits for the set index instead of the high order bits. There
is a good reason why the middle bits are better. Figure 6.31 shows why.

If the high-order bits are used as an index, then some contiguous memory blocks will map to the same
cache set. For example, in the figure, the first four blocks map to the first cache set, the second four blocks
map to the second set, and so on. If a program has good spatial locality and scans the elements of an array
sequentially, then the cache can only hold a block-sized chunk of the array at any point in time. This is an
inefficient use of the cache.

Contrast this with middle-bit indexing, where adjacent blocks always map to different cache lines. In this
case, the cache can hold an entireC-sized chunk of the array, whereC is the cache size.

6.4. CACHE MEMORIES 313

4-set Cache

00

01

10

11

High-Order
Bit Indexing

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Middle-Order
Bit Indexing

set index bits

Figure 6.31:Why caches index with the middle bits.

Practice Problem 6.8:

In general, if the high-orders bits of an address are used as the set index, contiguous chunks of memory
blocks are mapped to the same cache set.

A. How many blocks are in each of these contiguous array chunks?

B. Consider the following code that runs on a system with a cache of the form(S;E;B;m) =

(512; 1; 32; 32):

int array[4096];

for (i = 0; i < 4096; i++)
sum += array[i];

What is the maximum number of array blocks that are stored in the cache at any point in time?

6.4.3 Set Associative Caches

The problem with conflict misses in direct-mapped caches stems from the constraint that each set has exactly
one line (or in our terminology,E = 1). A set associative cacherelaxes this constraint so each set holds
more than one cache line. A cache with1 < E < C=B is often called anE-way set associative cache. We
will discuss the special case, whereE = C=B, in the next section. Figure 6.32 shows the organization of a
two-way set associative cache.

314 CHAPTER 6. THE MEMORY HIERARCHY

valid tag
set 0: E=2 lines per set

set 1:

set S-1:

• • •

cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block

valid tag cache block

Figure 6.32:Set associative cache (1 < E < C=B). In a set associative cache, each set contains more than
one line. This particular example shows a 2-way set associative cache.

Set Selection in Set Associative Caches

Set selection is identical to a direct-mapped cache, with the set index bits identifying the set. Figure 6.33
summarizes this.

valid

valid

tag

tag
set 0:

valid

valid

tag

tag
set 1:

valid

valid

tag

tag
set S-1:

• • •

t bits s bits
0 0 0 0 1

0m-1

b bits

tag set index block offset

Selected set

cache block

cache block

cache block

cache block

cache block

cache block

Figure 6.33:Set selection in a set associative cache.

Line Matching and Word Selection in Set Associative Caches

Line matching is more involved in a set associative cache than in a direct-mapped cache because it must
check the tags and valid bits of multiple lines in order to determine if the requested word is in the set. A
conventional memory is an array of values that takes an address as input and returns the value stored at that
address. Anassociative memory, on the other hand, is an array of (key,value) pairs that takes as input the
key and returns a value from one of the (key,value) pairs that matches the input key. Thus, we can think of
each set in a set associative cache as a small associative memory where the keys are the concatenation of
the tag and valid bits, and the values are the contents of a block.

Figure 6.34 shows the basic idea of line matching in an associative cache. An important idea here is that
any line in the set can contain any of the memory blocks that map to that set. So the cache must search each
line in the set, searching for a valid line whose tag matches the tag in the address. If the cache finds such a
line, then we have a hit and the block offset selects a word from the block, as before.

6.4. CACHE MEMORIES 315

1 0110 w3w0 w1 w2

1 1001

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i):

=1?

= ?
(3) If (1) and (2), then

cache hit, and
 block offset selects

starting byte.

(2) The tag bits in one
of the cache lines must

match the tag bits in
the address

(1) The valid bit must be set.

30 1 2 74 5 6

Figure 6.34:Line matching and word selection in a set associative cache.

Line Replacement on Misses in Set Associative Caches

If the word requested by the CPU is not stored in any of the lines in the set, then we have a cache miss, and
the cache must fetch the block that contains the word from memory. However, once the cache as retrieved
the block, which line should it replace? Of course, if there is an empty line, then it would be a good
candidate. But if there are no empty lines in the set, then we must choose one of them and hope that the
CPU doesn’t reference the replaced line anytime soon.

It is very difficult for programmers to exploit knowledge of the cache replacement policy in their codes, so
we will not go into much detail. The simplest replacement policy is to choose the line to replace at random.
Other more sophisticated policies draw on the principle of locality to try to minimize the probability that the
replaced line will be referenced in the near future. For example, aleast-frequently-used (LFU)policy will
replace the line that has been referenced the fewest times over some past time window. Aleast-recently-used
(LRU)policy will replace the line that was last accessed the furthest in the past. All of these policies require
additional time and hardware. But as we move further down the memory hierarchy, away from the CPU,
the cost of a miss becomes more expensive and it becomes more worthwhile to minimize misses with good
replacement policies.

6.4.4 Fully Associative Caches

A fully associative cacheconsists of a single set (i.e.,E = C=B) that contains all of the cache lines.
Figure 6.35 shows the basic organization.

valid

valid

tag

tag
set 0: E = C/B lines in

the one and only set

valid tag

• • •

cache block

cache block

cache block

Figure 6.35:Fully set associative cache (E = C=B). In a fully associative cache, a single set contains all
of the lines.

316 CHAPTER 6. THE MEMORY HIERARCHY

Set Selection in Fully Associative Caches

Set selection in a fully associative cache is trivial because there is only one set. Figure 6.36 summarizes.
Notice that there are no set index bits in the address, which is partitioned into only a tag and a block offset.

valid

valid

tag

tag

valid tag

• • •
t bits

0m-1

b bits

tag block offset

Set 0:
The entire cache is one set, so

by default set 0 is always selected.

cache block

cache block

cache block

Figure 6.36:Set selection in a fully associative cache.Notice that there are no set index bits

Line Matching and Word Selection in Fully Associative Caches

Line matching and word selection in a fully associative cache work the same as with an associated cache,
as we show in Figure 6.37. The difference is mainly a question of scale. Because the cache circuitry

t bits
1000110

0m-1

b bits

tag block offset

entire cache

=1 ?

= ? (3) If (1) and (2), then
cache hit, and block

offset selects
starting byte.

(2) The tag bits in one of the
cache lines must match the tag

bits in the address

1

0

1001

(1) The valid bit must be set.

0110

1

0

0110

1110

w3w0 w1 w2

30 1 2 74 5 6

Figure 6.37:Line matching and word selection in a fully associative cache.

must search for many matching tags in parallel, it is difficult and expensive to build an associative cache
that is both large and fast. As a result, fully associative caches are only appropriate for small caches,
such as the translation lookaside buffers (TLBs) in virtual memory systems that cache page table entries
(Section 10.6.2).

Practice Problem 6.9:

The following problems will help reinforce your understanding of how caches work. Assume the fol-
lowing:

� The memory is byte addressable.

� Memory accesses are to1-byte words(not 4-byte words).

6.4. CACHE MEMORIES 317

� Addresses are 13 bits wide.

� The cache is 2-way set associative (E = 2), with a 4-byte block size (B = 4) and 8 sets (S = 8).

The contents of the cache are as follows. All numbers are given in hexadecimal notation.

2-way Set Associative Cache
Line 0 Line 1

Set Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 09 1 86 30 3F 10 00 0 – – – –
1 45 1 60 4F E0 23 38 1 00 BC 0B 37
2 EB 0 – – – – 0B 0 – – – –
3 06 0 – – – – 32 1 12 08 7B AD
4 C7 1 06 78 07 C5 05 1 40 67 C2 3B
5 71 1 0B DE 18 4B 6E 0 – – – –
6 91 1 A0 B7 26 2D F0 0 – – – –
7 46 0 – – – – DE 1 12 C0 88 37

The box below shows the format of an address (one bit per box). Indicate (by labeling the diagram) the
fields that would be used to determine the following:

CO The cache block offset
CI The cache set index
CT The cache tag

12 11 10 9 8 7 6 5 4 3 2 1 0

Practice Problem 6.10:

Suppose a program running on the machine in Problem 6.9 references the 1-byte word at address
0x0E34 . Indicate the cache entry accessed and the cache byte value returnedin hex. Indicate whether
a cache miss occurs. If there is a cache miss, enter “–” for “Cache byte returned”.

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

B. Memory reference:

Parameter Value

Cache block offset (CO) 0x
Cache set index (CI) 0x
Cache tag (CT) 0x
Cache hit? (Y/N)
Cache byte returned 0x

318 CHAPTER 6. THE MEMORY HIERARCHY

Practice Problem 6.11:

Repeat Problem 6.10 for memory address0x0DD5.

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

B. Memory reference:

Parameter Value

Cache block offset (CO) 0x
Cache set index (CI) 0x
Cache tag (CT) 0x
Cache hit? (Y/N)
Cache byte returned 0x

Practice Problem 6.12:

Repeat Problem 6.10 for memory address0x1FE4 .

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0

B. Memory reference:

Parameter Value

Cache block offset (CO) 0x
Cache set index (CI) 0x
Cache tag (CT) 0x
Cache hit? (Y/N)
Cache byte returned 0x

Practice Problem 6.13:

For the cache in Problem 6.9, list all of the hex memory addresses that will hit in Set 3.

6.4.5 Issues with Writes

As we have seen, the operation of a cache with respect to reads is straightforward. First, look for a copy of
the desired wordw in the cache. If there is a hit, return wordw to the CPU immediately. If there is a miss,
fetch the block that contains wordw from memory, store the block in some cache line (possibly evicting a
valid line), and then return wordw to the CPU.

6.4. CACHE MEMORIES 319

The situation for writes is a little more complicated. Suppose the CPU writes a wordw that is already
cached (awrite hit). After the cache updates its copy ofw, what does it do about updating the copy of
w in memory? The simplest approach, known aswrite-through, is to immediately writew’s cache block
to memory. While simple, write-through has the disadvantage of causing a write transaction on the bus
with every store instruction. Another approach, known aswrite-back, defers the memory update as long as
possible by writing the updated block to memory only when it is evicted from the cache by the replacement
algorithm. Because of locality, write-back can significantly reduce the number of bus transactions, but it has
the disadvantage of additional complexity. The cache must maintain an additionaldirty bit for each cache
line that indicates whether or not the cache block has been modified.

Another issue is how to deal with write misses. One approach, known aswrite-allocate, loads the corre-
sponding memory block into the cache and then updates the cache block. Write-allocate tries to exploit
spatial locality of writes, but has the disadvantage that every miss results in a block transfer from memory to
cache. The alternative, known asno-write-allocate, bypasses the cache and writes the word directly to mem-
ory. Write-through caches are typically no-write-allocate. Write-back caches are typically write-allocate.

Optimizing caches for writes is a subtle and difficult issue, and we are only touching the surface here. The
details vary from system to system and are often proprietary and poorly documented. To the programmer
trying to write reasonably cache-friendly programs, we suggest adopting a mental model that assumes write-
back write-allocate caches. There are several reasons for this suggestion.

As a rule, caches at lower levels of the memory hierarchy are more likely to use write-back instead of
write-through because of the larger transfer times. For example, virtual memory systems (which use main
memory as a cache for the blocks stored on disk) use write-back exclusively. But as logic densities increase,
the increased complexity of write-back is becoming less of an impediment and we are seeing write-back
caches at all levels of modern systems. So this assumption matches current trends. Another reason for
assuming a write-back write-allocate approach is that it is symmetric to the way reads are handled, in that
write-back write-allocate tries to exploit locality. Thus, we can develop our programs at a high level to
exhibit good spatial and temporal locality rather than trying to optimize for a particular memory system.

6.4.6 Instruction Caches and Unified Caches

So far, we have assumed that caches hold only program data. But in fact, caches can hold instructions as
well as data. A cache that holds instructions only is known as ani-cache. A cache that holds program data
only is known as ad-cache. A cache that holds both instructions and data is known as aunified cache. A
typical desktop systems includes an L1 i-cache and an L1 d-cache on the CPU chip itself, and a separate
off-chip L2 unified cache. Figure 6.38 summarizes the basic setup.

Main
Memory Disk

L1 i-cache

L1 d-cacheRegs L2
Unified
Cache

CPU

Figure 6.38:A typical multi-level cache organization.

320 CHAPTER 6. THE MEMORY HIERARCHY

Some higher-end systems, such as those based on the Alpha 21164, put the L1 and L2 caches on the CPU
chip and have an additional off-chip L3 cache. Modern processors include separate on-chip i-caches and
d-caches in order to improve performance. With two separate caches, the processor can read an instruction
word and a data word during the same cycle. To our knowledge, no system incorporates an L4 cache,
although as processor and memory speeds continue to diverge, it is likely to happen.

Aside: What kind of cache organization does a real system have?
Intel Pentium systems use the cache organization shown in Figure 6.38, with an on-chip L1 i-cache, an on-chip
L1 d-cache, and an off-chip unified L2 cache. Figure 6.39 summarizes the basic parameters of these caches.End
Aside.

Cache type Associativity (E) Block size (B) Sets (S) Cache size (C)

on-chip L1 i-cache 4 32 B 128 16 KB
on-chip L1 d-cache 4 32 B 128 16 KB

off-chip L2 unified cache 4 32 B 1024–16384 128 KB–2 MB

Figure 6.39:Intel Pentium cache organization.

6.4.7 Performance Impact of Cache Parameters

Cache performance is evaluated with a number of metrics:

� Miss rate. The fraction of memory references during the execution of a program, or a part of a
program, that miss. It is computed as# misses=# references.

� Hit rate. The fraction of memory references that hit. It is computed as1�miss rate.

� Hit time. The time to deliver a word in the cache to the CPU, including the time for set selection, line
identification, and word selection. Hit time is typically 1 to 2 clock cycle for L1 caches.

� Miss penalty.Any additional time required because of a miss. The penalty for L1 misses served from
L2 is typically 5 to 10 cycles. The penalty for L1 misses served from main memory is typically 25 to
100 cycles.

Optimizing the cost and performance trade-offs of cache memories is a subtle exercise that requires exten-
sive simulation on realistic benchmark codes and is beyond our scope. However, it is possible to identify
some of the qualitative tradeoffs.

Impact of Cache Size

On the one hand, a larger cache will tend to increase the hit rate. On the other hand, it is always harder to
make big memories run faster. So larger caches tend to decrease the hit time. This is especially important
for on-chip L1 caches that must have a hit time of one clock cycle.

6.4. CACHE MEMORIES 321

Impact of Block Size

Large blocks are a mixed blessing. On the one hand, larger blocks can help increase the hit rate by exploiting
any spatial locality that might exist in a program. However, for a given cache size, larger blocks imply a
smaller number of cache lines, which can hurt the hit rate in programs with more temporal locality than
spatial locality. Larger blocks also have a negative impact on the miss penalty, since larger blocks cause
larger transfer times. Modern systems usually compromise with cache blocks that contain 4 to 8 words.

Impact of Associativity

The issue here is the impact of the choice of the parameterE, the number of cache lines per set. The
advantage of higher associativity (i.e., larger values ofE) is that it decreases the vulnerability of the cache
to thrashing due to conflict misses. However, higher associativity comes at a significant cost. Higher
associativity is expensive to implement and hard to make fast. It requires more tag bits per line, additional
LRU state bits per line, and additional control logic. Higher associativity can increase hit time, because
of the increased complexity, and can also increase the miss penalty because of the increased complexity of
choosing a victim line.

The choice of associativity ultimately boils down to a trade-off between the hit time and the miss penalty.
Traditionally, high-performance systems that pushed the clock rates would opt for direct-mapped L1 caches
(where the miss penalty is only a few cycles) and a small degree of associativity (say 2 to 4) for the lower
levels. But there are no hard and fast rules. In Intel Pentium systems, the L1 and L2 caches are all four-way
set associative. In Alpha 21164 systems, the L1 instruction and data caches are direct-mapped, the L2 cache
is three-way set associative, and the L3 cache is direct-mapped.

Impact of Write Strategy

Write-through caches are simpler to implement and can use awrite bufferthat works independently of the
cache to update memory. Furthermore, read misses are less expensive because they do not trigger a memory
write. On the other hand, write-back caches result in fewer transfers, which allows more bandwidth to
memory for I/O devices that perform DMA. Further, reducing the number of transfers becomes increasingly
important as we move down the hierarchy and the transfer times increase. In general, caches further down
the hierarchy are more likely to use write-back than write-through.

Aside: Cache lines, sets, and blocks: What’s the difference?
It is easy to confuse the distinction between cache lines, sets, and blocks. Let’s review these ideas and make sure
they are clear:

� A block is a fixed sized packet of information that moves back and forth between a cache and main memory
(or a lower level cache).

� A line is a container in a cache that stores a block, as well as other information such as the valid bit and the
tag bits.

� A set is a collection of one or more lines. Sets in direct-mapped caches consist of a single line. Sets in set
associative and fully associative caches consist of multiple lines.

322 CHAPTER 6. THE MEMORY HIERARCHY

In direct-mapped caches, sets and lines are indeed equivalent. However, in associative caches, sets and lines are
very different things and the terms cannot be used interchangeably.

Since a line always stores a single block, the terms “line” and “block” are often used interchangeably. For example,
systems professionals usually refer to the “line size” of a cache, when what they really mean is the block size. This
usage is very common, and shouldn’t cause any confusion, so long as you understand the distinction between blocks
and lines.End Aside.

6.5 Writing Cache-friendly Code

In Section 6.2 we introduced the idea of locality and talked in general terms about what constitutes good
locality. But now that we understand how cache memories work, we can be more precise. Programs with
better locality will tend to have lower miss rates, and programs with lower miss rates will tend to run faster
than programs with higher miss rates. Thus, good programmers should always try to write code that is
cache-friendly, in the sense that it has good locality. Here is the basic approach we use to try to ensure that
our code is cache-friendly.

1. Make the common case go fast.Programs often spend most of their time in a few core functions.
These functions often spend most of their time in a few loops. So focus on the inner loops of the core
functions and ignore the rest.

2. Minimize the number of cache misses in each inner loop.All other things being equal, such as the
total number of loads and stores, loops with better miss rates will run faster.

To see how this works in practice, consider thesumvec function from Section 6.2.

1 int sumvec(int v[N])
2 {
3 int i, sum = 0;
4

5 for (i = 0; i < N; i++)
6 sum += v[i];
7 return sum;
8 }

Is this function cache-friendly? First, notice that there is good temporal locality in the loop body with
respect to the local variablesi andsum. In fact, because these are local variables, any reasonable optimizing
compiler will cache them in the register file, the highest level of the memory hierarchy. Now consider the
stride-1 references to vectorv . In general, if a cache has a block size ofB bytes, then a stride-k reference
pattern (wherek is in expressed in words) results in an average ofmin (1; (wordsize� k)=B) misses per
loop iteration. This is minimized fork = 1, so the stride-1 references tov are indeed cache-friendly. For
example, suppose thatv is block-aligned, words are 4-bytes, cache blocks are 4 words, and the cache is
initially empty (a cold cache). Then regardless of the cache organization, the references tov will result in
the following pattern of hits and misses:

6.5. WRITING CACHE-FRIENDLY CODE 323

v[i] i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

Access order, [h]it or [m]iss 1 [m] 2 [h] 3 [h] 4 [h] 5 [m] 6 [h] 7 [h] 8 [h]

In this example, the reference tov[0] misses and the corresponding block, which containsv[0]– v[3],
is loaded into the cache from memory. Thus, the next three references are all hits. The reference tov[4]
causes another miss as a new block is loaded into the cache, the next three references are hits, and so on. In
general, three out of four references will hit, which is the best we can do in this case with a cold cache.

To summarize, our simplesumvec example illustrates two important points about writing cache-friendly
code:

� Repeated references to local variables are good because the compiler can cache them in the register
file (temporal locality).

� Stride-1 reference patterns are good because caches at all levels of the memory hierarchy store data
as contiguous blocks (spatial locality).

Spatial locality is especially important in programs that operate on multidimensional arrays. For example,
consider thesumarrayrows function from Section 6.2 that sums the elements of a two-dimensional array
in row-major order.

1 int sumarrayrows(int a[M][N])
2 {
3 int i, j, sum = 0;
4

5 for (i = 0; i < M; i++)
6 for (j = 0; j < N; j++)
7 sum += a[i][j];
8 return sum;
9 }

Since C stores arrays in row-major order, the inner loop of this function has the same desirable stride-1
access pattern assumvec. For example, suppose we make the same assumptions about the cache as for
sumvec. Then the references to the arraya will result in the following pattern of hits and misses:

a[i][j] j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

i = 0 1 [m] 2 [h] 3 [h] 4 [h] 5 [m] 6 [h] 7 [h] 8 [h]
i = 1 9 [m] 10 [h] 11 [h] 12 [h] 13 [m] 14 [h] 15 [h] 16 [h]
i = 2 17 [m] 18 [h] 19 [h] 20 [h] 21 [m] 22 [h] 23 [h] 24 [h]
i = 3 25 [m] 26 [h] 27 [h] 28 [h] 29 [m] 30 [h] 31 [h] 32 [h]

But consider what happens if we make the seemingly innocuous change of permuting the loops:

324 CHAPTER 6. THE MEMORY HIERARCHY

1 int sumarraycols(int a[M][N])
2 {
3 int i, j, sum = 0;
4

5 for (j = 0; j < N; j++)
6 for (i = 0; i < M; i++)
7 sum += a[i][j];
8 return sum;
9 }

In this case we are scanning the array column by column instead of row by row. If we are lucky and the
entire array fits in the cache, then we will enjoy the same miss rate of 1/4. However, if the array is larger
than the cache (the more likely case), then each and every access ofa[i][j] will miss!

a[i][j] j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

i = 0 1 [m] 5 [m] 9 [m] 13 [m] 17 [m] 21 [m] 25 [m] 29 [m]
i = 1 2 [m] 6 [m] 10 [m] 14 [m] 18 [m] 22 [m] 26 [m] 30 [m]
i = 2 3 [m] 7 [m] 11 [m] 15 [m] 19 [m] 23 [m] 27 [m] 31 [m]
i = 3 4 [m] 8 [m] 12 [m] 16 [m] 20 [m] 24 [m] 28 [m] 32 [m]

Higher miss rates can have a significant impact on running time. For example, on our desktop machine,
sumarraycols runs in about 20 clock cycles per iteration, whilesumarrayrows runs in about 10
cycles per iteration. To summarize, programmers should be aware of locality in their programs and try to
write programs that exploit it.

Practice Problem 6.14:

Transposing the rows and columns of a matrix is an important problem in signal processing and scientific
computing applications. It is also interesting from a locality point of view because its reference pattern
is both row-wise and column-wise. For example, consider the following transpose routine:

1 typedef int array[2][2];
2

3 void transpose1(array dst, array src)
4 {
5 int i, j;
6

7 for (i = 0; i < 2; i++) {
8 for (j = 0; j < 2; j++) {
9 dst[j][i] = src[i][j];

10 }
11 }
12 }

Assume this code runs on a machine with the following properties:

� sizeof(int) == 4 .

6.5. WRITING CACHE-FRIENDLY CODE 325

� Thesrc array starts at address 0 and thedst array starts at address 16 (decimal).

� There is a single L1 data cache that is direct-mapped, write-through, and write-allocate, with a
block size of 8 bytes.

� The cache has a total size of 16 data bytes and the cache is initially empty.

� Accesses to thesrc anddst arrays are the only sources of read and write misses, respectively.

A. For eachrow andcol , indicate whether the access tosrc[row][col] anddst[row][col]
is a hit (h) or a miss (m). For example, readingsrc[0][0] is a miss and writingdst[0][0]
is also a miss.

dst array
col 0 col 1

row 0 m
row 1

src array
col 0 col 1

row 0 m
row 1

B. Repeat the problem for a cache with 32 data bytes.

Practice Problem 6.15:

The heart of the recent hit gameSimAquariumis a tight loop that calculates the average position of 256
algae. You are evaluating its cache performance on a machine with a 1024-byte direct-mapped data
cache with 16-byte blocks (B = 16). You are given the following definitions:

1 struct algae_position {
2 int x;
3 int y;
4 };
5

6 struct algae_position grid[16][16];
7 int total_x = 0, total_y = 0;
8 int i, j;

You should also assume:

� sizeof(int) == 4 .

� grid begins at memory address 0.

� The cache is initially empty.

� The only memory accesses are to the entries of the arraygrid . Variablesi , j , total x , and
total y are stored in registers.

Determine the cache performance for the following code:

1 for (i = 0; i < 16; i++) {
2 for (j = 0; j < 16; j++) {
3 total_x += grid[i][j].x;
4 }
5 }

326 CHAPTER 6. THE MEMORY HIERARCHY

6

7 for (i = 0; i < 16; i++) {
8 for (j = 0; j < 16; j++) {
9 total_y += grid[i][j].y;

10 }
11 }

A. What is the total number of reads?_______ .

B. What is the total number of reads that miss in the cache?_______ .

C. What is the miss rate?_______ .

Practice Problem 6.16:

Given the assumptions of Problem 6.15, determine the cache performance of the following code:

1 for (i = 0; i < 16; i++){
2 for (j = 0; j < 16; j++) {
3 total_x += grid[j][i].x;
4 total_y += grid[j][i].y;
5 }
6 }

A. What is the total number of reads?_______ .

B. What is the total number of reads that miss in the cache?_______ .

C. What is the miss rate?_______ .

D. What would the miss rate be if the cache were twice as big?

Practice Problem 6.17:

Given the assumptions of Problem 6.15, determine the cache performance of the following code:

1 for (i = 0; i < 16; i++){
2 for (j = 0; j < 16; j++) {
3 total_x += grid[i][j].x;
4 total_y += grid[i][j].y;
5 }
6 }

A. What is the total number of reads?_______ .

B. What is the total number of reads that miss in the cache?_______ .

C. What is the miss rate?_______ .

D. What would the miss rate be if the cache were twice as big?

6.6. PUTTING IT TOGETHER: THE IMPACT OF CACHES ON PROGRAM PERFORMANCE 327

6.6 Putting it Together: The Impact of Caches on Program Performance

This section wraps up our discussion of the memory hierarchy by studying the impact that caches have on
the performance of programs running on real machines.

6.6.1 The Memory Mountain

The rate that a program reads data from the memory system is called theread throughput, or sometimes the
read bandwidth. If a program readsn bytes over a period ofs seconds, then the read throughput over that
period isn=s, typically expressed in units of MBytes per second (MB/s).

If we were to write a program that issued a sequence of read requests from a tight program loop, then the
measured read throughput would give us some insight into the performance of the memory system for that
particular sequence of reads. Figure 6.40 shows a pair of functions that measure the read throughput for a
particular read sequence.

code/mem/mountain/mountain.c

1 void test(int elems, int stride) /* The test function */
2 {
3 int i, result = 0;
4 volatile int sink;
5

6 for (i = 0; i < elems; i += stride)
7 result += data[i];
8 sink = result; /* So compiler doesn’t optimize away the loop */
9 }

10

11 /* Run test(elems, stride) and return read throughput (MB/s) */
12 double run(int size, int stride, double Mhz)
13 {
14 double cycles;
15 int elems = size / sizeof(int);
16

17 test(elems, stride); /* warm up the cache */
18 cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
19 return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
20 }

code/mem/mountain/mountain.c

Figure 6.40:Functions that measure and compute read throughput.

The test function generates the read sequence by scanning the firstelems elements of an integer array
with a stride ofstride. The run function is a wrapper that calls thetest function and returns the
measured read throughput. Thefcyc2 function in line 18 (not shown) estimates the running time of the
test function, in CPU cycles, using theK-best measurement scheme described in Chapter 9. Notice that
thesize argument to therun function is in units of bytes, while the correspondingelems argument to

328 CHAPTER 6. THE MEMORY HIERARCHY

the test function is in units of words. Also, notice that line 19 computes MB/s as106 bytes/s, as opposed
to 220 bytes/s.

Thesize andstride arguments to therun function allow us to control the degree of locality in the re-
sulting read sequence. Smaller values ofsize result in a smaller working set size, and thus more temporal
locality. Smaller values ofstride result in more spatial locality. If we call therun function repeatedly
with different values ofsize andstride, then we can recover a two-dimensional function of read band-
width versus temporal and spatial locality called thememory mountain. Figure 6.41 shows a program, called
mountain, that generates the memory mountain.

code/mem/mountain/mountain.c

1 #include <stdio.h>
2 #include "fcyc2.h" /* K-best measurement timing routines */
3 #include "clock.h" /* routines to access the cycle counter */
4

5 #define MINBYTES (1 << 10) /* Working set size ranges from 1 KB */
6 #define MAXBYTES (1 << 23) /* ... up to 8 MB */
7 #define MAXSTRIDE 16 /* Strides range from 1 to 16 */
8 #define MAXELEMS MAXBYTES/sizeof(int)
9

10 int data[MAXELEMS]; /* The array we’ll be traversing */
11

12 int main()
13 {
14 int size; /* Working set size (in bytes) */
15 int stride; /* Stride (in array elements) */
16 double Mhz; /* Clock frequency */
17

18 init_data(data, MAXELEMS); /* Initialize each element in data to 1 */
19 Mhz = mhz(0); /* Estimate the clock frequency */
20 for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {
21 for (stride = 1; stride <= MAXSTRIDE; stride++) {
22 printf("%.1f\t", run(size, stride, Mhz));
23 }
24 printf("\n");
25 }
26 exit(0);
27 }

code/mem/mountain/mountain.c

Figure 6.41:mountain: A program that generates the memory mountain.

Themountain program calls therun function with different working set sizes and strides. Working set
sizes start at 1 KB, increasing by a factor of two, to a maximum of 8 MB. Strides range from 1 to 16.
For each combination of working set size and stride,mountain prints the read throughout, in units of
MB/s. Themhz function in line 19 (not shown) is a system-dependent routine that estimates the CPU clock
frequency, using techniques described in Chapter 9.

6.6. PUTTING IT TOGETHER: THE IMPACT OF CACHES ON PROGRAM PERFORMANCE 329

Every computer has a unique memory mountain that characterizes the capabilities of its memory system.
For example, Figure 6.42 shows the memory mountain for an Intel Pentium III Xeon system.

s1

s3

s5

s7

s9

s1
1

s1
3

s1
5

8m

2m 51
2k 12

8k 32
k 8k

2k

0

200

400

600

800

1000

1200

re
ad

 th
ro

ug
hp

ut
 (

M
B

/s
)

stride (words) working set size (bytes)

Pentium III Xeon
550 MHz
16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

Ridges of
Temporal
Locality

L1

L2

mem

Slopes of
Spatial
Locality

xe

Figure 6.42:The memory mountain.

The geography of the Xeon mountain reveals a rich structure. Perpendicular to thesize axis are three
ridges that correspond to the regions of temporal locality where the working set fits entirely in the L1 cache,
the L2 cache, and main memory respectively. Notice that there is an order of magnitude difference between
the highest peak of the L1 ridge, where the CPU reads at a rate of 1 GB/s, and the lowest point of the main
memory ridge, where the CPU reads at a rate of 80 MB/s.

There are two features of the L1 ridge that should be pointed out. First, for a constant stride, notice how
the read throughput plummets as the working set size decreases from 16 KB to 1 KB (falling off the back
side of the ridge). Second, for a working set size of 16 KB, the peak of the L1 ridge line decreases with
increasing stride. Since the L1 cache holds the entire working set, these features do not reflect the true L1
cache performance. They are artifacts of overheads of calling thetest function and setting up to execute
the loop. For the small working set sizes along the L1 ridge, these overheads are not amortized, as they are
with the larger working set sizes.

On the L2 and main memory ridges, there is a slope of spatial locality that falls downhill as the stride
increases. This slope is steepest on the L2 ridge because of the large absolute miss penalty that the L2 cache
suffers when it has to transfer blocks from main memory. Notice that even when the working set is too large
to fit in either of the L1 or L2 caches, the highest point on the main memory ridge is a factor of two higher
than its lowest point. So even when a program has poor temporal locality, spatial locality can still come to

330 CHAPTER 6. THE MEMORY HIERARCHY

the rescue and make a significant difference.

If we take a slice through the mountain, holding the stride constant as in Figure 6.43, we can see quite
clearly the impact of cache size and temporal locality on performance. For sizes up to and including 16 KB,
the working set fits entirely in the L1 d-cache, and thus reads are served from L1 at the peak throughput of
about 1 GB/s. For sizes up to and including 256 KB, the working set fits entirely in the unified L2 cache.

0

200

400

600

800

1000

1200

8m 4m 2m

10
24

k

51
2k

25
6k

12
8k 64
k

32
k

16
k 8k 4k 2k 1k

working set size (bytes)

re
ad

 th
ro

ug
pu

t (
M

B
/s

)

L1 cache
region

L2 cache
region

main memory
region

Figure 6.43:Ridges of temporal locality in the memory mountain. The graph shows a slice through
Figure 6.42 withstride=1.

Larger working set sizes are served primarily from main memory. The drop in read throughput between 256
KB and 512 KB is interesting. Since the L2 cache is 512 KB, we might expect the drop to occur at 512 KB
instead of 256 KB. The only way to be sure is to perform a detailed cache simulation, but we suspect the
reason lies in the fact that the Pentium III L2 cache is a unified cache that holds both instructions and data.
What we might be seeing is the effect of conflict misses between instructions and data in L2 that make it
impossible for the entire array to fit in the L2 cache.

Slicing through the mountain in the opposite direction, holding the working set size constant, gives us some
insight into the impact of spatial locality on the read throughput. For example, Figure 6.44 shows the slice
for a fixed working set size of 256 KB. This slice cuts along the L2 ridge in Figure 6.42, where the working
set fits entirely in the L2 cache, but is too large for the L1 cache. Notice how the read throughput decreases
steadily as the stride increases from 1 to 8 words. In this region of the mountain, a read miss in L1 causes
a block to be transferred from L2 to L1. This is followed by some number of hits on the block in L1,
depending on the stride. As the stride increases, the ratio of L1 misses to L1 hits increases. Since misses
are served slower than hits, the read throughput decreases. Once the stride reaches 8 words, which on this
system equals the block size, every read request misses in L1 and must be served from L2. Thus the read
throughput for strides of at least 8 words is a constant rate determined by the rate that cache blocks can be
transferred from L2 into L1.

To summarize our discussion of the memory mountain: The performance of the memory system is not
characterized by a single number. Instead, it is a mountain of temporal and spatial locality whose elevations

6.6. PUTTING IT TOGETHER: THE IMPACT OF CACHES ON PROGRAM PERFORMANCE 331

0

100

200

300

400

500

600

700

800

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16

stride (words)

re
ad

 th
ro

ug
hp

ut
 (

M
B

/s
)

one access per cache line

Figure 6.44:A slope of spatial locality. The graph shows a slice through Figure 6.42 withsize=256 KB.

can vary by over an order of magnitude. Wise programmers try to structure their programs so that they run
in the peaks instead of the valleys. The aim is to exploit temporal locality so that heavily used words are
fetched from the L1 cache, and to exploit spatial locality so that as many words as possible are accessed
from a single L1 cache line.

Practice Problem 6.18:

The memory mountain in Figure 6.42 has two axes: stride and working set size. Which axis corresponds
to spatial locality? Which axis corresponds to temporal locality?

Practice Problem 6.19:

As programmers who care about performance, it is important for us to know rough estimates of the
access times to different parts of the memory hierarchy. Using the memory mountain in Figure 6.42,
estimate the time, in CPU cycles, to read a 4-byte word from:

A. The on-chip L1 d-cache.

B. The off-chip L2 cache.

C. Main memory.

Assume that the read throughput at (size=16M, stride=16) is 80 MB/s.

6.6.2 Rearranging Loops to Increase Spatial Locality

Consider the problem of multiplying a pair ofn� n matrices:C = AB. For example, ifn = 2, then"
c11 c12
c21 c22

#
=

"
a11 a12
a21 a22

"
b11 b12
b21 b22

#

332 CHAPTER 6. THE MEMORY HIERARCHY

where

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22

Matrix multiply is usually implemented using three nested loops, which are identified by their indexesi, j,
andk. If we permute the loops and make some other minor code changes, we can create the six functionally
equivalent versions of matrix multiply shown in Figure 6.45. Each version is uniquely identified by the
ordering of its loops.

At a high level, the six versions are quite similar. If addition is associative, then each version computes
an identical result.2 Each version performsO(n3) total operations and an identical number of adds and
multiplies. Each of then2 elements ofA andB is readn times. Each of then2 elements ofC is computed
by summingn values. However, if we analyze the behavior of the innermost loop iterations, we find that
there are differences in the number of accesses and the locality. For the purposes of our analysis, let’s make
the following assumptions:

� Each array is ann� n array ofdouble, with sizeof(double) == 8.

� There is a single cache with a 32-byte block size (B = 32).

� The array sizen is so large that a single matrix row does not fit in the L1 cache.

� The compiler stores local variables in registers, and thus references to local variables do not require
any load or store instructions.

Figure 6.46 summarizes the results of our inner loop analysis. Notice that the six versions pair up into
three equivalence classes, which we denote by the pair of matrices that are accessed in the inner loop. For
example, versionsijk andjik are members of ClassAB because they reference arraysA andB (but not
C) in their innermost loop. For each class, we have counted the number of loads (reads) and stores (writes)
in each inner loop iteration, the number of references toA,B, andC that will miss in the cache in each loop
iteration, and the total number of cache misses per iteration.

The inner loops of the ClassAB routines (Figure 6.45(a) and (b)) scan a row of arrayA with a stride of
1. Since each cache block holds four doublewords, the miss rate forA is 0.25 misses per iteration. On the
other hand, the inner loop scans a column ofB with a stride ofn. Sincen is large, each access of arrayB
results in a miss, for a total of1:25 misses per iteration.

The inner loops in the ClassAC routines (Figure 6.45(c) and (d)) have some problems. Each iteration
performs two loads and a store (as opposed to the ClassAB routines, which perform 2 loads and no stores).
Second, the inner loop scans the columns ofA andC with a stride ofn. The result is a miss on each load, for

2As we learned in Chapter 2, floating-point addition is commutative, but in general not associative. In practice, if the matrices
do not mix extremely large values with extremely small ones, as if often true when the matrices store physical properties, then the
assumption of associativity is reasonable.

6.6. PUTTING IT TOGETHER: THE IMPACT OF CACHES ON PROGRAM PERFORMANCE 333

code/mem/matmult/mm.c

1 for (i = 0; i < n; i++)
2 for (j = 0; j < n; j++) {
3 sum = 0.0;
4 for (k = 0; k < n; k++)
5 sum += A[i][k]*B[k][j];
6 C[i][j] += sum;
7 }

code/mem/matmult/mm.c

(a) Versionijk.

code/mem/matmult/mm.c

1 for (j = 0; j < n; j++)
2 for (i = 0; i < n; i++) {
3 sum = 0.0;
4 for (k = 0; k < n; k++)
5 sum += A[i][k]*B[k][j];
6 C[i][j] += sum;
7 }

code/mem/matmult/mm.c

(b) Versionjik.

code/mem/matmult/mm.c

1 for (j = 0; j < n; j++)
2 for (k = 0; k < n; k++) {
3 r = B[k][j];
4 for (i = 0; i < n; i++)
5 C[i][j] += A[i][k]*r;
6 }

code/mem/matmult/mm.c

(c) Versionjki.

code/mem/matmult/mm.c

1 for (k = 0; k < n; k++)
2 for (j = 0; j < n; j++) {
3 r = B[k][j];
4 for (i = 0; i < n; i++)
5 C[i][j] += A[i][k]*r;
6 }

code/mem/matmult/mm.c

(d) Versionkji.

code/mem/matmult/mm.c

1 for (k = 0; k < n; k++)
2 for (i = 0; i < n; i++) {
3 r = A[i][k];
4 for (j = 0; j < n; j++)
5 C[i][j] += r*B[k][j];
6 }

code/mem/matmult/mm.c

(e) Versionkij.

code/mem/matmult/mm.c

1 for (i = 0; i < n; i++)
2 for (k = 0; k < n; k++) {
3 r = A[i][k];
4 for (j = 0; j < n; j++)
5 C[i][j] += r*B[k][j];
6 }

code/mem/matmult/mm.c

(f) Versionikj.

Figure 6.45:Six versions of matrix multiply.

Matrix multiply Loads Stores A misses B misses C misses Total misses
version (class) per iter per iter per iter per iter per iter per iter

ijk & jik (AB) 2 0 0.25 1.00 0.00 1.25
jki & kji (AC) 2 1 1.00 0.00 1.00 2.00
kij & ikj (BC) 2 1 0.00 0.25 0.25 0.50

Figure 6.46:Analysis of matrix multiply inner loops. The six versions partition into three equivalence
classes, denoted by the pair of arrays that are accessed in the inner loop.

334 CHAPTER 6. THE MEMORY HIERARCHY

a total of two misses per iteration. Notice that interchanging the loops has decreased the amount of spatial
locality compared to the ClassAB routines.

TheBC routines (Figure 6.45(e) and (f)) present an interesting tradeoff. With two loads and a store, they
require one more memory operation than theAB routines. On the other hand, since the inner loop scans
bothB andC row-wise with a stride-1 access pattern, the miss rate on each array is only 0.25 misses per
iteration, for a total of 0.50 misses per iteration.

Figure 6.47 summarizes the performance of different versions of matrix multiply on a Pentium III Xeon
system. The graph plots the measured number of CPU cycles per inner loop iteration as a function of array
size (n).

0

10

20

30

40

50

60

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

Array size (n)

C
yc

le
s

/it
er

at
io

n kji

jki

kij

ikj

jik

ijk

Figure 6.47:Pentium III Xeon matrix multiply performance. Legend:kji andjki: ClassAC; kij and
ikj: ClassBC; ijk andjik: ClassAB

There are a number of interesting points to notice about this graph:

� For largen, the fastest version runs three times faster than the slowest version, even though each
performs the same number of floating-point arithmetic operations.

� Versions with the same number and locality of memory accesses have roughly the same measured
performance.

� The two versions with the worst memory behavior, in terms of the number of accesses and misses
per iteration, run significantly slower than the other four versions, which have fewer misses or fewer
accesses, or both.

� The ClassAB routines — 2 memory accesses and 1.25 misses per iteration — perform somewhat
better on this particular machine than the ClassBC routines — 3 memory accesses and 0.5 misses
per iteration — which trade off an additional memory reference for a lower miss rate. The point is that
cache misses are not the whole story when it comes to performance. The number of memory accesses

6.6. PUTTING IT TOGETHER: THE IMPACT OF CACHES ON PROGRAM PERFORMANCE 335

is also important, and in many cases, finding the best performance involves a tradeoff between the
two. Problems 6.32 and 6.33 delve into this issue more deeply.

6.6.3 Using Blocking to Increase Temporal Locality

In the last section we saw how some simple rearrangements of the loops could increase spatial locality.
But observe that even with good loop nestings, the time per loop iteration increases with increasing array
size. What is happening is that as the array size increases, the temporal locality decreases, and the cache
experiences an increasing number of capacity misses. To fix this, we can use a general technique called
blocking. However, we must point out that, unlike the simple loop transformations for improving spatial lo-
cality, blocking makes the code harder to read and understand. For this reason it is best suited for optimizing
compilers or frequently executed library routines. Still, the technique is interesting to study and understand
because it is a general concept that can produce big performance gains.

The general idea of blocking is to organize the data structures in a program into large chunks called blocks.
(In this context, the term “block” refers to an application-level chunk of data,not a cache block.) The
program is structured so that it loads a chunk into the L1 cache, does all the reads and writes that it needs to
on that chunk, then discards the chunk, loads in the next chunk, and so on.

Blocking a matrix multiply routine works by partitioning the matrices into submatrices and then exploiting
the mathematical fact that these submatrices can be manipulated just like scalars. For example, ifn = 8,
then we could partition each matrix into four4� 4 submatrices:

"
C11 C12

C21 C22

#
=

"
A11 A12

A21 A22

"
B11 B12

B21 B22

#

where

C11 = A11B11 +A12B21

C12 = A11B12 +A12B22

C21 = A21B11 +A22B21

C22 = A21B12 +A22B22

Figure 6.48 shows one version of blocked matrix multiplication, which we call thebijk version. The basic
idea behind this code is to partitionA andC into 1� bsize row sliversand to partitionB into bsize� bsize
blocks. The innermost(j; k) loop pair multiplies a sliver ofA by a block ofB and accumulates the result
into a sliver ofC. Thei loop iterates throughn row slivers ofA andC, using the same block inB.

Figure 6.49 gives a graphical interpretation of the blocked code from Figure 6.48. The key idea is that it
loads a block ofB into the cache, uses it up, and then discards it. References toA enjoy good spatial locality
because each sliver is accessed with a stride of 1. There is also good temporal locality because the entire
sliver is referencedbsize times in succession. References toB enjoy good temporal locality because the
entirebsize� bsize block is accessedn times in succession. Finally, the references toC have good spatial
locality because each element of the sliver is written in succession. Notice that references toC do not have
good temporal locality because each sliver is only accessed one time.

336 CHAPTER 6. THE MEMORY HIERARCHY

code/mem/matmult/bmm.c

1 void bijk(array A, array B, array C, int n, int bsize)
2 {
3 int i, j, k, kk, jj;
4 double sum;
5 int en = bsize * (n/bsize); /* Amount that fits evenly into blocks */
6

7 for (i = 0; i < n; i++)
8 for (j = 0; j < n; j++)
9 C[i][j] = 0.0;

10

11 for (kk = 0; kk < en; kk += bsize) {
12 for (jj = 0; jj < en; jj += bsize) {
13 for (i = 0; i < n; i++) {
14 for (j = jj; j < jj + bsize; j++) {
15 sum = C[i][j];
16 for (k = kk; k < kk + bsize; k++) {
17 sum += A[i][k]*B[k][j];
18 }
19 C[i][j] = sum;
20 }
21 }
22 }
23 }
24 }

code/mem/matmult/bmm.c

Figure 6.48:Blocked matrix multiply. A simple version that assumes that the array size (n) is an integral
multiple of the block size (bsize).

A B C

kk jj jj

kk

bsize bsize

bsize

bsize
1 1

i i

Use bsize x bsize block
n times in succession

Use 1 x bsize row sliver
bsize times

Update successive
elements of 1 x bsize
row sliver

Figure 6.49:Graphical interpretation of blocked matrix multiply The innermost(j; k) loop pair mul-
tiplies a 1 � bsizesliver of A by a bsize� bsizeblock of B and accumulates into a1 � bsizesliver of
C.

6.6. PUTTING IT TOGETHER: THE IMPACT OF CACHES ON PROGRAM PERFORMANCE 337

Blocking can make code harder to read, but it can also pay big performance dividends. Figure 6.50 shows
the performance of two versions of blocked matrix multiply on a Pentium III Xeon system (bsize = 25).
Notice that blocking improves the running time by a factor of two over the best non-blocked version, from
about 20 cycles per iteration down to about 10 cycles per iteration. The other interesting impact of blocking
is that the time per iteration remains nearly constant with increasing array size. For small array sizes, the
additional overhead in the blocked version causes it to run slower than the non-blocked versions. There is a
crossover point, at aboutn = 100, after which the blocked version runs faster.

0

10

20

30

40

50

60

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

Array size (n)

C
yc

le
s/

ite
ra

tio
n

kji

jki

kij

ikj

jik

ijk

bijk (bsize = 25)

bikj (bsize = 25)

Figure 6.50: Pentium III Xeon blocked matrix multiply performance. Legend: bijk and bikj: two
different versions of blocked matrix multiply. Performance of the unblocked versions from Figure 6.47 is
shown for reference.

Aside: Caches and streaming media workloads
Applications that process network video and audio data in real time are becoming increasingly important. In these
applications, the data arrive at the machine in a steady stream from some input device such as a microphone, a
camera, or a network connection (see Chapter 12). As the data arrive, they are processed, sent to an output device,
and eventually discarded to make room for newly arriving data.

How well suited is the memory hierarchy for thesestreaming mediaworkloads? Since the data are processed
sequentially as they arrive, we able to derive some benefit from spatial locality, as with our matrix multiply example
from Section 6.6. However, since the data are processed once and then discarded, the amount of temporal locality
is limited.

To address this problem, system designers and compiler writers have pursued a strategy known asprefetching.
The idea is to hide the latency of cache misses by anticipating which blocks will be accessed in the near future,
and then fetching these blocks into the cache beforehand using special machine instructions. If the prefetching is
done perfectly, then each block is copied into the cache just before the program references it, and thus every load
instruction results in a cache hit. Prefetching entails risks, though. Since prefetching traffic shares the bus with the
DMA traffic that is streaming from an I/O device to main memory, too much prefetching might interfere with the
DMA traffic and slow down overall system performance. Another potential problem is that every prefetched cache
block must evict an existing block. If we do too much prefetching, we run the risk ofpolluting the cacheby evicting
a previously prefetched block that the program has not referenced yet, but will in the near future.End Aside.

338 CHAPTER 6. THE MEMORY HIERARCHY

6.7 Summary

The memory system is organized as a hierarchy of storage devices, with smaller, faster devices towards the
top and larger, slower devices towards the bottom. Because of this hierarchy, the effective rate that a program
can access memory locations is not characterized by a single number. Rather, it is a wildly varying function
of program locality (what we have dubbed the memory mountain) that can vary by orders of magnitude.
Programs with good locality access most of their data from fast L1 and L2 cache memories. Programs with
poor locality access most of their data from the relatively slow DRAM main memory.

Programmers who understand the nature of the memory hierarchy can exploit this understanding to write
more efficient programs, regardless of the specific memory system organization. In particular, we recom-
mend the following techniques:

� Focus your attention on the inner loops where the bulk of the computations and memory accesses
occur.

� Try to maximize the spatial locality in your programs by reading data objects sequentially, in the order
they are stored in memory.

� Try to maximize the temporal locality in your programs by using a data object as often as possible
once it has been read from memory.

� Remember that miss rates are only one (albeit important) factor that determines the performance
of your code. The number of memory accesses also plays an important role, and sometimes it is
necessary to trade off between the two.

Bibliographic Notes

Memory and disk technologies change rapidly. In our experience, the best sources of technical informa-
tion are the Web pages maintained by the manufacturers. Companies such as Micron, Toshiba, Hyundai,
Samsung, Hitachi, and Kingston Technology provide a wealth of current technical information on memory
devices. The pages for IBM, Maxtor, and Seagate provide similarly useful information about disks.

Textbooks on circuit and logic design provide detailed information about memory technology [36, 58]. IEEE
Spectrum published a series of survey articles on DRAM [33]. The International Symposium on Computer
Architecture (ISCA) is a common forum for characterizations of DRAM memory performance [20, 21].

Wilkes wrote the first paper on cache memories [83]. Smith wrote a classic survey [68]. Przybylski wrote
an authoritative book on cache design [56]. Hennessy and Patterson provide a comprehensive discussion of
cache design issues [31].

Stricker introduced the idea of the memory mountain as a comprehensive characterization of the memory
system in [78], and suggested the term “memory mountain” in later presentations of the work. Compiler
researchers work to increase locality by automatically performing the kinds manual code transformations
we discussed in Section 6.6 [13, 23, 42, 45, 51, 57, 85]. Carter and colleagues have proposed a cache-
aware memory controller [10]. Seward developed an open-source cache profiler, calledcacheprof, that
characterizes the miss behavior of C programs on an arbitrary simulated cache (www.cacheprof.org).

6.7. SUMMARY 339

There is a large body of literature on building and using disk storage. Many storage researchers look for ways
to aggregate individual disks into larger, more robust, and more secure storage pools [11, 26, 27, 54, 86].
Others look for ways to use caches and locality to improve the performance of disk accesses [6, 12]. Systems
such as Exokernel provide increased user-level control of disk and memory resources [35]. Systems such
as the Andrew File System [50] and Coda [63] extend the memory hierarchy across computer networks and
mobile notebook computers. Schindler and Ganger have developed an interesting tool that automatically
characterizes the geometry and performance of SCSI disk drives [64].

Homework Problems

Homework Problem 6.20[Category 2]:

Suppose you are asked to design a diskette where the number of bits per track is constant. You know that the
number of bits per track is determined by the circumference of the innermost track, which you can assume
is also the circumference of the hole. Thus, if you make the hole in the center of the diskette larger, the
number of bits per track increases, but the total number of tracks decreases. If you letr denote the radius of
the platter, andx � r the radius of the hole, what value ofx maximizes the capacity of the diskette?

Homework Problem 6.21[Category 1]:

The following table gives the parameters for a number of different caches. For each cache, determine the
number of cache sets (S), tag bits (t), set index bits (s), and block offset bits (b).

Cache m C B E S t s b

1. 32 1024 4 4
2. 32 1024 4 256
3. 32 1024 8 1
4. 32 1024 8 128
5. 32 1024 32 1
6. 32 1024 32 4

Homework Problem 6.22[Category 1]:

This problem concerns the cache in Problem 6.9.

A. List all of the hex memory addresses that will hit in Set 1.

B. List all of the hex memory addresses that will hit in Set 6.

Homework Problem 6.23[Category 2]:

Consider the following matrix transpose routine:

1 typedef int array[4][4];
2

340 CHAPTER 6. THE MEMORY HIERARCHY

3 void transpose2(array dst, array src)
4 {
5 int i, j;
6

7 for (i = 0; i < 4; i++) {
8 for (j = 0; j < 4; j++) {
9 dst[j][i] = src[i][j];

10 }
11 }
12 }

Assume this code runs on a machine with the following properties:

� sizeof(int) == 4.

� Thesrc array starts at address 0 and thedstarray starts at address 64 (decimal).

� There is a single L1 data cache that is direct-mapped, write-through, write-allocate,with a block size
of 16 bytes.

� The cache has a total size of 32 data bytes and the cache is initially empty.

� Accesses to thesrc anddstarrays are the only sources of read and write misses, respectively.

A. For eachrow andcol, indicate whether the access tosrc[row][col] anddst[row][col] is
a hit (h) or a miss (m). For example, readingsrc[0][0] is a miss and writingdst[0][0] is also
a miss.

dst array
col 0 col 1 col 2 col 3

row 0 m
row 1
row 2
row 3

src array
col 0 col 1 col 2 col 3

row 0 m
row 1
row 2
row 3

Homework Problem 6.24[Category 2]:

Repeat Problem 6.23 for a cache with a total size of 128 data bytes.

dst array
col 0 col 1 col 2 col 3

row 0
row 1
row 2
row 3

src array
col 0 col 1 col 2 col 3

row 0
row 1
row 2
row 3

6.7. SUMMARY 341

Homework Problem 6.25[Category 1]:

3M decides to make Post-Its by printing yellow squares on white pieces of paper. As part of the printing
process, they need to set the CMYK (cyan, magenta, yellow, black) value for every point in the square.
3M hires you to determine the efficiency of the following algorithms on a machine with a 2048-byte direct-
mapped data cache with 32-byte blocks. You are given the following definitions:

1 struct point_color {
2 int c;
3 int m;
4 int y;
5 int k;
6 };
7

8 struct point_color square[16][16];
9 int i, j;

Assume:

� sizeof(int) == 4.

� square begins at memory address 0.

� The cache is initially empty.

� The only memory accesses are to the entries of the arraysquare. Variables i and j are stored in
registers.

Determine the cache performance of the following code:

1 for (i = 0; i < 16; i++){
2 for (j = 0; j < 16; j++) {
3 square[i][j].c = 0;
4 square[i][j].m = 0;
5 square[i][j].y = 1;
6 square[i][j].k = 0;
7 }
8 }

A. What is the total number of writes?_______.

B. What is the total number of writes that miss in the cache?_______ .

C. What is the miss rate?_______.

Homework Problem 6.26[Category 1]:

Given the assumptions in Problem 6.25, determine the cache performance of the following code:

342 CHAPTER 6. THE MEMORY HIERARCHY

1 for (i = 0; i < 16; i++){
2 for (j = 0; j < 16; j++) {
3 square[j][i].c = 0;
4 square[j][i].m = 0;
5 square[j][i].y = 1;
6 square[j][i].k = 0;
7 }
8 }

A. What is the total number of writes?_______.

B. What is the total number of writes that miss in the cache?_______ .

C. What is the miss rate?_______.

Homework Problem 6.27[Category 1]:

Given the assumptions in Problem 6.25, determine the cache performance of the following code:

1 for (i = 0; i < 16; i++) {
2 for (j = 0; j < 16; j++) {
3 square[i][j].y = 1;
4 }
5 }
6 for (i = 0; i < 16; i++) {
7 for (j = 0; j < 16; j++) {
8 square[i][j].c = 0;
9 square[i][j].m = 0;

10 square[i][j].k = 0;
11 }
12 }

A. What is the total number of writes?_______.

B. What is the total number of writes that miss in the cache?_______ .

C. What is the miss rate?_______.

Homework Problem 6.28[Category 2]:

You are writing a new 3D game that you hope will earn you fame and fortune. You are currently working
on a function to blank the screen buffer before drawing the next frame. The screen you are working with is
a640� 480 array of pixels. The machine you are working on has a 64 KB direct-mapped cache with 4-byte
lines. The C structures you are using are:

6.7. SUMMARY 343

1 struct pixel {
2 char r;
3 char g;
4 char b;
5 char a;
6 };
7

8 struct pixel buffer[480][640];
9 int i, j;

10 char *cptr;
11 int *iptr;

Assume:

� sizeof(char) == 1 andsizeof(int) == 4

� buffer begins at memory address 0.

� The cache is initially empty.

� The only memory accesses are to the entries of the arraybuffer. Variables i , j , cptr, and iptr
are stored in registers.

What percentage of writes in the following code will miss in the cache?

1 for (j = 0; j < 640; j++) {
2 for (i = 0; i < 480; i++){
3 buffer[i][j].r = 0;
4 buffer[i][j].g = 0;
5 buffer[i][j].b = 0;
6 buffer[i][j].a = 0;
7 }
8 }

Homework Problem 6.29[Category 2]:

Given the assumptions in Problem 6.28, what percentage of writes in the following code will miss in the
cache?

1 char *cptr = (char *) buffer;
2 for (; cptr < (((char *) buffer) + 640 * 480 * 4); cptr++)
3 *cptr = 0;

Homework Problem 6.30[Category 2]:

Given the assumptions in Problem 6.28, what percentage of writes in the following code will miss in the
cache?

344 CHAPTER 6. THE MEMORY HIERARCHY

1 int *iptr = (int *)buffer;
2 for (; iptr < ((int *)buffer + 640*480); iptr++)
3 *iptr = 0;

Homework Problem 6.31[Category 3]:

Download themountain program from the CS:APP Web site and run it on your favorite PC/Linux system.
Use the results to estimate the sizes of the L1 and L2 caches on your system.

Homework Problem 6.32[Category 4]:

In this assignment you will apply the concepts you learned in Chapters 5 and 6 to the problem of optimizing
code for a memory intensive application. Consider a procedure to copy and transpose the elements of an
N � N matrix of typeint. That is, for source matrix S and destination matrixD, we want to copy each
elementsi;j to dj;i. This code can be written with a simple loop:

1 void transpose(int *dst, int *src, int dim)
2 {
3 int i, j;
4

5 for (i = 0; i < dim; i++)
6 for (j = 0; j < dim; j++)
7 dst[j*dim + i] = src[i*dim + j];
8 }

where the arguments to the procedure are pointers to the destination (dst) and source (src) matrices, as
well as the matrix sizeN (dim). Making this code run fast requires two types of optimizations. First,
although the routine does a good job exploiting the spatial locality of the source matrix, it does a poor job
for large values ofN with the destination matrix. Second, the code generated byGCC is not very efficient.
Looking at the assembly code, one sees that the inner loop requires 10 instructions, 5 of which reference
memory—one for the source, one for the destination, and three to read local variables from the stack. Your
job is to address these problems and devise a transpose routine that runs as fast as possible.

Homework Problem 6.33[Category 4]:

This assignment is an intriguing variation of Problem 6.32. Consider the problem of converting a directed
graphg into its undirected counterpartg0. The graphg0 has an edge from vertexu to vertexv iff there is an
edge fromu to v or from v to u in the original graphg. The graphg is represented by itsadjacency matrix
G as follows. IfN is the number of vertices ing thenG is anN �N matrix and its entries are all either 0
or 1. Suppose the vertices ofg are namedv0; v1; v2; :::; vN�1. ThenG[i][j] is 1 if there is an edge fromvi
to vj and 0 otherwise. Observe, that the elements on the diagonal of an adjacency matrix are always 1 and
that the adjacency matrix of an undirected graph is symmetric. This code can be written with a simple loop:

1 void col_convert(int *G, int dim) {
2 int i, j;
3

4 for (i = 0; i < dim; i++)
5 for (j = 0; j < dim; j++)
6 G[j*dim + i] = G[j*dim + i] || G[i*dim + j];
7 }

6.7. SUMMARY 345

Your job is to devise a conversion routine that runs as fast as possible. As before, you will need to apply
concepts you learned in Chapters 5 and 6 to come up with a good solution.

346 CHAPTER 6. THE MEMORY HIERARCHY

Part II

Running Programs on a System

347

Chapter 7

Linking

Linking is the process of collecting and combining the various pieces of code and data that a program needs
in order to beloaded(copied) into memory and executed. Linking can be performed atcompile time, when
the source code is translated into machine code, atload time, when the program is loaded into memory
and executed by theloader, and even atrun time, by application programs. On early computer systems,
linking was performed manually. On modern systems, linking is performed automatically by programs
calledlinkers.

Linkers play a crucial role in software development because they enableseparate compilation. Instead
of organizing a large application as one monolithic source file, we can decompose it into smaller, more
manageable modules that can be modified and compiled separately. When we change one of these modules,
we simply recompile it and relink the application, without having to recompile the other files.

Linking is usually handled quietly by the linker, and is not an important issue for students who are building
small programs in introductory programming classes. So why bother learning about linking?

� Understanding linkers will help you build large programs.Programmers who build large programs
often encounter linker errors caused by missing modules, missing libraries, or incompatible library
versions. Unless you understand how a linker resolves references, what a library is, and how a linker
uses a library to resolve references, these kinds of errors will be baffling and frustrating.

� Understanding linkers will help you avoid dangerous programming errors.The decisions that Unix
linkers make when they resolve symbol references can silently affect the correctness of your pro-
grams. Programs that incorrectly define multiple global variables pass through the linker without any
warnings in the default case. The resulting programs can exhibit baffling run-time behavior and are
extremely difficult to debug. We will show you how this happens and how to avoid it.

� Understanding linking will help you understand how language scoping rules are implemented.For
example, what is the difference between global and local variables? What does it really mean when
you define a variable or function with thestatic attribute?

� Understanding linking will help you understand other important systems concepts.The executable
object files produced by linkers play key roles in important systems functions such as loading and
running programs, virtual memory, paging, and memory mapping.

349

350 CHAPTER 7. LINKING

� Understanding linking will enable you to exploit shared libraries.For many years, linking was con-
sidered to be fairly straightforward and uninteresting. However, with the increased importance of
shared libraries and dynamic linking in modern operating systems, linking is a sophisticated process
that provides the knowledgeable programmer with significant power. For example, many software
products use shared libraries to upgrade shrink-wrapped binaries at run time. Also, most Web servers
rely on dynamic linking of shared libraries to serve dynamic content.

This chapter is a thorough discussion of all aspects of linking, from traditional static linking, to dynamic
linking of shared libraries at load time, to dynamic linking of shared libraries at run time. We will describe
the basic mechanisms using real examples, and we will identify situations where linking issues can affect
the performance and correctness of your programs. To keep things concrete and understandable, we will
couch our discussion in the context of an IA32 machine running a version of Unix, such as

Linux or Solaris, that uses the standard ELF object file format. However, it is important to realize that the
basic concepts of linking are universal, regardless of the operating system, the ISA, or the object file format.
Details may vary, but the concepts are the same.

7.1 Compiler Drivers

Consider the C program in Figure 7.1. It consists of two source files,main.c andswap.c. Function
main() calls swap, which swaps the two elements in the external global arraybuf. Granted, this is a
strange way to swap two numbers, but it will serve as a small running example throughout this chapter that
will allow us to make some important points about how linking works.

Most compilation systems provide acompiler driverthat invokes the language preprocessor, compiler, as-
sembler, and linker, as needed on behalf of the user. For example, to build the example program using the
GNU compilation system, we might invoke theGCC driver by typing the following command to the shell:

unix> gcc -O2 -g -o p main.c swap.c

Figure 7.2 summarizes the activities of the driver as it translates the example program from an ASCII source
file into an executable object file. (If you want to see these steps for yourself, runGCC with the-v option.)
The driver first runs the C preprocessor (cpp), which translates the C source filemain.c into an ASCII
intermediate filemain.i:

cpp [other arguments] main.c /tmp/main.i

Next, the driver runs the C compiler (cc1), which translatesmain.i into an ASCII assembly language file
main.s.

cc1 /tmp/main.i main.c -O2 [other arguments] -o /tmp/main.s

Then, the driver runs the assembler (as), which translatesmain.s into a relocatable object filemain.o:

as [other arguments] -o /tmp/main.o /tmp/main.s

7.2. STATIC LINKING 351

code/link/main.c

1 /* main.c */
2 void swap();
3

4 int buf[2] = {1, 2};
5

6 int main()
7 {
8 swap();
9 return 0;

10 }

code/link/main.c

code/link/swap.c

1 /* swap.c */
2 extern int buf[];
3

4 int *bufp0 = &buf[0];
5 int *bufp1;
6

7 void swap()
8 {
9 int temp;

10

11 bufp1 = &buf[1];
12 temp = *bufp0;
13 *bufp0 = *bufp1;
14 *bufp1 = temp;
15 }

code/link/swap.c

(a)main.c (b) swap.c

Figure 7.1:Example program 1: The example program consists of two source files,main.c andswap.c.
Themain function initializes a two-element array of ints, and then calls theswap function to swap the pair.

The driver goes through the same process to generateswap.o. Finally it runs the linker programld, which
combinesmain.o andswap.o, along with the necessary system object files, to create theexecutable
object filep:

ld -o p [system object files and args] /tmp/main.o /tmp/swap.o

To run the executablep, we type its name on the Unix shell’s command line:

unix> ./p

The shell invokes a function in the operating system called theloader, which copies the code and data in the
executable filep into memory, and then transfers control to the beginning of the program.

7.2 Static Linking

Static linkerssuch as the Unixld program take as input a collection of relocatable object files and command
line arguments and generate as output a fully linked executable object file that can be loaded and run. The
input relocatable object files consist of various code and data sections. Instructions are in one section,
initialized global variables are in another section, and uninitialized variables are in yet another section.

To build the executable, the linker must perform two main tasks:

352 CHAPTER 7. LINKING

Linker (ld)

Translators
(cpp, cc1, as)

main.c

main.o

Translators
(cpp, cc1, as)

swap.c

swap.o

p

source files

relocatable
object files

fully linked
executable object file

Figure 7.2:Static linking. The linker combines relocatable object files to form an executable object filep.

� Symbol resolution.Object files define and referencesymbols. The purpose of symbol resolution is to
associate each symbol reference with exactly one symbol definition.

� Relocation.Compilers and assemblers generate code and data sections that start at address zero. The
linker relocatesthese sections by associating a memory location with each symbol definition, and
then modifying all of the references to those symbols so that they point to this memory location.

The following sections describe these tasks in more detail. As you read, keep in mind the basic facts of
linkers: Object files are merely collections of blocks of bytes. Some of these blocks contain program code,
others contain program data, and others contain data structures that guide the linker and loader. A linker
concatenates blocks together, decides on run-time locations for the concatenated blocks, and modifies vari-
ous locations within the code and data blocks. Linkers have minimal understanding of the target machine.
The compilers and assemblers that generate the object files have already done most of the work.

7.3 Object Files

Object files come in three forms:

� Relocatable object file.Contains binary code and data in a form that can be combined with other
relocatable object files at compile time to create an executable object file.

� Executable object file.Contains binary code and data in a form that can be copied directly into
memory and executed.

� Shared object file.A special type of relocatable object file that can be loaded into memory and linked
dynamically, at either load time or run time.

Compilers and assemblers generate relocatable object files (including shared object files). Linkers generate
executable object files. Technically, anobject moduleis a sequence of bytes, and anobject fileis an object
module stored on disk in a file. However, we will use these terms interchangeably.

7.4. RELOCATABLE OBJECT FILES 353

Object file formats vary from system to system. The first Unix systems from Bell Labs used thea.out
format. (To this day, executables are still referred to asa.out files.) Early versions of System V Unix
used the Common Object File format (COFF). Windows NT uses a variant of COFF called the Portable
Executable (PE) format. Modern Unix systems — such as Linux, later versions of System V Unix, BSD
Unix variants, and Sun Solaris — use the UnixExecutable and Linkable Format (ELF). Although our
discussion will focus on ELF, the basic concepts are similar, regardless of the particular format.

7.4 Relocatable Object Files

Figure 7.3 shows the format of a typical ELF relocatable object file. TheELF headerbegins with a 16-byte
sequence that describes the word size and byte ordering of the system that generated the file. The rest of
the ELF header contains information that allows a linker to parse and interpret the object file. This includes
the size of the ELF header, the object file type (e.g., relocatable, executable, or shared), the machine type
(e.g., IA32) the file offset of thesection header table, and the size and number of entries in the section
header table. The locations and sizes of the various sections are described by thesection header table,
which contains a fixed sized entry for each section in the object file.

.data

.symtab

.rel.text

.rel.data

.debug

0

.text

.bss

ELF header

sections

.strtab

Section header table

.line

describes
object file
sections

.rodata

Figure 7.3:Typical ELF relocatable object file.

Sandwiched between the ELF header and the section header table are the sections themselves. A typical
ELF relocatable object file contains the following sections:

.text: The machine code of the compiled program.

.rodata: Read-only data such as the format strings inprintf statements, and jump tables for switch
statements (see Problem 7.14).

.data: Initialized global C variables. Local C variables are maintained at run time on the stack, and do
not appear in either the.data or .bss sections.

354 CHAPTER 7. LINKING

.bss: Uninitializedglobal C variables. This section occupies no actual space in the object file; it is merely
a place holder. Object file formats distinguish between initialized and uninitialized variables for space
efficiency: uninitialized variables do not have to occupy any actual disk space in the object file.

.symtab: A symbol tablewith information about functions and global variables that are defined and
referenced in the program. Some programmers mistakenly believe that a program must be compiled
with the-g option to get symbol table information. In fact, every relocatable object file has a symbol
table in.symtab. However, unlike the symbol table inside a compiler, the.symtab symbol table
does not contain entries for local variables.

.rel.text: A list of locations in the.text section that will need to be modified when the linker
combines this object file with others. In general, any instruction that calls an external function or
references a global variable will need to be modified. On the other hand, instructions that call local
functions do not need to be modified. Note that relocation information is not needed in executable
object files, and is usually omitted unless the user explicitly instructs the linker to include it.

.rel.data: Relocation information for any global variables that are referenced or defined by the mod-
ule. In general, any initialized global variable whose initial value is the address of a global variable
or externally defined function will need to be modified.

.debug: A debugging symbol table with entries for local variables and typedefs defined in the program,
global variables defined and referenced in the program, and the original C source file. It is only
present if the compiler driver is invoked with the-g option.

.line: A mapping between line numbers in the original C source program and machine code instructions
in the .text section. It is only present if the compiler driver is invoked with the-g option.

.strtab: A string table for the symbol tables in the.symtab and.debug sections, and for the section
names in the section headers. A string table is a sequence of null-terminated character strings.

Aside: Why is uninitialized data called .bss ?
The use of the term.bss to denote uninitialized data is universal. It was originally an acronym for the “Block
Storage Start” instruction from the IBM 704 assembly language (circa 1957) and the acronym has stuck. A simple
way to remember the difference between the.data and.bss sections is to think of “bss” as an abbreviation for
“Better Save Space!”.End Aside.

7.5 Symbols and Symbol Tables

Each relocatable object module,m, has a symbol table that contains information about the symbols that are
defined and referenced bym. In the context of a linker, there are three different kinds of symbols:

� Global symbolsthat are defined by modulem and that can be referenced by other modules. Global
linker symbols correspond tononstaticC functions and global variables that are definedwithout the
C static attribute.

� Global symbols that are referenced by modulem but defined by some other module. Such symbols
are calledexternalsand correspond to C functions and variables that are defined in other modules.

7.5. SYMBOLS AND SYMBOL TABLES 355

� Local symbolsthat are defined and referenced exclusively by modulem. Some local linker symbols
correspond to C functions and global variables that are defined with thestatic attribute. These
symbols are visible anywhere within modulem, but cannot be referenced by other modules. The
sections in an object file and the name of the source file that corresponds modulem also get local
symbols.

It is important to realize that local linker symbols are not the same as local program variables. The symbol
table in.symtab does not contain any symbols that correspond to local nonstatic program variables. These
are managed at run time on the stack and are not of interest to the linker.

Interestingly, local procedure variables that are defined with the Cstatic attribute are not managed on
the stack. Instead, the compiler allocates space in.data or .bss for each definition and creates a local
linker symbol in the symbol table with a unique name. For example, suppose a pair of functions in the same
module define a static local variablex :

1 int f()
2 {
3 static int x = 0;
4 return x;
5 }
6

7 int g()
8 {
9 static int x = 1;

10 return x;
11 }

In this case, the compiler allocates space for two integers in.bss and exports a pair of unique local linker
symbols to the assembler. For example, it might usex.1 for the definition in functionf andx.2 for the
definition in functiong.

New to C?
C programmers use thestatic attribute to hide variable and function declarations inside modules, much as you
would usepublic andprivate declarations in Java and C++. C source files play the role of modules. Any global
variable or function declared with thestatic attribute is private to that module. Similarly, any global variable
or function declared without thestatic attribute is public, and can be accessed by any other module. It is good
programming practice to protect your variables and functions with thestatic attribute wherever possible.End

Symbol tables are built by assemblers, using symbols exported by the compiler into the assembly language
.s file. An ELF symbol table is contained in the.symtab section. It contains an array of entries. Fig-
ure 7.4 shows the format of each entry.

Thename is a byte offset into the string table that points to the null-terminated string name of the symbol.
Thevalue is the symbol’s address. For relocatable modules, thevalue is an offset from the beginning of
the section where the object is defined. For executable object files, the value is an absolute run-time address.
Thesize is the size (in bytes) of the object. Thetype is usually either data or function. The symbol table
can also contain entries for the individual sections and for the path name of the original source file. So there

356 CHAPTER 7. LINKING

code/link/elfstructs.c

1 typedef struct {
2 int name; /* string table offset */
3 int value; /* section offset, or VM address */
4 int size; /* object size in bytes */
5 char type:4, /* data, func, section, or src file name (4 bits) */
6 binding:4; /* local or global (4 bits) */
7 char reserved; /* unused */
8 char section; /* section header index, ABS, UNDEF, */
9 /* or COMMON */

10 } Elf_Symbol;

code/link/elfstructs.c

Figure 7.4:ELF symbol table entry. type andbinding are four bits each.

are distinct types for these objects as well. Thebinding field indicates whether the symbol is local or
global.

Each symbol is associated with some section of the object file, denoted by thesection field, which
is an index into the section header table. There are three special pseudo-sections that don’t have entries
in the section header table: ABS is for symbols that should not be relocated. UNDEF is for undefined
symbols, that is, symbols that are referenced in this object module but defined elsewhere. COMMON is
for uninitialized data objects that are not yet allocated. For COMMON symbols, thevalue field gives the
alignment requirement, andsize gives the minimum size.

For example, here are the last three entries in the symbol table formain.o, as displayed by the GNU
READELF tool. The first eight entries, which are not shown, are local symbols that the linker uses internally.

Num: Value Size Type Bind Ot Ndx Name
8: 0 8 OBJECT GLOBAL 0 3 buf
9: 0 17 FUNC GLOBAL 0 1 main

10: 0 0 NOTYPE GLOBAL 0 UND swap

In this example, we see an entry for the definition of global symbolbuf, an 8-byte object located at an
offset (i.e.,value) of zero in the .data section. This is followed by the definition of the global symbol
main, a 17-byte function located at an offset of zero in the.text section. The last entry comes from
the reference for the external symbolswap. READELF identifies each section by an integer index.Ndx=1
denotes the.text section, andNdx=3 denotes the.data section.

Similarly, here are the symbol table entries forswap.o:

Num: Value Size Type Bind Ot Ndx Name
8: 0 4 OBJECT GLOBAL 0 3 bufp0
9: 0 0 NOTYPE GLOBAL 0 UND buf

10: 0 39 FUNC GLOBAL 0 1 swap
11: 4 4 OBJECT GLOBAL 0 COM bufp1

7.6. SYMBOL RESOLUTION 357

First, we see an entry for the definition of the global symbolbufp0, which is a 4-byte initialized object
starting at offset 0 in.data. The next symbol comes from the reference to the externalbuf symbol in the
initialization code forbufp0. This is followed by the global symbolswap, a 39-byte function at an offset
of 0 in .text. The last entry is the global symbol bufp1, a 4-byte uninitialized data object (with a 4-byte
alignment requirement) that will eventually be allocated as a.bss object when this module is linked.

Practice Problem 7.1:

This problem concerns theswap.o module from Figure 7.1(b). For each symbol that is defined or
referenced inswap.o , indicate whether or not it will have a symbol table entry in the.symtab section
in moduleswap.o . If so, indicate the module that defines the symbol (swap.o or main.o), the
symbol type (local, global, or extern) and the section (.text , .data , or .bss) it occupies in that
module.

Symbol swap.o .symtab entry? Symbol type Module where defined Section

buf
bufp0
bufp1
swap
temp

7.6 Symbol Resolution

The linker resolves symbol references by associating each reference with exactly one symbol definition from
the symbol tables of its input relocatable object files. Symbol resolution is straightforward for references to
local symbols that are defined in the same module as the reference. The compiler allows only one definition
of each local symbol per module. The compiler also ensures that static local variables, which get local linker
symbols, have unique names.

However, resolving references to global symbols is trickier. When the compiler encounters a symbol (either
a variable or function name) that is not defined in the current module, it assumes that it is defined in some
other module, generates a linker symbol table entry, and leaves it for the linker to handle. If the linker is
unable to find a definition for the referenced symbol in any of its input modules, it prints an (often cryptic)
error message and terminates. For example, if we try to compile and link the following source file on a
Linux machine,

1 void foo(void);
2

3 int main() {
4 foo();
5 return 0;
6 }

then the compiler runs without a hitch, but the linker terminates when it cannot resolve the reference tofoo:

unix> gcc -Wall -O2 -o linkerror linkerror.c

358 CHAPTER 7. LINKING

/tmp/ccSz5uti.o: In function ‘main’:
/tmp/ccSz5uti.o(.text+0x7): undefined reference to ‘foo’
collect2: ld returned 1 exit status

Symbol resolution for global symbols is also tricky because the same symbol might be defined by multiple
object files. In this case, the linker must either flag an error, or somehow chose one of the definitions
and discard the rest. The approach adopted by Unix systems involves cooperation between the compiler,
assembler, and linker, and can introduce some baffling bugs to the unwary programmer.

7.6.1 How Linkers Resolve Multiply-Defined Global Symbols

At compile time, the compiler exports each global symbol to the assembler as eitherstrongor weak, and the
assembler encodes this information implicitly in the symbol table of the relocatable object file. Functions
and initialized global variables get strong symbols. Uninitialized global variables get weak symbols. For
the example program in Figure 7.1,buf, bufp0, main, and swap are strong symbols;bufp1 is a weak
symbol.

Given this notion of strong and weak symbols, Unix linkers use the following rules for dealing with multiply-
defined symbols:

� Rule 1: Multiple strong symbols are not allowed.

� Rule 2: Given a strong symbol and multiple weak symbols, choose the strong symbol.

� Rule 3: Given multiple weak symbols, choose any of the weak symbols.

For example, suppose we attempt to compile and link the following two C modules:

1 /* foo1.c */
2 int main()
3 {
4 return 0;
5 }

1 /* bar1.c */
2 int main()
3 {
4 return 0;
5 }

In this case the linker will generate an error message because the strong symbolmain is defined multiple
times (Rule 1):

unix> gcc foo1.c bar1.c
/tmp/cca015022.o: In function ‘main’:
/tmp/cca015022.o(.text+0x0): multiple definition of ‘main’
/tmp/cca015021.o(.text+0x0): first defined here

Similarly, the linker will generate an error message for the following modules because the strong symbolx
is defined twice (Rule 1):

7.6. SYMBOL RESOLUTION 359

1 /* foo2.c */
2 int x = 15213;
3

4 int main()
5 {
6 return 0;
7 }

1 /* bar2.c */
2 int x = 15213;
3

4 void f()
5 {
6 }

However, ifx is uninitialized in one module, then the linker will quietly choose the strong symbol defined
in the other (Rule 2):

1 /* foo3.c */
2 #include <stdio.h>
3 void f(void);
4

5 int x = 15213;
6

7 int main()
8 {
9 f();

10 printf("x = %d\n", x);
11 return 0;
12 }

1 /* bar3.c */
2 int x;
3

4 void f()
5 {
6 x = 15212;
7 }

At run time, functionf changes the value ofx from 15213 to 15212, which might come as a unwelcome
surprise to the author of functionmain! Notice that the linker normally gives no indication that it has
detected multiple definitions ofx :

unix> gcc -o foobar3 foo3.c bar3.c
unix> ./foobar3
x = 15212

The same thing can happen if there are two weak definitions ofx (Rule 3):

1 /* foo4.c */
2 #include <stdio.h>
3 void f(void);
4

5 int x;
6

7 int main()
8 {
9 x = 15213;

10 f();
11 printf("x = %d\n", x);
12 return 0;
13 }

1 /* bar4.c */
2 int x;
3

4 void f()
5 {
6 x = 15212;
7 }

360 CHAPTER 7. LINKING

The application of Rules 2 and 3 can introduce some insidious run-time bugs that are incomprehensible to
the unwary programmer, especially if the duplicate symbol definitions have different types. Consider the
following example, wherex is defined as anint in one module and adouble in another:

1 /* foo5.c */
2 #include <stdio.h>
3 void f(void);
4

5 int x = 15213;
6 int y = 15212;
7

8 int main()
9 {

10 f();
11 printf("x = 0x%x y = 0x%x \n",
12 x, y);
13 return 0;
14 }

1 /* bar5.c */
2 double x;
3

4 void f()
5 {
6 x = -0.0;
7 }

On an IA32/Linux machine,doubles are 8 bytes andints are 4 bytes. Thus, the assignmentx = -0.0
in line 5 of bar5.c will overwrite the memory locations forx andy (lines 5 and 6 infoo5.c) with the
double-precision floating-point representation of negative one!

linux> gcc -o foobar5 foo5.c bar5.c
linux> ./foobar5
x = 0x0 y = 0x80000000

This is a subtle and nasty bug, especially because it occurs silently, with no warning from the compilation
system, and because it typically manifests itself much later in the execution of the program, far away from
where the error occurred. In a large system with hundreds of modules, a bug of this kind is extremely hard
to fix, especially because many programmers are not aware of how linkers work. When in doubt, invoke
the linker with a flag such as theGCC -warn-common flag, which instructs it to print a warning message
when it resolves multiply-defined global symbol definitions.

Practice Problem 7.2:

In this problem, letREF(x.i) --> DEF(x.k) denote that the linker will associate an arbitrary
reference to symbolx in modulei to the definition ofx in modulek . For each example below, use
this notation to indicate how the linker would resolve references to the multiply-defined symbol in each
module. If there is a link-time error (Rule 1), write “ERROR”. If the linker arbitrarily chooses one of
the definitions (Rule 3), write “UNKNOWN”.

A. /* Module 1 */
int main()
{
}

/* Module 2 */
int main;
int p2()
{
}

(a) REF(main.1) --> DEF(_____.___)

7.6. SYMBOL RESOLUTION 361

(b) REF(main.2) --> DEF(_____.___)

B. /* Module 1 */
void main()
{
}

/* Module 2 */
int main=1;
int p2()
{
}

(a) REF(main.1) --> DEF(_____.___)

(b) REF(main.2) --> DEF(_____.___)

C. /* Module 1 */
int x;
void main()
{
}

/* Module 2 */
double x=1.0;
int p2()
{
}

(a) REF(x.1) --> DEF(_____.___)

(b) REF(x.2) --> DEF(_____.___)

7.6.2 Linking with Static Libraries

So far we have assumed that the linker reads a collection of relocatable object files and links them together
into an output executable file. In practice, all compilation systems provide a mechanism for packaging
related object modules into a single file called astatic library, which can then be supplied as input to the
linker. When it builds the output executable, the linker copies only the object modules in the library that are
referenced by the application program.

Why do systems support the notion of libraries? Consider ANSI C, which defines an extensive collection of
standard I/O, string manipulation, and integer math functions such asatoi, printf, scanf, strcpy,
and random. They are available to every C program in thelibc.a library. ANSI C also defines an
extensive collection of floating point math functions such assin, cos, and sqrt in the libm.a library.

Consider the different approaches that compiler developers might use to provide these functions to users
without the benefit of static libraries. One approach would be to have the compiler recognize calls to the
standard functions and to generate the appropriate code directly. Pascal, which provides a small set of
standard functions, takes this approach, but it is not feasible for C because of the large number of standard
functions defined by the C standard. It would add significant complexity to the compiler and would require
a new compiler version each time a function was added, deleted, or modified. To application programmers,
however, this approach would be quite convenient because the standard functions would always be available.

Another approach would be to put all of the standard C functions in a single relocatable object module, say
libc.o, that application programmers could link into their executables:

unix> gcc main.c /usr/lib/libc.o

This approach has the advantage that it would decouple the implementation of the standard functions from
the implementation of the compiler, and would still be reasonably convenient for programmers. However, a

362 CHAPTER 7. LINKING

big disadvantage is that every executable file in a system would now contain a complete copy of the collec-
tion of standard functions, which would be extremely wasteful of disk space. (On a typical system,libc.a
is about 8 MB andlibm.a is about 1 MB.) Worse, each running program would now contain its own copy
of these functions in memory, which would be extremely wasteful of memory. Another big disadvantage
is that any change to any standard function, no matter how small, would require the library developer to
recompile the entire source file, a time-consuming operation that would complicate the development and
maintenance of the standard functions.

We could address some of these problems by creating a separate relocatable file for each standard function
and storing them in a well-known directory. However this approach would require application programmers
to explicitly link the appropriate object modules into their executables, a process that would be error prone
and time-consuming:

unix> gcc main.c /usr/lib/printf.o /usr/lib/scanf.o ...

The notion of a static library was developed to resolve the disadvantages of these various approaches. Re-
lated functions can be compiled into separate object modules and then packaged in a single static library
file. Application programs can then use any of the functions defined in the library by specifying a single file
name on the command line. For example, a program that uses functions from the standard C library and the
math library could be compiled and linked with a command of the form:

unix> gcc main.c /usr/lib/libm.a /usr/lib/libc.a

At link time, the linker will only copy the object modules that are referenced by the program, which reduces
the size of the executable on disk and in memory. On the other hand, the application programmer only needs
to include the names of a few library files. (In fact, C compiler drivers always passlibc.a to the linker,
so the reference tolibc.a above is unnecessary.)

On Unix systems, static libraries are stored on disk in a particular file format known as anarchive. An
archive is a collection of concatenated relocatable object files, with a header that describes the size and
location of each member object file. Archive filenames are denoted with the.a suffix. To make our
discussion of libraries concrete, suppose that we want to provide the vector routines in Figure 7.5 in a static
library calledlibvector.a.

To create the library, we would use theAR tool:

unix> gcc -c addvec.c multvec.c
unix> ar rcs libvector.a addvec.o multvec.o

To use the library, we might write an application such asmain2.c in Figure 7.6, which invokes thead-
dvec library routine. (The include file vector.h defines the function prototypes for the routines in
libvector.a.)

To build the executable, we would compile and link the input filesmain.o andlibvector.a:

unix> gcc -O2 -c main2.c
unix> gcc -static -o p2 main2.o ./libvector.a

Figure 7.7 summarizes the activity of the linker. The-static argument tells the compiler driver that the
linker should build a fully-linked executable object file that can be loaded into memory and run without

7.6. SYMBOL RESOLUTION 363

code/link/addvec.c

1 void addvec(int *x, int *y,
2 int *z, int n)
3 {
4 int i;
5

6 for (i = 0; i < n; i++)
7 z[i] = x[i] + y[i];
8 }

code/link/addvec.c

(a) addvec.o

code/link/multvec.c

1 void multvec(int *x, int *y,
2 int *z, int n)
3 {
4 int i;
5

6 for (i = 0; i < n; i++)
7 z[i] = x[i] * y[i];
8 }

code/link/multvec.c

(a) multvec.o

Figure 7.5:Member object files in libvector.a.

code/link/main2.c

1 /* main2.c */
2 #include <stdio.h>
3 #include "vector.h"
4

5 int x[2] = {1, 2};
6 int y[2] = {3, 4};
7 int z[2];
8

9 int main()
10 {
11 addvec(x, y, z, 2);
12 printf("z = [%d %d]\n", z[0], z[1]);
13 return 0;
14 }

code/link/main2.c

Figure 7.6: Example program 2: This program calls member functions in the staticlibvector.a
library.

364 CHAPTER 7. LINKING

any further linking at load time. When the linker runs, it determines that theaddvec symbol defined by
addvec.o is referenced bymain.o, so it copies addvec.o into the executable. Since the program
doesn’t reference any symbols defined bymultvec.o, the linker does not copy this module into the
executable. The linker also copies theprintf.o module fromlibc.a, along with a number of other
modules from the C run-time system.

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.a

Linker (ld)

p2

printf.o and any other
modules called by printf.o

libvector.a

addvec.o

static libraries

source files

relocatable
object files

fully linked
executable object file

vector.h

Figure 7.7:Linking with static libraries.

7.6.3 How Linkers Use Static Libraries to Resolve References

While static libraries are useful and essential tools, they are also a source of confusion to programmers
because of the way the Unix linker uses them to resolve external references. During the symbol resolution
phase, the linker scans the relocatable object files and archives left to right in the same sequential order that
they appear on the compiler driver’s command line. (The driver automatically translates any.c files on the
command line into.o files.) During this scan, the linker maintains a setE of relocatable object files that
will be merged to form the executable, a setU of unresolved symbols (i.e., symbols referred to but not yet
defined), and a setD of symbols that have been defined in previous input files. Initially,E, U , andD are
empty.

� For each input filef on the command line, the linker determines iff is an object file or an archive.
If f is an object file, the linker addsf to E, updatesU andD to reflect the symbol definitions and
references inf , and proceeds to the next input file.

� If f is an archive, the linker attempts to match the unresolved symbols inU against the symbols
defined by the members of the archive. If some archive member,m, defines a symbol that resolves a
reference inU , thenm is added toE, and the linker updatesU andD to reflect the symbol definitions
and references inm. This process iterates over the member object files in the archive until a fixed point
is reached whereU andD no longer change. At this point, any member object files not contained in
E are simply discarded and the linker proceeds to the next input file.

� If U is nonempty when the linker finishes scanning the input files on the command line, it prints
an error and terminates. Otherwise it merges and relocates the object files inE to build the output
executable file.

7.7. RELOCATION 365

Unfortunately, this algorithm can result in some baffling link-time errors because the ordering of libraries
and object files on the command line is significant. If the library that defines a symbol appears on the
command line before the object file that references that symbol, then the reference will not be resolved and
linking will fail. For example:

unix> gcc -static ./libvector.a main2.c
/tmp/cc9XH6Rp.o: In function ‘main’:
/tmp/cc9XH6Rp.o(.text+0x18): undefined reference to ‘addvec’

Here is what happened: Whenlibvector.a is processed,U is empty, so no member object files from
libvector.a are added toE. Thus the reference toaddvec is never resolved, and the linker emits an
error message and terminates..

The general rule for libraries is to place them at the end of the command line. If the members of the
different libraries are independent, in that no member references a symbol defined by another member, then
the libraries can be placed at the end of the command line in any order.

On the other hand, if the libraries are not independent, then they must be ordered so that for each symbol
s that is referenced externally by a member of an archive, at least one definition ofs follows a reference to
s on the command line. For example, supposefoo.c calls functions inlibx.a and libz.a that call
functions inliby.a. Then libx.a andlibz.a must precedeliby.a on the command line:

unix> gcc foo.c libx.a libz.a liby.a

Libraries can be repeated on the command line if necessary to satisfy the dependence requirements. For
example, supposefoo.c calls a function inlibx.a that calls a function inliby.a that calls a function
in libx.a. Then libx.a must be repeated on the command line:

unix> gcc foo.c libx.a liby.a libx.a

Alternatively, we could combinelibx.a andliby.a into a single archive.

Practice Problem 7.3:

Let a andb denote object modules or static libraries in the current directory, and leta!b denote that
a depends onb, in the sense thatb defines a symbol that is referenced bya. For each of the following
scenarios, show the minimal command line (i.e., one with the least number of file object file and library
arguments) that will allow the static linker to resolve all symbol references.

A. p.o ! libx.a .

B. p.o ! libx.a ! liby.a .

C. p.o ! libx.a ! liby.a and liby.a ! libx.a !p.o .

7.7 Relocation

Once the linker has completed the symbol resolution step, it has associated each symbol reference in the
code with exactly one symbol definition (i.e., a symbol table entry in one of its input object modules). At

366 CHAPTER 7. LINKING

this point, the linker knows the exact sizes of the code and data sections in its input object modules. It is
now ready to begin the relocation step, where it merges the input modules and assigns run-time addresses
to each symbol. Relocation consists of two steps:

� Relocating sections and symbol definitions.In this step, the linker merges all sections of the same
type into a new aggregate section of the same type. For example, the.data sections from the input
modules are all merged into one section that will become the.data section for the output executable
object file. The linker then assigns run-time memory addresses to the new aggregate sections, to each
section defined by the input modules, and to each symbol defined by the input modules. When this
step is complete, every instruction and global variable in the program has a unique run-time memory
address.

� Relocating symbol references within sections.In this step, the linker modifies every symbol reference
in the bodies of the code and data sections so that they point to the correct run-time addresses. To
perform this step, the linker relies on data structures in the relocatable object modules known as
relocation entries, which we describe next.

7.7.1 Relocation Entries

When an assembler generates an object module, it does not know where the code and data will ultimately
be stored in memory. Nor does it know the locations of any externally defined functions or global variables
that are referenced by the module. So whenever the assembler encounters a reference to an object whose
ultimate location is unknown, it generates arelocation entrythat tells the linker how to modify the reference
when it merges the object file into an executable. Relocation entries for code are placed in.relo.text.
Relocation entries for initialized data are placed in.relo.data.

Figure 7.8 shows the format of an ELF relocation entry. Theoffset is the section offset of the reference
that will need to be modified. Thesymbol identifies the symbol that the modified reference should point
to. Thetype tells the linker how to the modify the new reference.

code/link/elfstructs.c

1 typedef struct {
2 int offset; /* offset of the reference to relocate */
3 int symbol:24, /* symbol the reference should point to */
4 type:8; /* relocation type */
5 } Elf32_Rel;

code/link/elfstructs.c

Figure 7.8:ELF relocation entry. Each entry identifies a reference that must be relocated.

ELF defines 11 different relocation types, some quite arcane. We are concerned with only the two most
basic relocation types:

� R 386 PC32: Relocate a reference that uses a 32-bit PC-relative address. Recall from Section 3.6.3
that a PC-relative address is an offset from the current run-time value of the program counter (PC).

7.7. RELOCATION 367

When the CPU executes an instruction using PC-relative addressing, it forms theeffective address
(e.g., the target of thecall instruction) by adding the 32-bit value encoded in the instruction to the
current run-time value of the PC, which is always the address of the next instruction in memory.

� R 386 32: Relocate a reference that uses a 32-bit absolute address. With absolute addressing, the
CPU directly uses the 32-bit value encoded in the instruction as the effective address, without further
modifications.

7.7.2 Relocating Symbol References

Figure 7.9 shows the pseudo-code for the linker’s relocation algorithm.

1 foreach section s {
2 foreach relocation entry r {
3 refptr = s + r.offset; /* ptr to reference to be relocated */
4

5 /* relocate a PC-relative reference */
6 if (r.type == R_386_PC32) {
7 refaddr = ADDR(s) + r.offset; /* ref’s runtime address */
8 *refptr = (unsigned) (ADDR(r.symbol) + *refptr - refaddr);
9 }

10

11 /* relocate an absolute reference */
12 if (r.type == R_386_32)
13 *refptr = (unsigned) (ADDR(r.symbol) + *refptr);
14 }
15 }

Figure 7.9:Relocation algorithm.

Lines 1 and 2 iterate over each sections and each relocation entryr associated with each section. For
concreteness, assume that each sections is an array of bytes and that each relocation entryr is astruct
of type Elf32 Rel, as defined in Figure 7.8. Also, assume that when the algorithm runs, the linker
has already chosen run-time addresses for each section (denotedADDR(s)), and each symbol (denoted
ADDR(r.symbol)). Line 3 computes the address in thes array of the 4-byte reference that needs to be
relocated. If this reference uses PC-relative addressing, then it is relocated by lines 5–9. If the reference
uses absolute addressing, then it is relocated by lines 11–13.

Relocating PC-Relative References

Recall from our running example in Figure 7.1(a) that themain routine in the.text section ofmain.o
calls theswap routine, which is defined inswap.o. Here is the disassembled listing for thecall instruc-
tion, as generated by the GNUOBJDUMPtool:

6: e8 fc ff ff ff call 7 <main+0x7> swap();

7: R_386_PC32 swap relocation entry

368 CHAPTER 7. LINKING

From this listing we see that thecall instruction begins at section offset0x6 and consists of the 1-byte
opcode0xe8, followed by the 32-bit reference0xfffffffc (�4 decimal), which is stored in little-endian
byte order. We also see a relocation entry for this reference displayed on the following line. (Recall that
relocation entries and instructions are actually stored in different sections of the object file. TheOBJDUMP
tool displays them together for convenience.) The relocation entryr consists of three fields:

r.offset = 0x7
r.symbol = swap
r.type = R_386_PC32

that tell the linker to modify the 32-bit PC-relative reference starting at offset0x7 so that it will point to the
swap routine at run time. Now suppose that the linker has determined that

ADDR(s) = ADDR(.text) = 0x80483b4

and

ADDR(r.symbol) = ADDR(swap) = 0x80483c8.

Using the algorithm in Figure 7.9, the linker first computes the run-time address of the reference (line 7):

refaddr = ADDR(s) + r.offset
= 0x80483b4 + 0x7
= 0x80483bb

and then updates the reference from its current value (�4) to 0x9 so that it will point to theswap routine
at run time (line 8):

*refptr = (unsigned) (ADDR(r.symbol) + *refptr - refaddr)
= (unsigned) (0x80483c8 + (-4) - 0x80483bb)
= (unsigned) (0x9)

In the resulting executable object file, thecall instruction has the following relocated form:

80483ba: e8 09 00 00 00 call 80483c8 <swap> swap();

At run time, thecall instruction will be stored at address0x80483ba. When the CPU executes the
call instruction, the PC has a value of0x80483bf, which is the address of the instruction immediately
following thecall instruction. To execute the instruction, the CPU performs the following steps:

1. push PC onto stack
2. PC <- PC + 0x9 = 0x80483bf + 0x9 = 0x80483c8

Thus, the next instruction to execute is the first instruction of theswap routine, which of course is what we
want!

You may wonder why the assembler created the reference in thecall instruction with an initial value of
�4. The assembler uses this value as a bias to account for the fact that the PC always points to the instruction
following the current instruction. On a different machine with different instruction sizes and encodings, the
assembler for that machine would use a different bias. This is powerful trick that allows the linker to blindly
relocate references, blissfully unaware of the instruction encodings for a particular machine.

7.7. RELOCATION 369

Relocating Absolute References

Recall that in our example program in Figure 7.1, theswap.o module initializes the global pointerbufp0
to the address of the first element of the globalbuf array:

int *bufp0 = &buf[0];

Sincebufp0 is an initialized data object, it will be stored in the.data section of theswap.o relocatable
object module. Since it is initialized to the address of a global array, it will need to be relocated. Here is the
disassembled listing of the.data section fromswap.o:

00000000 <bufp0>:
0: 00 00 00 00 int *bufp0 = &buf[0];

0: R_386_32 buf relocation entry

We see that the.data section contains a single 32-bit reference, thebufp0 pointer, which has a value of
0x0. The relocation entry tells the linker that this is a 32-bit absolute reference, beginning at offset 0, which
must relocated so that it points to the symbolbuf. Now suppose that the linker has determined that

ADDR(r.symbol) = ADDR(buf) = 0x8049454

The linker updates the reference using line 13 of the algorithm in Figure 7.9:

*refptr = (unsigned) (ADDR(r.symbol) + *refptr)
= (unsigned) (0x8049454 + 0)
= (unsigned) (0x8049454)

In the resulting executable object file, the reference has the following relocated form:

0804945c <bufp0>:
804945c: 54 94 04 08 Relocated!

In words, the linker has decided that at run time, the variablebufp0 will be located at memory address
0x804945c and will be initialized to0x8049454, which is the run-time address of thebuf array.

The .text section in theswap.o module contains five absolute references that are relocated in a similar
way (See Problem 7.12). Figure 7.10 shows the relocated.text and.data sections in the final executable
object file.

Practice Problem 7.4:

This problem concerns the relocated program in Figure 7.10.

A. What is the hex address of the relocated reference toswap in line 5?

B. What is the hex value of the relocated reference toswap in line 5?

C. Suppose the linker had decided for some reason to locate the.text section at0x80483b8
instead of0x80483b4 . What would the hex value of the relocated reference in line 5 be in this
case?

370 CHAPTER 7. LINKING

code/link/p-exe.d

1 080483b4 <main>:
2 80483b4: 55 push %ebp
3 80483b5: 89 e5 mov %esp,%ebp
4 80483b7: 83 ec 08 sub $0x8,%esp
5 80483ba: e8 09 00 00 00 call 80483c8 <swap> swap();

6 80483bf: 31 c0 xor %eax,%eax
7 80483c1: 89 ec mov %ebp,%esp
8 80483c3: 5d pop %ebp
9 80483c4: c3 ret

10 80483c5: 90 nop
11 80483c6: 90 nop
12 80483c7: 90 nop

13 080483c8 <swap>:
14 80483c8: 55 push %ebp
15 80483c9: 8b 15 5c 94 04 08 mov 0x804945c,%edx Get *bufp0

16 80483cf: a1 58 94 04 08 mov 0x8049458,%eax Get buf[1]

17 80483d4: 89 e5 mov %esp,%ebp
18 80483d6: c7 05 48 95 04 08 58 movl $0x8049458,0x8049548 bufp1 = &buf[1]

19 80483dd: 94 04 08
20 80483e0: 89 ec mov %ebp,%esp
21 80483e2: 8b 0a mov (%edx),%ecx
22 80483e4: 89 02 mov %eax,(%edx)
23 80483e6: a1 48 95 04 08 mov 0x8049548,%eax Get *bufp1

24 80483eb: 89 08 mov %ecx,(%eax)
25 80483ed: 5d pop %ebp
26 80483ee: c3 ret

code/link/p-exe.d

(a) Relocated.text section.

code/link/pdata-exe.d

1 08049454 <buf>:
2 8049454: 01 00 00 00 02 00 00 00

3 0804945c <bufp0>:
4 804945c: 54 94 04 08 Relocated!

code/link/pdata-exe.d

(b) Relocated.data section.

Figure 7.10:Relocated.text and data sections for executable filep The original C code is in Fig-
ure 7.1.

7.8. EXECUTABLE OBJECT FILES 371

7.8 Executable Object Files

We have seen how the linker merges multiple object modules into a single executable object file. Our C
program, which began life as a collection of ASCII text files, has been transformed into a single binary
file that contains all of the information needed to load the program into memory and run it. Figure 7.11
summarizes the kinds of information in a typical ELF executable file.

.data

.symtab

.debug

0

.rodata

.bss

ELF header

describes
object file
sections

.strtab

Section header table

.line

Segment header table

.text

.init

maps contiguous file
sections to runtime
memory segments

read-only memory segment
(code segment)

read/write memory segment
(data segment)

symbol table and
debugging info are not
loaded into memory

Figure 7.11:Typical ELF executable object file

The format of an executable object file is similar to that of a relocatable object file. The ELF header
describes the overall format of the file. It also includes the program’sentry point, which is the address of the
first instruction to execute when the program runs. The.text, .rodata, and .data sections are similar
to those in a relocatable object file, except that these sections have been relocated to their eventual run-time
memory addresses. The.init section defines a small function, calledinit, that will be called by the
program’s initialization code. Since the executable isfully linked (relocated), it needs no.relo sections.

ELF executables are designed to be easy to load into memory, with contiguous chunks of the executable
file mapped to contiguous memory segments. This mapping is described by thesegment header table.
Figure 7.12 shows the segment header table for our example executablep, as displayed byOBJDUMP.

From the segment header table, we see that two memory segments will be initialized with the contents of
the executable object file. Lines 1 and 2 tell us that the first segment (thecode segment) is aligned to a
4 KB (212) boundary, has read/execute permissions, starts at memory address0x08048000, has a total
memory size of0x448 bytes, and is initialized with the first0x448 bytes of the executable object file,
which includes the ELF header, the segment header table, and the.init, .text, and .rodata sections.

Lines 3 and 4 tell us that the second segment (thedata segment) is aligned to a 4 KB boundary, has
read/write permissions, starts at memory address0x08049448, has a total memory size of0x104 bytes,
and is initialized with the0xe8 bytes starting at file offset0x448, which in this case is the beginning of
the .data section. The remaining bytes in the segment correspond to.bss data that will initialized to
zero at run time.

372 CHAPTER 7. LINKING

code/link/p-exe.d

Read-only code segment

1 LOAD off 0x00000000 vaddr 0x08048000 paddr 0x08048000 align 2**12
2 filesz 0x00000448 memsz 0x00000448 flags r-x

Read/write data segment

3 LOAD off 0x00000448 vaddr 0x08049448 paddr 0x08049448 align 2**12
4 filesz 0x000000e8 memsz 0x00000104 flags rw-

code/link/p-exe.d

Figure 7.12: Segment header table for the example executablep. Legend: off: file offset,
vaddr/paddr: virtual/physical address,align:, segment alignment, filesz: segment size in the
object file,memsz: segment size in memory,flags: run-time permissions.

7.9 Loading Executable Object Files

To run an executable object filep, we can type its name to the Unix shell’s command line:

unix> ./p

Sincep does not correspond to a built-in shell command, the shell assumes thatp is an executable object
file, which it runs for us by invoking some memory-resident operating system code known as theloader.
Any Unix program can invoke the loader by calling theexecve function, which we will describe in detail
in Section 8.4.6. The loader copies the code and data in the executable object file from disk into memory,
and then runs the program by jumping to its first instruction, orentry point. This process of copying the
program into memory and then running it is known asloading.

Every Unix program has a run-time memory image similar to the one in Figure 7.13. On Linux systems, the
code segment always starts at address0x08048000. The data segment follows at the next 4-KB aligned
address. The run-timeheapfollows on the first 4-KB aligned address past the read/write segment and grows
up via calls to themalloc library. (We will describemalloc and the heap in detail in Section 10.9). The
segment starting at address0x40000000 is reserved for shared libraries. The user stack always starts at
address0xbfffffff and grows down (towards lower memory addresses). The segment starting above
the stack at address0xc0000000 is reserved for the code and data in the memory-resident part of the
operating system known as thekernel.

When the loader runs, it creates the memory image shown in Figure 7.13. Guided by the segment header
table in the executable, it copies chunks of the executable into the code and data segments. Next, the loader
jumps to the program’s entry point, which is always the address of thestart symbol. Thestartup code
at the start address is defined in the object filecrt1.o and is the same for all C programs. Figure 7.14
shows the specific sequence of calls in the startup code. After calling initialization routines in from the
.text and .init sections, the startup code calls theatexit routine, which appends a list of routines
that should be called when the application calls theexit function. Theexit function runs the functions
registered byatexit, and then returns control to the operating system by callingexit). Next, the startup
code calls the application’smain routine, which begins executing our C code. After the application returns,
the startup code calls theexit routine, which returns control to the operating system.

7.9. LOADING EXECUTABLE OBJECT FILES 373

kernel virtual memory

memory mapped region for
shared libraries

run-time heap
(created at runtime by malloc)

user stack
(created at runtime)

unused0

%esp (stack pointer)

memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

loaded from the
executable file

Figure 7.13:Linux run-time memory image

1 0x080480c0 <_start>: /* entry point in .text */
2 call __libc_init_first /* startup code in .text */
3 call _init /* startup code in .init */
4 call atexit /* startup code in .text */
5 call main /* application main routine */
6 call _exit /* returns control to OS */
7 /* control never reaches here */

Figure 7.14:Pseudo-code for thecrt1.o startup routine in every C program. Note: The code that
pushes the arguments for each function is not shown.

374 CHAPTER 7. LINKING

Aside: How do loaders really work?
Our description of loading is conceptually correct, but intentionally not entirely accurate. To understand how loading
really works, you must understand concepts ofprocesses, virtual memory, andmemory mappingthat we haven’t
discussed yet. As we encounter these concepts later in Chapters 8 and 10, we will revisit loading and gradually
reveal the mystery to you.

For the impatient reader, here is a preview of how loading really works: Each program in a Unix system runs in
the context of a process with its own virtual address space. When the shell runs a program, the parent shell process
forks a child process that is a duplicate of the parent. The child process invokes the loader via theexecve system
call. The loader deletes the child’s existing virtual memory segments, and creates a new set of code, data, heap,
and stack segments. The new stack and heap segments are initialized to zero. The new code and data segments are
initialized to the contents of the executable file by mapping pages in the virtual address space to page-sized chunks
of the executable file. Finally, the loader jumps to thestart address, which eventually calls the application’s
main routine. Aside from some header information, there is no copying of data from disk to memory during
loading. The copying is deferred until the CPU references a mapped virtual page, at which point the operating
system automatically transfers the page from disk to memory using its paging mechanism.End Aside.

Practice Problem 7.5:

A. Why does every C program need a routine calledmain ?

B. Have you ever wondered why a Cmain routine can end with a call toexit , areturn statement,
or neither, and yet the program still terminates properly? Explain.

7.10 Dynamic Linking with Shared Libraries

The static libraries that we studied in Section 7.6.2 address many of the issues associated with making large
collections of related functions available to application programs. However, static libraries still have some
significant disadvantages. Static libraries, like all software, need to be maintained and updated periodically.
If application programmers want to use the most recent version of a library, they must somehow become
aware that the library has changed, and then explicitly relink their programs against the updated library.

Another issue is that almost every C program uses standard I/O functions such asprintf andscanf. At
run time, the code for these functions is duplicated in the text segment of each running process. On a typical
system that is running 50–100 processes, this can be a significant waste of scarce memory system resources.
(An interesting property of memory is that it isalwaysa scarce resource, regardless of how much there is in
a system. Disk space and kitchen trash cans share this same property.)

Shared librariesare a modern innovation that address the disadvantages of static libraries. A shared library
is an object module that,at run time, can be loaded at an arbitrary memory address and linked with a
program in memory. This process is known asdynamic linking, and is performed by a program called a
dynamic linker.

Shared libraries are also referred to asshared objectsand on Unix systems are typically denoted by the
.so suffix. Microsoft operating systems refer to shared libraries as DLLs (dynamic link libraries).

Shared libraries are “shared” in two different ways. First, in any given file system, there is exactly one.so
file for a particular library. The code and data in this.so file are shared by all of the executable object
files that reference the library, as opposed to the contents of static libraries, which are copied and embedded

7.10. DYNAMIC LINKING WITH SHARED LIBRARIES 375

in the executables that reference them. Second, a single copy of the.text section of a shared library in
memory can be shared by different running processes. We will explore this in more detail when we study
virtual memory in Chapter 10.

Figure 7.15 summarizes the dynamic linking process for the example program in Figure 7.6. To build a
shared librarylibvector.so of our example vector arithmetic routines in Figure 7.5, we would invoke
the compiler driver with a special directive to the linker:

unix> gcc -shared -fPIC -o libvector.so addvec.c multvec.c

The -fPIC flag directs the compiler to generate position independent code (more on this in the next sec-
tion). The-shared flag directs the linker to create a shared object file.

Translators
(cpp, cc1, as)

main2.c

main2.o

libc.so
libvector.so

Linker (ld)

p2

Loader (execve)

Dynamic linker (ld-linux.so)

relocation and
symbol table info

libc.so
libvector.so

code and data

partially linked
executable object file

relocatable

fully linked
executable
in memory

vector.h

Figure 7.15:Dynamic linking with shared libraries.

Once we have created the library, we would then link it into our example program in Figure 7.6.

unix> gcc -o p2 main2.c ./libvector.so

This creates an executable object filep2 in a form that can be linked withlibvector.so at run time.
The basic idea is to do some of the linking statically when the executable file is created, and then complete
the linking process dynamically when the program is loaded.

It is important to realize that none of the code or data sections fromlibvector.so are actually copied
into the executablep2 at this point. Instead, the linker copies some relocation and symbol table information
that will allow references to code and data inlibvector.so to be resolved at run time.

When the loader loads and runs the executablep2, it loads the partially linked executablep2, using the
techniques discussed in Section 7.9. Next, it notices thatp2 contains a.interp section, which contains
the path name of the dynamic linker, which is itself a shared object (e.g.,LD-LINUX .SO on Linux systems).

376 CHAPTER 7. LINKING

Instead of passing control to the application, as it would normally do, the loader loads and runs the dynamic
linker.

The dynamic linker then finishes the linking task by:

� Relocating the text and data oflibc.so into some memory segment. On IA32/Linux systems,
shared libraries are loaded in the area starting at address0x40000000 (See Figure 7.13).

� Relocating the text and data oflibvector.so into another memory segment.

� Relocating any references inp2 to symbols defined bylibc.so andlibvector.so.

Finally, the dynamic linker passes control to the application. From this point on, the locations of the shared
libraries are fixed and do not change during execution of the program.

7.11 Loading and Linking Shared Libraries from Applications

To this point we have discussed the scenario where the dynamic linker loads and links shared libraries when
an application is loaded, just before it executes. However, it is also possible for an application to request the
dynamic linker to load and link arbitrary shared libraries while the application is running, without having to
linked the applications against those libraries at compile time.

Dynamic linking is a powerful and useful technique. For example, developers of Microsoft Windows appli-
cations frequently use shared libraries to distribute software updates. They generate a new copy of a shared
library, which users can then download and use a replacement for the current version. The next time they
run their application, it will automatically link and load the new shared library.

Another example: the servers at many Web sites generate a great deal ofdynamic contentsuch as personal-
ized Web pages, account balances, and banner ads. The earliest Web servers generated dynamic content by
usingfork andexecve to create a child process and run a “CGI program” in the context of the child.

However, modern Web servers generate dynamic content using a more efficient and sophisticated approach
based on dynamic linking. The idea is to package each function that generates dynamic content in a shared
library. When a request arrives from a Web browser, the server dynamically loads and links the appropriate
function and then calls it directly, as opposed to usingfork andexecve to run the function in the context
of a child process. The function remains in the server’s address space, so subsequent requests can be handled
at the cost of a simple function call. This can have a significant impact on the throughput of a busy site.
Further, existing functions can be updated and new functions can be added at run-time, without stopping the
server.

Linux and Solaris systems provide a simple interface to the dynamic linker that allows application programs
to load and link shared libraries at run time.

#include <dlfcn.h>

void *dlopen(const char *filename, int flag);
returns: ptr to handle if OK, NULL on error

7.12. *POSITION-INDEPENDENT CODE (PIC) 377

Thedlopen function loads and links the shared libraryfilename. The external symbols in filename
are resolved using libraries previously opened with theRTLDGLOBALflag. If the current executable was
compiled with the-rdynamic flag, then its global symbols are also available for symbol resolution. The
flag argument must include eitherRTLDNOW, which tells the linker to resolve references to external
symbols immediately, or theRTLDLAZY flag, which instructs the linker to defer symbol resolution until
code from the library is executed. Either of these values can be or’d with theRTLDGLOBALflag.

#include <dlfcn.h>

void *dlsym(void *handle, char *symbol);
returns: ptr to symbol if OK, NULL on error

The dlsym function takes ahandle to a previously opened shared library and asymbol name, and
returns the address of the symbol, if it exists, or NULL otherwise.

#include <dlfcn.h>

int dlclose (void *handle); returns: 0 if OK, -1 on error

Thedlclose function unloads the shared library if no other shared libraries are still using it.

#include <dlfcn.h>

const char *dlerror(void);
returns: error msg if previous call to dlopen, dlsym, or dlclose failed, NULL if previous call was OK

Thedlerror function returns a string describing the most recent error that occurred as a result of calling
dlopen, dlsym, or dlclose, or NULL if no error occurred.

Figure 7.16 shows how we would use this interface to dynamically link ourlibvector.so shared library
(Figure 7.5), and then invoke itsaddvec routine. To compile the program, we would invokeGCC in the
following way:

unix> gcc -rdynamic -O2 -o p3 main3.c -ldl

7.12 *Position-Independent Code (PIC)

A key motivation for shared libraries is to allow multiple running processes to share the same library code
in memory, and thus save precious memory resources. So how might multiple processes share a single
copy of a program? One approach would be to assigna priori a dedicated chunk of the address space to
each shared library, and then require the loader to always load the shared library at that address. While

378 CHAPTER 7. LINKING

code/link/dll.c

1 #include <stdio.h>
2 #include <dlfcn.h>
3

4 int x[2] = {1, 2};
5 int y[2] = {3, 4};
6 int z[2];
7

8 int main()
9 {

10 void *handle;
11 void (*addvec)(int *, int *, int *, int);
12 char *error;
13

14 /* dynamically load the shared library that contains addvec() */
15 handle = dlopen("./libvector.so", RTLD_LAZY);
16 if (!handle) {
17 fprintf(stderr, "%s\n", dlerror());
18 exit(1);
19 }
20

21 /* get a pointer to the addvec() function we just loaded */
22 addvec = dlsym(handle, "addvec");
23 if ((error = dlerror()) != NULL) {
24 fprintf(stderr, "%s\n", error);
25 exit(1);
26 }
27

28 /* Now we can call addvec() it just like any other function */
29 addvec(x, y, z, 2);
30 printf("z = [%d %d]\n", z[0], z[1]);
31

32 /* unload the shared library */
33 if (dlclose(handle) < 0) {
34 fprintf(stderr, "%s\n", dlerror());
35 exit(1);
36 }
37 return 0;
38 }

code/link/dll.c

Figure 7.16:An application program that dynamically loads and links the shared library libvec-
tor.so.

7.12. *POSITION-INDEPENDENT CODE (PIC) 379

straightforward, this approach creates some serious problems. It would be an inefficient use of the address
space since portions of the space would be allocated even if a process didn’t use the library. Second, it would
difficult to manage. We would have to ensure that none of the chunks overlapped. Every time a library was
modified we would have to make sure that it still fit in its assigned chunk. If not, then we would have to
find a new chunk. And if we created a new library, we would have to find room for it. Over time, given the
hundreds of libraries and versions of libraries in a system, it would be difficult to keep the address space
from fragmenting into lots of small unused but unusable holes. Even worse, the assignment of libraries to
memory would be different for each system, thus creating even more management headaches.

A better approach is to compile library code so that it can be loaded and executed at any address without
being modified by the linker. Such code is known asposition-independent code(PIC). Users direct GNU
compilation systems to generate PIC code with the-fPIC option toGCC.

On IA32 systems, calls to procedures in the same object module require no special treatment, since the
references are PC-relative, with known offsets, and hence are already PIC (see Problem 7.4). However, calls
to externally-defined procedures and references to global variables are not normally PIC, since they require
relocation at link time.

PIC Data References

Compilers generate PIC references to global variables by exploiting the following interesting fact: No matter
where we load an object module (including shared object modules) in memory, the data segment is always
allocated immediately after the code segment. Thus, thedistancebetween any instruction in the code
segment and any variable in the data segment is a run-time constant, independent of the absolute memory
locations of the code and data segments.

To exploit this fact, the compiler creates a table called theglobal offset table(GOT) at the beginning of the
data segment. The GOT contains an entry for each global data object that is referenced by the object module.
The compiler also generates a relocation record for each entry in the GOT. At load time, the dynamic linker
relocates each entry in the GOT so that it contains the appropriate absolute address. Each object module
that references global data has its own GOT.

At run time, each global variable is referenced indirectly through the GOT using code of the form:

call L1
L1: popl %ebx; # ebx contains the current PC

addl $VAROFF, %ebx # ebx points to the GOT entry for var
movl (%ebx), %eax # reference indirect through the GOT
movl (%eax), %eax

In this fascinating piece of code, the call toL1 pushes the return address (which happens to be the address
of the popl instruction) on the stack. Thepopl instruction then pops this address into%ebx. The net
effect of these two instructions is to move the value of the PC into register%ebx.

Theaddl instruction adds a constant offset to%ebx so that it points to the appropriate entry in the GOT,
which contains the absolute address of the data item. At this point, the global variable can be referenced
indirectly through the GOT entry contained in%ebx. In the example above, the twomovl instructions load
the contents of the global variable (indirectly through the GOT) into register%eax.

380 CHAPTER 7. LINKING

PIC code has performance disadvantages. Each global variable reference now requires five instructions
instead of one, with an additional memory reference to the GOT. Also, PIC code uses an additional register
to hold the address of the GOT entry. On machines with large register files, this is not a major issue. But on
register-starved IA32 systems, losing even one register can trigger spilling of the registers onto the stack.

PIC Function Calls

It would certainly be possible for PIC code to use the same approach for resolving external procedure calls:

call L1
L1: popl %ebx; # ebx contains the current PC

addl $PROCOFF, %ebx # ebx points to GOT entry for proc
call *(%ebx) # call indirect through the GOT

However, this approach would require three additional instructions for each run-time procedure call. In-
stead, ELF compilation systems use an interesting technique, calledlazy binding, that defers the binding
of procedure addresses until the first time the procedure is called. There is a nontrivial run-time overhead
the first time the procedure is called, but each call thereafter only costs a single instruction and a memory
reference for the indirection.

Lazy binding is implemented with a compact yet somewhat complex interaction between two data structures:
the GOT and theprocedure linkage table (PLT). If an object module calls any functions that are defined in
shared libraries, then it has its own GOT and PLT. The GOT is part of the.data section. The PLT is part
of the .text section.

Figure 7.17 shows the format of the GOT for the example programmain2.o from Figure 7.6. The first
three GOT entries are special: GOT[0] contains the address of the.dynamic segment, which contains
information that the dynamic linker uses to bind procedure addresses, such as the location of the symbol
table and relocation information. GOT[1] contains some information that defines this module. GOT[2]
contains an entry point into the lazy binding code of the dynamic linker.

Address Entry Contents Description

08049674 GOT[0] 0804969c address of .dynamic section
08049678 GOT[1] 4000a9f8 identifying info for the linker
0804967c GOT[2] 4000596f entry point in dynamic linker
08049680 GOT[3] 0804845a address of pushl in PLT[1] (printf)
08049684 GOT[4] 0804846a address of pushl in PLT[2] (addvec)

Figure 7.17:The global offset table (GOT) for executablep2. The original code is in Figures 7.5 and 7.6.

Each procedure that is defined in a shared object and called bymain2.o gets an entry in the GOT, starting
with entry GOT[3]. For the example program, we have shown the GOT entries forprintf, which is
defined inlibc.so andaddvec, which is defined in libvector.so.

Figure 7.18 shows the PLT for our example programp2. The PLT is an array of 16-byte entries. The first
entry, PLT[0], is a special entry that jumps into the dynamic linker. Each called procedure has an entry in the

7.13. TOOLS FOR MANIPULATING OBJECT FILES 381

PLT, starting at PLT[1]. In the figure, PLT[1] corresponds toprintf and PLT[2] corresponds toaddvec.

PLT[0]
08048444: ff 35 78 96 04 08 pushl 0x8049678 # push &GOT[1]

804844a: ff 25 7c 96 04 08 jmp *0x804967c # jmp to *GOT[2](linker)
8048450: 00 00 # padding
8048452: 00 00 # padding

PLT[1] <printf>
8048454: ff 25 80 96 04 08 jmp *0x8049680 # jmp to *GOT[3]
804845a: 68 00 00 00 00 pushl $0x0 # ID for printf
804845f: e9 e0 ff ff ff jmp 8048444 # jmp to PLT[0]

PLT[2] <addvec>
8048464: ff 25 84 96 04 08 jmp *0x8049684 # jump to *GOT[4]
804846a: 68 08 00 00 00 pushl $0x8 # ID for addvec
804846f: e9 d0 ff ff ff jmp 8048444 # jmp to PLT[0]

<other PLT entries>

Figure 7.18:The procedure linkage table (PLT) for executablep2. The original code is in Figures 7.5
and 7.6.

Initially, after the program has been dynamically linked and begins executing, proceduresprintf and
addvec are bound to the first instruction in their respective PLT entries. For example, the call to addvec
has the form:

80485bb: e8 a4 fe ff ff call 8048464 <addvec>

Whenaddvec is called the first time, control passes to the first instruction in PLT[2], which does an in-
direct jump through GOT[4]. Initially, each GOT entry contains the address of thepushl entry in the
corresponding PLT entry. So the indirect jump in the PLT simply transfers control back to the next instruc-
tion in PLT[2]. This instruction pushes an ID for theaddvec symbol onto the stack. The last instruction
jumps to PLT[0], which pushes another word of identifying information on the stack from GOT[1], and then
jumps into the dynamic linker indirectly through GOT[2]. The dynamic linker uses the two stack entries to
determine the location ofaddvec, overwrites GOT[4] with this address, and passes control toaddvec.

The next timeaddvec is called in the program, control passes to PLT[2] as before. However, this time the
indirect jump through GOT[4] transfers control toaddvec. The only additional overhead from this point
on is the memory reference for the indirect jump.

7.13 Tools for Manipulating Object Files

There are a number of tools available on Unix systems to help you understand and manipulate object files.
In particular, the GNUbinutils package is especially helpful and runs on every Unix platform.

382 CHAPTER 7. LINKING

AR: Creates static libraries, and inserts, deletes, lists, and extracts members.

STRINGS: Lists all of the printable strings contained in an object file.

STRIP: Deletes symbol table information from an object file.

NM: Lists the symbols defined in the symbol table of an object file.

SIZE: Lists the names and sizes of the sections in an object file.

READELF: Displays the complete structure of an object file, including all of the information encoded in the
ELF header. Subsumes the functionality ofSIZE andNM.

OBJDUMP: The mother of all binary tools. Can display all of the information in an object file. Its most
useful function is disassembling the binary instructions in the.text section.

Unix systems also provide theldd program for manipulating shared libraries:

LDD: Lists the shared libraries that an executable needs at run time.

7.14 Summary

We have learned that linking can be performed at compile time by static linkers, and at load time and run time
by dynamic linkers. The main tasks of linkers are symbol resolution, where each global symbol is bound to
a unique definition, and relocation, where the ultimate memory address for each symbol is determined and
where references to those objects are modified.

Static linkers combine multiple relocatable object files into a single executable object file. Multiple object
files can define the same symbol, and the rules that linkers use for silently resolving these multiple defi-
nitions can introduce subtle bugs in user programs. Multiple object files can be concatenated in a single
static library. Linkers use libraries to resolve symbol references in other object modules. The left-to-right
sequential scan that many linkers use to resolve symbol references is another source of confusing link-time
errors.

Loaders map the contents of executable files into memory and run the program. Linkers can also produce
partially linked executable object files with unresolved references to the routines and data defined in shared
library. At load time, the loader maps the partially linked executable into memory and then calls a dynamic
linker, which completes the linking task by loading the shared library and relocating the references in the
program. Shared libraries that are compiled as position-independent code can be loaded anywhere and
shared at run time by multiple processes. Applications can also use the dynamic linker at run time in order
to load, link, and access the functions and data in shared libraries.

Bibliographic Notes

Linking is not well documented in the computer science literature. We think there are several reasons
for this. First, linking lies at the intersection of compilers, computer architecture, and operating systems,

7.14. SUMMARY 383

requiring understanding of code generation, machine language programming, program instantiation, and
virtual memory. It does not fit neatly into any of the usual computer science specialties, and thus is not well
covered well by the classic texts in these areas. However, Levine’s monograph is a good general reference
on the subject [44]. The original specifications for ELF and DWARF (a specification for the contents of the
.debug and.line sections) are described in [32].

Some interesting research and commercial activity centers around the notion ofbinary translation, where
the contents of an object file are parsed, analyzed, and modified. Binary translation is typically for three
purposes [43]: to emulate one system on another system, to observe program behavior, or to perform system-
dependent optimizations that are not possible at compile time. Commercial products such as VTune, Purify,
and BoundsChecker use binary translation to provide programmers with detailed observations of their pro-
grams.

The Atom system provides a flexible mechanism for instrumenting Alpha executable object files and shared
libraries with arbitrary C functions [70]. Atom has been used to build a myriad of analysis tools that trace
procedure calls, profile instruction counts and memory referencing patterns, simulate memory system be-
havior, and isolate memory referencing errors. Etch [62] and EEL [43] provide roughly similar capabilities
on different platforms. The Shade system uses binary translation for instruction profiling. [14]. Dynamo [2]
and Dyninst [7] provide mechanisms for instrumenting and optimizing executables in memory, at run time.
Smith and his colleagues have investigated binary translation for program profiling and optimization. [87].

Homework Problems

Homework Problem 7.6[Category 1]:

Consider the following version of theswap.c function that counts the number of times it has been called.

1 extern int buf[];
2

3 int *bufp0 = &buf[0];
4 static int *bufp1;
5

6 static void incr()
7 {
8 static int count=0;
9

10 count++;
11 }
12

13 void swap()
14 {
15 int temp;
16

17 incr();
18 bufp1 = &buf[1];
19 temp = *bufp0;

384 CHAPTER 7. LINKING

20 *bufp0 = *bufp1;
21 *bufp1 = temp;
22 }

For each symbol that is defined and referenced inswap.o, indicate if it will have a symbol table entry in
the .symtab section in moduleswap.o. If so, indicate the module that defines the symbol (swap.o or
main.o), the symbol type (local, global, or extern) and the section (.text, .data, or .bss) it occupies
in that module.

Symbol swap.o .symtab entry? Symbol type Module where defined Section

buf
bufp0
bufp1
swap
temp
incr

count

Homework Problem 7.7[Category 1]:

Without changing any variable names, modifybar5.c on Page 360 so thatfoo5.c prints the correct
values ofx andy (i.e., the hex representations of integers 15213 and 15212).

Homework Problem 7.8[Category 1]:

In this problem, letREF(x.i) --> DEF(x.k) denote that the linker will associate an arbitrary refer-
ence to symbolx in modulei to the definition ofx in modulek . For each example below, use this notation
to indicate how the linker would resolve references to the multiply-defined symbol in each module. If there
is a link-time error (Rule 1), write “ERROR”. If the linker arbitrarily chooses one of the definitions (Rule
3), write “UNKNOWN”.

A. /* Module 1 */
int main()
{
}

/* Module 2 */
static int main=1;
int p2()
{
}

(a) REF(main.1) --> DEF(_____.___)

(b) REF(main.2) --> DEF(_____.___)

B. /* Module 1 */
int x;
void main()
{
}

/* Module 2 */
double x;
int p2()
{
}

7.14. SUMMARY 385

(a) REF(x.1) --> DEF(_____.___)

(b) REF(x.2) --> DEF(_____.___)

C. /* Module 1 */
int x=1;
void main()
{
}

/* Module 2 */
double x=1.0;
int p2()
{
}

(a) REF(x.1) --> DEF(_____.___)

(b) REF(x.2) --> DEF(_____.___)

Homework Problem 7.9[Category 1]:

Consider the following program, which consists of two object modules:

1 /* foo6.c */
2 void p2(void);
3

4 int main()
5 {
6 p2();
7 return 0;
8 }

1 /* bar6.c */
2 #include <stdio.h>
3

4 char main;
5

6 void p2()
7 {
8 printf("0x%x\n", main);
9 }

When this program is compiled and executed on a Linux system, it prints the string “0x55\n” and termi-
nates normally, even thoughp2 never initializes variablemain. Can you explain this?

Homework Problem 7.10[Category 1]:

Let a and b denote object modules or static libraries in the current directory, and leta!b denote that
a depends onb, in the sense thatb defines a symbol that is referenced bya. For each of the following
scenarios, show the minimal command line (i.e., one with the least number of file object file and library
arguments) that will allow the static linker to resolve all symbol references.

A. p.o ! libx.a ! p.o .

B. p.o ! libx.a ! liby.a and liby.a ! libx.a.

C. p.o ! libx.a ! liby.a ! libz.a and liby.a ! libx.a ! libz.a.

Homework Problem 7.11[Category 1]:

386 CHAPTER 7. LINKING

The segment header in Figure 7.12 indicates that the data segment occupies0x104 bytes in memory. How-
ever, only the first0xe8 bytes of these come from the sections of the executable file. Why the discrepancy?

Homework Problem 7.12[Category 2]:

Theswap routine in Figure 7.10 contains five relocated references. For each relocated reference, give its
line number in Figure 7.10, its run-time memory address, and its value. The original code and relocation
entries in theswap.o module are shown in Figure 7.19.

Line # in Fig.7.10 Address Value

1 00000000 <swap>:
2 0: 55 push %ebp
3 1: 8b 15 00 00 00 00 mov 0x0,%edx get *bufp0=&buf[0]

4 3: R_386_32 bufp0 relocation entry

5 7: a1 04 00 00 00 mov 0x4,%eax get buf[1]

6 8: R_386_32 buf relocation entry

7 c: 89 e5 mov %esp,%ebp
8 e: c7 05 00 00 00 00 04 movl $0x4,0x0 bufp1 = &buf[1];

9 15: 00 00 00
10 10: R_386_32 bufp1 relocation entry

11 14: R_386_32 buf relocation entry

12 18: 89 ec mov %ebp,%esp
13 1a: 8b 0a mov (%edx),%ecx temp = buf[0];

14 1c: 89 02 mov %eax,(%edx) buf[0]=buf[1];

15 1e: a1 00 00 00 00 mov 0x0,%eax get *bufp1=&buf[1]

16 1f: R_386_32 bufp1 relocation entry

17 23: 89 08 mov %ecx,(%eax) buf[1]=temp;

18 25: 5d pop %ebp
19 26: c3 ret

Figure 7.19:Code and relocation entries for Problem 7.13

Homework Problem 7.13[Category 3]:

Consider the C code and corresponding relocatable object module in Figure 7.20.

A. Determine which instructions in.text will need to be modified by the linker when the module
is relocated. For each such instruction, list the information in its relocation entry: section offset,
relocation type, and symbol name.

7.14. SUMMARY 387

B. Determine which data objects in.data will need to be modified by the linker when the module
is relocated. For each such instruction, list the information in its relocation entry: section offset,
relocation type, and symbol name.

Feel free to use tools such asOBJDUMPto help you solve this problem.

Homework Problem 7.14[Category 3]:

Consider the C code and corresponding relocatable object module in Figure 7.21.

A. Determine which instructions in.text will need to be modified by the linker when the module
is relocated. For each such instruction, list the information in its relocation entry: section offset,
relocation type, and symbol name.

B. Determine which data objects in.rodata will need to be modified by the linker when the module
is relocated. For each such instruction, list the information in its relocation entry: section offset,
relocation type, and symbol name.

Feel free to use tools such asOBJDUMPto help you solve this problem.

Homework Problem 7.15[Category 3]:

Performing the following tasks will help you become more familiar with the various tools for manipulating
object files.

A. How many object files are contained in the versions oflibc.a andlibm.a on your system?

B. Doesgcc -O2 produce different executable code thangcc -O2 -g?

C. What shared libraries does theGCC driver on your system use?

388 CHAPTER 7. LINKING

1 extern int p3(void);
2 int x = 1;
3 int *xp = &x;
4

5 void p2(int y) {
6 }
7

8 void p1() {
9 p2(*xp + p3());

10 }

(a) C code.

1 00000000 <p2>:
2 0: 55 push %ebp
3 1: 89 e5 mov %esp,%ebp
4 3: 89 ec mov %ebp,%esp
5 5: 5d pop %ebp
6 6: c3 ret

7 00000008 <p1>:
8 8: 55 push %ebp
9 9: 89 e5 mov %esp,%ebp

10 b: 83 ec 08 sub $0x8,%esp
11 e: 83 c4 f4 add $0xfffffff4,%esp
12 11: e8 fc ff ff ff call 12 <p1+0xa>
13 16: 89 c2 mov %eax,%edx
14 18: a1 00 00 00 00 mov 0x0,%eax
15 1d: 03 10 add (%eax),%edx
16 1f: 52 push %edx
17 20: e8 fc ff ff ff call 21 <p1+0x19>
18 25: 89 ec mov %ebp,%esp
19 27: 5d pop %ebp
20 28: c3 ret

(b) .text section of relocatable object file.

1 00000000 <x>:
2 0: 01 00 00 00
3 00000004 <xp>:
4 4: 00 00 00 00

(c) .data section of relocatable object file.

Figure 7.20:Example code for Problem 7.13.

7.14. SUMMARY 389

1 int relo3(int val) {
2 switch (val) {
3 case 100:
4 return(val);
5 case 101:
6 return(val+1);
7 case 103: case 104:
8 return(val+3);
9 case 105:

10 return(val+5);
11 default:
12 return(val+6);
13 }
14 }

(a) C code.

1 00000000 <relo3>:
2 0: 55 push %ebp
3 1: 89 e5 mov %esp,%ebp
4 3: 8b 45 08 mov 0x8(%ebp),%eax
5 6: 8d 50 9c lea 0xffffff9c(%eax),%edx
6 9: 83 fa 05 cmp $0x5,%edx
7 c: 77 17 ja 25 <relo3+0x25>
8 e: ff 24 95 00 00 00 00 jmp *0x0(,%edx,4)
9 15: 40 inc %eax

10 16: eb 10 jmp 28 <relo3+0x28>
11 18: 83 c0 03 add $0x3,%eax
12 1b: eb 0b jmp 28 <relo3+0x28>
13 1d: 8d 76 00 lea 0x0(%esi),%esi
14 20: 83 c0 05 add $0x5,%eax
15 23: eb 03 jmp 28 <relo3+0x28>
16 25: 83 c0 06 add $0x6,%eax
17 28: 89 ec mov %ebp,%esp
18 2a: 5d pop %ebp
19 2b: c3 ret

(b) .text section of relocatable object file.

This is the jump table for the switch statement

1 0000 28000000 15000000 25000000 18000000 4 words at offsets 0x0,0x4,0x8, and 0xc

2 0010 18000000 20000000 2 words at offsets 0x10 and 0x14

(c) .rodata section of relocatable object file.

Figure 7.21:Example code for Problem 7.14.

390 CHAPTER 7. LINKING

Chapter 8

Exceptional Control Flow

From the time you first apply power to a processor until the time you shut it off, the program counter assumes
a sequence of values

a0; a1; : : : ; an�1:

where eachak is the address of some corresponding instructionIk. Each transition fromak to ak+1 is called
a control transfer. A sequence of such control transfers is called theflow of control, or control flowof the
processor.

The simplest kind of control flow is a smooth sequence where eachIk andIk+1 are adjacent in memory.
Typically, abrupt changes to this smooth flow, whereIk+1 is not adjacent toIk, are caused by familiar
program instructions such as jumps, calls, and returns. Such instructions are necessary mechanisms that
allow programs to react to changes in internal program state represented by program variables.

But systems must also be able to react to changes in system state that are not captured by internal program
variables and are not necessarily related to the execution of the program. For example, a hardware timer
goes off at regular intervals and must be dealt with. Packets arrive at the network adapter and must be stored
in memory. Programs request data from a disk and then sleep until they are notified that the data are ready.
Parent processes that create child processes must be notified when their children terminate.

Modern systems react to these situations by making abrupt changes in the control flow. We refer to these
abrupt changes in general asexceptional control flow. Exceptional control flow occurs at all levels of
a computer system. For example, at the hardware level, events detected by the hardware trigger abrupt
control transfers to exception handlers. At the operating systems level, the kernel transfers control from one
user process to another via context switches. At the application level, a process can send aUnix signal to
another process that abruptly transfers control to a signal handler in the recipient. An individual program can
react to errors by sidestepping the usual stack discipline and making nonlocal jumps to arbitrary locations
in other functions (similar to theexceptionssupported by C++ and Java).

This chapter describes these various forms of exceptional control, and shows you how to use them in your C
programs. The techniques you will learn about — creating processes, reaping terminated processes, sending
and receiving signals, making non-local jumps — are the foundation of important programs such as Unix
shells (Problem 8.20) and Web servers (Chapter 12).

391

392 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

8.1 Exceptions

Exceptions are a form of exceptional control flow that are implemented partly by the hardware and partly
by the operating system. Because they are partly implemented in hardware, the details vary from system to
system. However, the basic ideas are the same for every system. Our aim in this section is to give you a
general understanding of exceptions and exception handling, and to help demystify what is often a confusing
aspect of modern computer systems.

An exceptionis an abrupt change in the control flow in response to some change in the processor’s state.
Figure 8.1 shows the basic idea.

Application
program

Exception
handler

exception
exception
processing

exception
return

(optional)

Icurr
Inext

event
occurs
 here

Figure 8.1:Anatomy of an exception.A change in the processor’s state (event) triggers an abrupt control
transfer (an exception) from the application program to an exception handler. After it finishes processing,
the handler either returns control to the interrupted program or aborts.

In the figure, the processor is executing some current instructionIcurr when a significant change in the
processor’sstateoccurs. The state is encoded in various bits and signals inside the processor. The change
in state is known as anevent. The event might be directly related to the execution of the current instruction.
For example, a virtual memory page fault occurs, an arithmetic overflow occurs, or an instruction attempts
a divide by zero. On the other hand, the event might be unrelated to the execution of the current instruction.
For example, a system timer goes off or an I/O request completes.

In any case, when the processor detects that the event has occurred, it makes an indirect procedure call (the
exception), through a jump table called anexception table, to an operating system subroutine (theexception
handler) that is specifically designed to process this particular kind of event.

When the exception handler finishes processing, one of three things happens, depending on the type of event
that caused the exception:

1. The handler returns control to the current instructionIcurr, the instruction that was executing when
the event occurred.

2. The handler returns control toInext, the instruction that would have executed next had the exception
not occurred.

3. The handler aborts the interrupted program.

Section 8.1.2 says more about these possibilities.

8.1. EXCEPTIONS 393

8.1.1 Exception Handling

Exceptions can be difficult to understand because handling them involves close cooperation between hard-
ware and software. It is easy to get confused about which component performs which task. Let’s look at the
division of labor between hardware and software in more detail.

Each type of possible exception in a system is assigned a unique non-negative integerexception number.
Some of these numbers are assigned by the designers of the processor. Other numbers are assigned by the
designers of the operating systemkernel (the memory-resident part of the operating system). Examples
of the former include divide by zero, page faults, memory access violations, breakpoints, and arithmetic
overflows. Examples of the latter include system calls and signals from external I/O devices.

At system boot time (when the computer is reset or powered on) the operating system allocates and initializes
a jump table called anexception table, so that entryk contains the address of the handler for exceptionk.
Figure 8.2 shows the format of an exception table.

exception
table

0
1
2 ...

n-1

code for
exception handler 0

code for
exception handler 0

code for
exception handler 1

code for
exception handler 1

code for
exception handler 2

code for
exception handler 2

code for
exception handler n-1

code for
exception handler n-1

...

Figure 8.2:Exception table. The exception table is a jump table where entryk contains the address of the
handler code for exceptionk.

At runtime (when the system is executing some program), the processor detects that an event has occurred
and determines the corresponding exception numberk. The processor then triggers the exception by making
an indirect procedure call, through entryk of the exception table, to the corresponding handler. Figure 8.3
shows how the processor uses the exception table to form the address of the appropriate exception handler.
The exception number is an index into the exception table, whose starting address is contained in a special
CPU register called theexception table base register.

exception table

+

exception number
(x 4)

0
1
2

n-1

Address of entry
for exception # kexception table

base register
...

Figure 8.3:Generating the address of an exception handler.The exception number is an index into the
exception table.

394 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

An exception is akin to a procedure call, but with some important differences.

� As with a procedure call, the processor pushes a return address on the stack before branching to
the handler. However, depending on the class of exception, the return address is either the current
instruction (the instruction that was executing when the event occurred) or the next instruction (the
instruction that would have executed after the current instruction had the event not occurred).

� The processor also pushes some additional processor state onto the stack that will be necessary to
restart the interrupted program when the handler returns. For example, an IA32 system pushes the
EFLAGS register containing, among other things, the current condition codes, onto the stack.

� If control is being transferred from a user program to the kernel, all of the above items are pushed on
the kernel’s stack rather than the user’s stack.

� Exception handlers run inkernel mode(Section 8.2.3, which means they have complete access to all
system resources.

Once the hardware triggers the exception, the rest of the work is done in software by the exception handler.
After the handler has processed the event, it optionally returns to the interrupted program by executing a
special “return from interrupt” instruction, which pops the appropriate state back into the processor’s control
and data registers, restores the state touser mode(Section 8.2.3) if the exeption interrupted a user program,
and then returns control to the interrupted program.

8.1.2 Classes of Exceptions

Exceptions can be divided into four classes:interrupts,traps, faults, andaborts. Figure 8.4 summarizes the
attributes of these classes.

Class Cause Async/Sync Return behavior

Interrupt Signal from I/O device Async always returns to next instruction
Trap Intentional exception Sync Always returns to next instruction
Fault Potentially recoverable error Sync Might return to current instruction
Abort Nonrecoverable error Sync Never returns

Figure 8.4: Classes of exceptions.Asynchronous exceptions occur as a result of events external to the
processor. Synchronous exceptions occur as a direct result of executing an instruction.

Interrupts

Interruptsoccur asynchronouslyas a result of signals from I/O devices that are external to the processor.
Hardware interrupts are asynchronous in the sense that they are not caused by the execution of any particular
instruction. Exception handlers for hardware interrupts are often calledinterrupt handlers.

8.1. EXCEPTIONS 395

Figure 8.5 summarizes the processing for an interrupt. I/O devices such as network adapters, disk con-
trollers, and timer chips trigger interrupts by signalling a pin on the processor chip and placing the exception
number on the system bus that identifies the device that caused the interrupt.

(2) control passes
to handler after current

instruction finishes
(3) interrupt
handler runs

(4) handler
returns to

next instruction

Icurr
Inext

(1) interrupt pin
goes high during

execution of
current instruction

Figure 8.5:Interrupt handling. The interrupt handler returns control to the next instruction in the applica-
tion program’s control flow.

After the current instruction finishes executing, the processor notices that the interrupt pin has gone high,
reads the exception number from the system bus, and then calls the appropriate interrupt handler. When
the handler returns, it returns control to the next instruction (i.e., the instruction that would have followed
the current instruction in the control flow had the interrupt not occurred). The effect is that the program
continues executing as though the interrupt had never happened.

The remaining classes of exceptions (traps, faults, and aborts) occursynchronouslyas a result of executing
the current instruction. We refer to this instruction as thefaulting instruction.

Traps

Trapsare intentionalexceptions that occur as a result of executing an instruction. Like interrupt handlers,
trap handlers return control to the next instruction. The most important use of traps is to provide a procedure-
like interface between user programs and the kernel known as asystem call.

User programs often need to request services from the kernel such as reading a file (read), creating a new
process (fork), loading a new program (execve), or terminating the current process (exit). To allow
controlled access to such kernel services, processors provide a special “syscall n” instruction that user
programs can execute when they want to request servicen. Executing thesyscall instruction causes a
trap to an exception handler that decodes the argument and calls the appropriate kernel routine. Figure 8.6
summarizes the processing for a system call. From a programmer’s perspective, a system call is identical

(2) control passes
to handler

(3) trap
handler runs

(4) handler returns
to instruction

following the syscall

syscall
Inext

(1) Application
makes a

system call

Figure 8.6: Trap handling. The trap handler returns control to the next instruction in the application
program’s control flow.

to a regular function call. However, their implementations are quite different. Regular functions run in

396 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

user mode, which restricts the types of instructions they can execute, and they access the same stack as the
calling function. A system call runs inkernel mode, which allows it to execute instructions, and accesses a
stack defined in the kernel. Section 8.2.3 discusses user and kernel modes in more detail.

Faults

Faults result from error conditions that a handler might be able to correct. When a fault occurs, the processor
transfers control to the fault handler. If the handler is able to correct the error condition, it returns control
to the faulting instruction, thereby reexecuting it. Otherwise, the handler returns to anabort routine in the
kernel that terminates the application program that caused the fault. Figure 8.7 summarizes the processing
for a fault.

(2) control passes
to handler

(3) fault
handler runs

(4) handler either reexecutes
current instruction or aborts.

Icurr

(1) Current
instruction

causes a fault

abort

Figure 8.7:Fault handling. Depending on the whether the fault can be repaired or not, the fault handler
either re-executes the faulting instruction or aborts.

A classic example of a fault is the page fault exception, which occurs when an instruction references a virtual
address whose corresponding physical page is not resident in memory and must be retrieved from disk. As
we will see in Chapter 10, a page is contiguous block (typically 4 KB) of virtual memory. The page fault
handler loads the appropriate page from disk and then returns control to the instruction that caused the fault.
When the instruction executes again, the appropriate physical page is resident in memory and the instruction
is able to run to completion without faulting.

Aborts

Aborts result from unrecoverable fatal errors, typically hardware errors such as parity errors that occur
when DRAM or SRAM bits are corrupted. Abort handlers never return control to the application program.
As shown in Figure 8.8, the handler returns control to anabort routine that terminates the application
program.

(2) control passes
to handler

(3) abort
handler runs

(4) handler returns
to abort routine

Icurr
(1) fatal hardware

error occurs

abor t

Figure 8.8:Abort handling. The abort handler passes control to a kernelabort routine that terminates
the application program.

8.1. EXCEPTIONS 397

8.1.3 Exceptions in Intel Processors

To help make things more concrete, let’s look at some of the exceptions defined for Intel systems. A Pentium
system can have up to 256 different exception types. Numbers in the range 0 to 31 correspond to exceptions
that are defined by the Pentium architecture, and thus are identical for any Pentium-class system. Numbers
in the range 32 to 255 correspond to interrupts and traps that are defined by the operating system. Figure 8.9
shows a few examples.

Exception Number Description Exception Class

0 divide error fault
13 general protection fault fault
14 page fault fault
18 machine check abort

32–127 OS-defined exceptions interrupt or trap
128 (0x80) system call trap

129–255 OS-defined exceptions interrupt or trap

Figure 8.9:Examples of exceptions in Pentium systems.

A divide error (exception 0) occurs when an application attempts to divide by zero, or when the result of a
divide instruction is too big for the destination operand. Unix does not attempt to recover from divide errors,
opting instead to abort the program. Unix shells typically report divide errors as “Floating exceptions”.

The infamous general protection fault (exception 13) occurs for many reasons, usually because a program
references an undefined area of virtual memory, or because the program attempts to write to a read-only text
segment. Unix does not attempt to recover from this fault. Unix shells typically report general protection
faults as “Segmentation faults”.

A page fault (exception 14) is an example of an exception where the faulting instruction is restarted. The
handler maps the appropriate page of physical memory on disk into a page of virtual memory, and then
restarts the faulting instruction. We will see how this works in detail in Chapter 10.

A machine check (exception 18) occurs as a result of a fatal hardware error that is detected during the exe-
cution of the faulting instruction. Machine check handlers never return control to the application program.

System calls are provided on IA32 systems via a trapping instruction calledINT n, wheren can be the index
of any of the 256 entries in the exception table. Historically, systems calls are provided through exception
128 (0x80).

Aside: A note on terminology.
The terminology for the various classes of exceptions varies from system to system. Processor macro-architecture
specifications often distinguish between asynchronous “interrupts” and synchronous “exceptions”, yet provide no
umbrella term to refer to these very similar concepts. To avoid having to constantly refer to “exceptions and in-
terrupts” and “exceptions or interrupts”, we use the word “exception” as the general term and distinguish between
asynchronous exceptions (interrupts) and synchronous exceptions (traps, faults, and aborts) only when it is appro-
priate. As we have noted, the basic ideas are the same for every system, but you should be aware that some manu-
facturers’ manuals use the word “exception” to refer only to those changes in control flow caused by synchronous
events.End Aside.

398 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

8.2 Processes

Exceptions provide the basic building blocks that allow the operating system to provide the notion of a
process, one of the most profound and successful ideas in computer science.

When we run a program on a modern system, we are presented with the illusion that our program is the only
one currently running in the system. Our program appears to have exclusive use of both the processor and
the memory. The processor appears to execute the instructions in our program, one after the other, without
interruption. And the code and data of our program appear to be the only objects in the system’s memory.
These illusions are provided to us by the notion of a process.

The classic definition of a process isan instance of a program in execution. Each program in the system runs
in the contextof some process. The context consists of the state that the program needs to run correctly. This
state includes the program’s code and data stored in memory, its stack, the contents of its general-purpose
registers, its program counter, environment variables, and the set of open file descriptors.

Each time a user runs a program by typing the name of an executable object file to the shell, the shell
creates a new process and then runs the executable object file in the context of this new process. Application
programs can also create new processes and run either their own code or other applications in the context of
the new process.

A detailed discussion of how operating systems implement processes is beyond our scope. Instead we will
focus on the key abstractions that a process provides to the application:

� An independentlogical control flowthat provides the illusion that our program has exclusive use of
the processor.

� A private address space that provides the illusion that our program has exclusive use of the memory
system.

Let’s look more closely at these abstractions.

8.2.1 Logical Control Flow

A process provides each program with the illusion that it has exclusive use of the processor, even though
many other programs are typically running on the system. If we were to use a debugger to single step the
execution of our program, we would observe a series of program counter (PC) values that corresponded
exclusively to instructions contained in our program’s executable object file or in shared objects linked into
our program dynamically at run time. This sequence of PC values is known as alogical control flow.

Consider a system that runs three processes, as shown in Figure 8.10. The single physical control flow of
the processor is partitioned into threelogical flows, one for each process. Each vertical line represents a
portion of the logical flow for a process. In the example, process A runs for a while, followed by B, which
runs to completion. Then C runs for awhile, followed by A, which runs to completion. Finally, C is able to
run to completion.

The key point in Figure 8.10 is that processes take turns using the processor. Each process executes a
portion of its flow and then ispreempted(temporarily suspended) while other processes take their turns. To

8.2. PROCESSES 399

Time

Process A Process B Process C

Figure 8.10:Logical control flows. Processes provide each program with the illusion that it has exclusive
use of the processor. Each vertical bar represents a portion of the logical control flow for a process.

a program running in the context of one of these processes, it appears to have exclusive use of the processor.
The only evidence to the contrary is that if we were to precisely measure the elapsed time of each instruction
(see Chapter 9), we would notice that the CPU appears to periodically stall between the execution of some of
the instructions in our program. However, each time the processor stalls, it subsequently resumes execution
of our program without any change to the contents of the program’s memory locations or registers.

In general, each logical flow is independent of any other flow in the sense that the logical flows associated
with different processes do not affect the states of any other processes. The only exception to this rule occurs
when processes use interprocess communication (IPC) mechanisms such as pipes, sockets, shared memory,
and semaphores to explicitly interact with each other.

Any process whose logical flow overlaps in time with another flow is called aconcurrent process, and the
two processes are said to runconcurrently. For example, in Figure 8.10, processes A and B run concurrently,
as do A and C. On the other hand, B and C do not run concurrently because the last instruction of B executes
before the first instruction of C.

The notion of processes taking turns with other processes is known asmultitasking. Each time period that
a process executes a portion of its flow is called atime slice. Thus, multitasking is also referred to astime
slicing.

8.2.2 Private Address Space

A process also provides each program with the illusion that it has exclusive use of the system’s address
space. On a machine withn-bit addresses, theaddress spaceis the set of2n possible addresses,0, 1, . . . ,
2n � 1. A process provides each program with its ownprivate address space. This space is private in the
sense that a byte of memory associated with a particular address in the space cannot in general be read or
written by any other process.

Although the contents of the memory associated with each private address space is different in general,
each such space has the same general organization. For example, Figure 8.11 shows the organization of
the address space for a Linux process. The bottom three-fourths of the address space is reserved for the
user program, with the usual text, data, heap, and stack segments. The top quarter of the address space is
reserved for the kernel. This portion of the address space contains the code, data, and stack that the kernel

400 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

kernel virtual memory
(code, data, heap, stack)

memory mapped region for
shared libraries

run-time heap
(created at runtime by malloc)

user stack
(created at runtime)

unused0

%esp (stack pointer)

memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

loaded from the
executable file

0xffffffff

Figure 8.11:Process address space.

uses when it executes instructions on behalf of the process (e.g., when the application program executes a
system call).

8.2.3 User and Kernel Modes

In order for the operating system kernel to provide an airtight process abstraction, the processor must provide
a mechanism that restricts the instructions that an application can execute, as well as the portions of the
address space that it can access.

Processors typically provide this capability with amode bitin some control register that characterizes the
privileges that the process currently enjoys. When the mode bit is set, the process is running inkernel mode
(sometimes calledsupervisor mode). A process running in kernel mode can execute any instruction in the
instruction set and access any memory location in the system.

When the mode bit is not set, the process is running inuser mode. A process in user mode is not allowed
to executeprivileged instructionsthat do things such as halt the processor, change the mode bit, or initiate
an I/O operation. Nor is it allowed to directly reference code or data in the kernel area of the address space.
Any such attempt results in a fatal protection fault. Instead, user programs must access kernel code and data
indirectly via the system call interface.

A process running application code is initially in user mode. The only way for the process to change from
user mode to kernel mode is via an exception such as an interrupt, a fault, or a trapping system call. When
the exception occurs, and control passes to the exception handler, the processor changes the mode from
user mode to kernel mode. The handler runs in kernel mode. When it returns to the application code, the
processor changes the mode from kernel mode back to user mode.

8.2. PROCESSES 401

Linux and Solaris provides a clever mechanism, called the/proc filesystem, that allows user mode pro-
cesses to access the contents of kernel data structures. The/proc filesystem exports the contents of many
kernel data structures as a hierarchy of ASCII files that can read by user programs. For example, you can
use the Linuxproc filesystem to find out general system attributes such as CPU type (/proc/cpuinfo),
or the memory segments used by a particular process (/proc/<process id>/maps).

8.2.4 Context Switches

The operating system kernel implements multitasking using a higher-level form of exceptional control flow
known as acontext switch. The context switch mechanism is built on top of the lower-level exception
mechanism that we discussed in Section 8.1.

The kernel maintains acontextfor each process. The context is the state that the kernel needs to restart a
preempted process. It consists of the values of objects such as the general-purpose registers, the floating-
point registers, the program counter, user’s stack, status registers, kernel’s stack, and various kernel data
structures such as apage tablethat characterizes the address space, aprocess tablethat contains information
about the current process, and afile table that contains information about the files that the process has
opened.

At certain points during the execution of a process, the kernel can decide to preempt the current process and
restart a previously preempted process. This decision is known asscheduling, and is handled by a part of
the kernel called thescheduler. When the kernel selects a new process to run, we say that the kernel has
scheduledthat process. After the kernel has scheduled a new process to run, it preempts the current process
and transfers control to the new process using a mechanism called acontext switchthat (1) saves the context
of the current process, (2) restores the saved context of some previously preempted process, and (3) passes
control to this newly restored process.

A context switch can occur while the kernel is executing a system call on behalf of the user. If the system
call blocks because it is waiting for some event to occur, then the kernel can put the current process to sleep
and switch to another process. For example, if aread system call requires a disk access, the kernel can opt
to perform a context switch and run another process instead of waiting for the data to arrive from the disk.
Another example is thesleep system call, which is an explicit request to put the calling process to sleep.
In general, even if a system call does not block, the kernel can decide to perform a context switch rather
than return control to the calling process.

A context switch can also occur as a result of an interrupt. For example, all systems have some mechanism
for generating periodic timer interrupts, typically every 1 ms or 10 ms. Each time a timer interrupt occurs,
the kernel can decide that the current process has run long enough and switch to a new process.

Figure 8.12 shows an example of context switching between a pair of processes A and B. In this example,
initially process A is running in user mode until it traps to the kernel by executing aread system call.
The trap handler in the kernel requests a DMA transfer from the disk controller and arranges for the disk to
interrupt the processor after the disk controller has finished transferring the data from disk to memory.

The disk will take a relatively long time to fetch the data (on the order of tens of milliseconds), so instead
of waiting and doing nothing in the interim, the kernel performs a context switch from process A to B. Note
that before the switch, the kernel is executing instructions in user mode on behalf of process A. During the

402 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

Process A Process B

user code

kernel code

user code

kernel code

user code

Time

context
switch

context
switch

read()

disk
interrupt

Figure 8.12:Anatomy of a context switch.

first part of the switch, the kernel is executing instructions in kernel mode on behalf of process A. Then
at some point it begins executing instructions (still in kernel mode) on behalf of process B. And after the
switch, the kernel is executing instructions in user mode on behalf of process B.

Process B then runs for a while in user mode until the disk sends an interrupt to signal that data has been
transferred from disk to memory. The kernel decides that process B has run long enough and performs a
context switch from process B to A, returning control in process A to the instruction immediately following
theread system call. Process A continues to run until the next exception occurs, and so on.

8.3 System Calls and Error Handling

Unix systems provide a variety of systems calls that application programs use when they want to request
services from the kernel such as reading a file or creating a new process. For example, Linux provides about
160 system calls. Typing “man syscalls” will give you the complete list.

C programs can invoke any system call directly by using thesyscall macro described in “man 2 in-
tro”. However, it is usually neither necessary nor desirable to invoke system calls directly. The standard
C library provides a set of convenient wrapper functions for the most frequently used system calls. The
wrapper functions package up the arguments, trap to the kernel with the appropriate system call, and then
pass the return status of the system call back to the calling program. In our discussion in the following sec-
tions, we will refer to system calls and their associated wrapper functions interchangeably assystem-level
functions.

When Unix system-level functions encounter an error, they typically return�1 and set the global integer
variableerrno to indicate what went wrong. Programmers shouldalwayscheck for errors, but unfortu-
nately, many skip error checking because it bloats the code and makes it harder to read. For example, here
is how we might check for errors when we call the Unixfork function:

1 if ((pid = fork()) < 0) {
2 fprintf(stderr, "fork error: %s\n", strerror(errno));
3 exit(0);
4 }

Thestrerror function returns a text string that describes the error associated with a particular value of
errno. We can simplify this code somewhat by defining the followingerror-reporting function:

8.4. PROCESS CONTROL 403

1 void unix_error(char *msg) /* unix-style error */
2 {
3 fprintf(stderr, "%s: %s\n", msg, strerror(errno));
4 exit(0);
5 }

Given this function, our call tofork reduces from four lines to two lines:

1 if ((pid = fork()) < 0)
2 unix_error("fork error");

We can simplify our code even further by using aerror-handling wrappers. For a given base functionfoo,
we define a wrapper functionFoo with identical arguments, but with the first letter of the name capitalized.
The wrapper calls the base function, checks for errors and terminates if there are any problems. For example,
here is the error-handling wrapper for thefork function:

1 pid_t Fork(void)
2 {
3 pid_t pid;
4

5 if ((pid = fork()) < 0)
6 unix_error("Fork error");
7 return pid;
8 }

Given this wrapper, our call tofork shrinks to a single compact line:

1 pid = Fork();

We will use error-handling wrappers throughout the remainder of this book. They allow us to keep our
code examples concise, without giving you the mistaken impression that it is permissible to ignore error-
checking. Note that when we discuss system-level functions in the text, we will always refer to them by
their lower-case base names, rather than by their upper-case wrapper names.

See Appendix A for a discussion of Unix error-handling and the error-handling wrappers used throughout
the book. The wrappers are defined in a file calledcsapp.c and their prototypes are defined in a header
file calledcsapp.h. For your reference, Appendix A provides the sources for these files.

8.4 Process Control

Unix provides a number of system calls for manipulating processes from C programs. This section describes
the important functions and gives examples of how they are used.

404 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

8.4.1 Obtaining Process ID’s

Each process has a unique positive (non-zero)process ID (PID). Thegetpid function returns the PID of
the calling process. Thegetppid function returns the PID of itsparent(i.e., the process that created the
calling process).

#include <unistd.h>
#include <sys/types.h>

pid t getpid(void);
pid t getppid(void);

returns: PID of either the caller or the parent

The getpid andgetppid routines return an integer value of typepid t, which on Linux systems is
defined intypes.h as anint.

8.4.2 Creating and Terminating Processes

From a programmer’s perspective, we can think of a process as being in one of three states:

� Running.The process is either executing on the CPU, or is waiting to be executed and will eventually
be scheduled.

� Stopped.The execution of the process issuspendedand will not be scheduled. A process stops as
a result of receiving a SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal, and it remains stopped
until it receives a SIGCONT signal, at which point is becomes running again. (Asignal is a form of
software interrupt that is described in detail in Section 8.5.)

� Terminated. The process is stopped permanently. A process becomes terminated for one of three
reasons: (1) receiving a signal whose default action is to terminate the process; (2) returning from the
main routine; or (3) calling theexit function:

#include <stdlib.h>

void exit(int status);
this function does not return

The exit function terminates the process with anexit statusof status. (The other way to set the exit
status is to return an integer value from the main routine.)

A parent processcreates a new runningchild processby calling thefork function.

8.4. PROCESS CONTROL 405

#include <unistd.h>
#include <sys/types.h>

pid t fork(void);
returns: 0 to child, PID of child to parent, -1 on error

The newly created child process is almost, but not quite, identical to the parent. The child gets an identical
(but separate) copy of the parent’s user-level virtual address space, including the text, data, and bss segments,
heap, and user stack. The child also gets identical copies of any of the parent’s open file descriptors, which
means the child can read and write any files that were open in the parent when it calledfork. The most
significant difference between the parent and the newly created child is that they have different PIDs.

The fork function is interesting (and often confusing) because it is calledoncebut it returnstwice: once
in the calling process (the parent), and once in the newly created child process. In the parent,fork returns
the PID of the child. In the child,fork returns a value of 0. Since the PID of the child is always nonzero,
the return value provides an unambiguous way to tell whether the program is executing in the parent or the
child.

Figure 8.13 shows a simple example of a parent process that usesfork to create a child process. When the
fork call returns in line 8,x has a value of 1 in both the parent and child. The child increments and prints
its copy ofx in line 10. Similarly, the parent decrements and prints its copy ofx in line 15.

code/ecf/fork.c

1 #include "csapp.h"
2

3 int main()
4 {
5 pid_t pid;
6 int x = 1;
7

8 pid = Fork();
9 if (pid == 0) { /* child */

10 printf("child : x=%d\n", ++x);
11 exit(0);
12 }
13

14 /* parent */
15 printf("parent: x=%d\n", --x);
16 exit(0);
17 }

code/ecf/fork.c

Figure 8.13:Using fork to create a new process.

When we run the program on our Unix system, we get the following result:

406 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

unix> ./fork
parent: x=0
child : x=2

There are some subtle aspects to this simple example.

� Call once, return twice.The fork function is called once by the parent, but it returns twice: once
to the parent and once to the newly created child. This is fairly straightforward for programs that
create a single child. But programs with multiple instances offork can be confusing and need to be
reasoned about carefully.

� Concurrent execution.The parent and the child are separate processes that run concurrently. The
instructions in their logical control flows can be interleaved by the kernel in an arbitrary way. When
we run the program on our system, the parent process completes itsprintf statement first, followed
by the child. However, on another system the reverse might be true. In general, as programmers we
can never make assumptions about the interleaving of the instructions in different processes.

� Duplicate but separate address spaces.If we could halt both the parent and the child immediately
after thefork function returned in each process, we would see that the address space of each process
is identical. Each process has the same user stack, the same local variable values, the same heap, the
same global variable values, and the same code. Thus, in our example program, local variablex has a
value of 1 in both the parent and the child when thefork function returns in line 8. However, since
the parent and the child are separate processes, they each have their own private address spaces. Any
subsequent changes that a parent or child makes tox are private and are not reflected in the memory
of the other process. This is why the variablex has different values in the parent and child when they
call their respectiveprintf statements.

� Shared files.When we run the example program, we notice that both parent and child print their
output on the screen. The reason is that the child inherits all of the parent’s open files. When the
parent callsfork, the stdout file is open and directed to the screen. The child inherits this file and
thus its output is also directed to the screen.

When you are first learning about thefork function, it is often helpful to draw a picture of theprocess
hierarchy. The process hierarchy is a labeled directed graph, where each node is a process and each directed

arca k! b denotes thata is the parent ofb and thata createdb by executing thekth lexical instance of the
fork function in the source code.

For example, how many lines of output would the program in Figure 8.14(a) generate? Figure 8.14(b) shows
the corresponding process hierarchy. The parenta creates the childb when it executes the first (and only)
fork in the program. Botha andb call printf once, so the program prints two output lines.

Now what if we were to callfork twice, as shown in Figure 8.14(c)? As we see from the process hierarchy
in Figure 8.14(d), the parenta creates childb when it calls the firstfork function. Then botha and b
execute the secondfork function, which results in the creations ofc andd, for a total of four processes.
Each process callsprintf, so the program generates four output lines.

Continuing this line of thought, what would happen if we were to callfork three times, as in Figure 8.14(e)?
As we see from the process hierarchy in Figure 8.14(f), the firstfork creates one process, the secondfork

8.4. PROCESS CONTROL 407

1 #include "csapp.h"
2

3 int main()
4 {
5 Fork();
6 printf("hello!\n");
7 exit(0);
8 }

a b1

(a) Callsfork once. (b) Prints two output lines.

1 #include "csapp.h"
2

3 int main()
4 {
5 Fork();
6 Fork();
7 printf("hello!\n");
8 exit(0);
9 }

a b c

d

1 2

2

(c) Callsfork twice. (d) Prints four output lines.

1 #include "csapp.h"
2

3 int main()
4 {
5 Fork();
6 Fork();
7 Fork();
8 printf("hello!\n");
9 exit(0);

10 }

a b c

d

1 2

2

f3

g3

3

3

e

h

(e) Callsfork three times. (f) Prints eight output lines.

Figure 8.14:Examples of programs and their process hierarchies.

408 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

creates two processes, and the thirdfork creates four processes, for a total of eight processes. Each process
callsprintf, so the program produces eight output lines.

Practice Problem 8.1:

Consider the following program:

code/ecf/forkprob0.c

1 #include "csapp.h"
2

3 int main()
4 {
5 int x = 1;
6

7 if (Fork() == 0)
8 printf("printf1: x=%d\n", ++x);
9 printf("printf2: x=%d\n", --x);

10 exit(0);
11 }

code/ecf/forkprob0.c

A. What is the output of the child process?

B. What is the output of the parent process?

Practice Problem 8.2:

How many “hello” output lines does this program print?

code/ecf/forkprob1.c

1 #include "csapp.h"
2

3 int main()
4 {
5 int i;
6

7 for (i = 0; i < 2; i++)
8 Fork();
9 printf("hello!\n");

10 exit(0);
11 }

code/ecf/forkprob1.c

Practice Problem 8.3:

How many “hello” output lines does this program print?

code/ecf/forkprob4.c

8.4. PROCESS CONTROL 409

1 #include "csapp.h"
2

3 void doit()
4 {
5 Fork();
6 Fork();
7 printf("hello\n");
8 return;
9 }

10

11 int main()
12 {
13 doit();
14 printf("hello\n");
15 exit(0);
16 }

code/ecf/forkprob4.c

8.4.3 Reaping Child Processes

When a process terminates for any reason, the kernel does not remove it from the system immediately.
Instead, the process is kept around in a terminated state until it isreapedby its parent. When the parent
reaps the terminated child, the kernel passes the child’s exit status to the parent, and then discards the
terminated process, at which point it ceases to exist. A terminated process that has not yet been reaped is
called a zombie.

Aside: Why are terminated children called zombies?
In folklore, a zombie is a living corpse, an entity that is half-alive and half-dead. A zombie process is similar in the
sense that while it has already terminated, the kernel maintains some of its state until it can be reaped by the parent.
End Aside.

If the parent process terminates without reaping its zombie children, the kernel arranges for theinit pro-
cess to reap them. Theinit process has a PID of 1 and is created by the kernel during system initialization.
Long-running programs such as shells or servers should always reap their zombie children. Even though
zombies are not running, they still consume system memory resources.

A process waits for its children to terminate or stop by calling thewaitpid function.

#include <sys/types.h>
#include <sys/wait.h>

pid t waitpid(pid t pid, int *status, int options);
returns: PID of child if OK, 0 (if WNOHANG) or -1 on error

Thewaitpid function is complicated. By default (whenoptions = 0), waitpid suspends execution
of the calling process until a child process in itswait setterminates. If a process in the wait set has already

410 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

terminated at the time of the call, thenwaitpid returns immediately. In either case,waitpid returns the
PID of the terminated child that causedwaitpid to return, and the terminated child is removed from the
system.

Determining the Members of the Wait Set

The members of the wait set are determined by thepid argument:

� If pid > 0, then the wait set is the singleton child process whose process ID is equal topid.

� If pid = -1, then the wait set consists of all of the parent’s child processes.

Aside: Waiting on sets of processes.
The waitpid function also supports other kinds of wait sets, involving Unix process groups, that we will not
discuss.End Aside.

Modifying the Default Behavior

The default behavior can be modified by settingoptions to various combinations of the WNOHANG and
WUNTRACED constants:

� WNOHANG: Return immediately (with a return value of 0) if the none of the child processes in the
wait set has terminated yet.

� WUNTRACED: Suspend execution of the calling process until a process in the wait set becomes
terminated or stopped. Return the PID of the terminated or stopped child that caused the return.

� WNOHANG| WUNTRACED : Suspend execution of the calling process until a child in the wait set
terminates or stops, and then return the PID of the stopped or terminated child that caused the return.
Also, return immediately (with a return value of 0) if none of the processes in the wait set is terminated
or stopped.

Checking the Exit Status of a Reaped Child

If the status argument is non-NULL, thenwaitpid encodes status information about the child that
caused the return in thestatus argument. Thewait.h include file defines several macros for interpreting
thestatus argument:

� WIFEXITED(status): Returns true if the child terminated normally, via a call toexit or a return.

� WEXITSTATUS(status): Returns the exit status of a normally terminated child. This status is only
defined if WIFEXITED returned true.

� WIFSIGNALED(status): Returns true if the child process terminated because of a signal that was not
caught. (Signals are explained in Section 8.5.)

8.4. PROCESS CONTROL 411

� WTERMSIG(status): Returns the number of the signal that caused the child process to terminate.
This status is only defined if WIFSIGNALED(status) returned true.

� WIFSTOPPED(status): Returns true if the child that caused the return is currently stopped.

� WSTOPSIG(status): Returns the number of the signal that caused the child to stop. This status is only
defined if WIFSTOPPED(status) returned true.

Error Conditions

If the calling process has no children, thenwaitpid returns�1 and setserrno to ECHILD. If thewait-
pid function was interrupted by a signal, then it returns�1 and setserrno to EINTR.

Aside: Constants associated with Unix functions.
Constants such as WNOHANG and WUNTRACED are defined by system header files. For example, WNOHANG
and WUNTRACED are defined (indirectly) by thewait.h header file:

/* Bits in the third argument to ‘waitpid’. */
#define WNOHANG 1 /* Don’t block waiting. */
#define WUNTRACED 2 /* Report status of stopped children. */

In order to use these constants, you must include thewait.h header file in your code:

#include <sys/wait.h>

Themanpage for each Unix function lists the header files to include whenever you use that function in your code.
Also, in order to check return codes such as ECHILD and EINTR, you must includeerrno.h . To simplify our
code examples, we include a single header file calledcsapp.h that includes the header files for all of the functions
used in the book. Thecsapp.h header file is listed in Appendix A.End Aside.

Examples

Figure 8.15 shows a program that createsN children, useswaitpid to wait for them to terminate, and then
checks the exit status of each terminated child. When we run the program on our Unix system, it produces
the following output:

unix> ./waitpid1
child 22966 terminated normally with exit status=100
child 22967 terminated normally with exit status=101

Notice that the program reaps the children in no particular order. Figure 8.16 shows how we might use
waitpid to reap the children from Figure 8.15 in the same order that they were created by the parent.

Practice Problem 8.4:

Consider the following program:

code/ecf/waitprob1.c

412 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

code/ecf/waitpid1.c

1 #include "csapp.h"
2 #define N 2
3

4 int main()
5 {
6 int status, i;
7 pid_t pid;
8

9 for (i = 0; i < N; i++)
10 if ((pid = Fork()) == 0) /* child */
11 exit(100+i);
12

13 /* parent waits for all of its children to terminate */
14 while ((pid = waitpid(-1, &status, 0)) > 0) {
15 if (WIFEXITED(status))
16 printf("child %d terminated normally with exit status=%d\n",
17 pid, WEXITSTATUS(status));
18 else
19 printf("child %d terminated abnormally\n", pid);
20 }
21 if (errno != ECHILD)
22 unix_error("waitpid error");
23

24 exit(0);
25 }

code/ecf/waitpid1.c

Figure 8.15:Using thewaitpid function to reap zombie children.

8.4. PROCESS CONTROL 413

code/ecf/waitpid2.c

1 #include "csapp.h"
2 #define N 2
3

4 int main()
5 {
6 int status, i;
7 pid_t pid[N+1], retpid;
8

9 for (i = 0; i < N; i++)
10 if ((pid[i] = Fork()) == 0) /* child */
11 exit(100+i);
12

13 /* parent reaps N children in order */
14 i = 0;
15 while ((retpid = waitpid(pid[i++], &status, 0)) > 0) {
16 if (WIFEXITED(status))
17 printf("child %d terminated normally with exit status=%d\n",
18 retpid, WEXITSTATUS(status));
19 else
20 printf("child %d terminated abnormally\n", retpid);
21 }
22

23 /* The only normal termination is if there are no more children */
24 if (errno != ECHILD)
25 unix_error("waitpid error");
26

27 exit(0);
28 }

code/ecf/waitpid2.c

Figure 8.16:Usingwaitpid to reap zombie children in the order they were created.

414 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

1 #include "csapp.h"
2

3 int main()
4 {
5 int status;
6 pid_t pid;
7

8 printf("Hello\n");
9 pid = Fork();

10 printf("%d\n", !pid);
11 if (pid != 0) {
12 if (waitpid(-1, &status, 0) > 0) {
13 if (WIFEXITED(status) != 0)
14 printf("%d\n", WEXITSTATUS(status));
15 }
16 }
17 printf("Bye\n");
18 exit(2);
19 }

code/ecf/waitprob1.c

A. How many output lines does this program generate?

B. What is one possible ordering of these output lines?

8.4.4 Putting Processes to Sleep

Thesleep function suspends a process for some period of time.

#include <unistd.h>

unsigned int sleep(unsigned int secs);
returns: seconds left to sleep

Sleep returns zero if the requested amount of time has elapsed, and the number of seconds still left to sleep
otherwise. The latter case is possible if thesleep function returns prematurely because it was interrupted
by asignal. We will discuss signals in detail in Section 8.5.

Another function that we will find useful is thepause function, which puts the calling function to sleep
until a signal is received by the process.

#include <unistd.h>

int pause(void);
always returns -1

8.4. PROCESS CONTROL 415

Practice Problem 8.5:

Write a wrapper function forsleep , calledsnooze , with the following interface:

unsigned int snooze(unsigned int secs);

Thesnooze function behaves exactly as thesleep function, except that it prints a message describing
how long the process actually slept. For example,

Slept for 4 of 5 secs.

8.4.5 Loading and Running Programs

Theexecve function loads and runs a new program in the context of the current process.

#include <unistd.h>

int execve(char *filename, char *argv[], char *envp);
does not return if OK, returns -1 on error

The execve function loads and runs the executable object filefilename with the argument listargv
and the environment variable listenvp. Execve returns to the calling program only if there is an error
such as not being able to findfilename. So unlike fork, which is called once but returns twice,execve
is called once and never returns.

The argument list is represented by the data structure shown in Figure 8.17. Theargv variable points to

argv

argv[argc-1]

...

argv[0]

argv[1]

NULL

"ls"

"-lt"

"/usr/include"

argv[]

Figure 8.17:Organization of an argument list.

a null-terminated array of pointers, each of which points to an argument string. By conventionargv[0]
is the name of the executable object file. The list of environment variables is represented by a similar
data structure, shown in Figure 8.18. Theenvp variable points to a null-terminated array of pointers to
environment variable strings, each of which is a name-value pair of the form ”NAME=VALUE”.

After execve loadsfilename, it calls the startup code described in Section 7.9. The startup code sets
up the stack and passes control to the main routine of the new program, which has a prototype of the form

int main(int argc, char **argv, char **envp);

or equivalently

416 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

envp

envp[n-1]

...

envp[0]

envp[1]

NULL

"PWD=/usr/droh"

"PRINTER=iron"

"USER=droh"

envp[]

Figure 8.18:Organization of an environment variable list.

int main(int argc, char *argv[], char *envp[]);

Whenmain begins executing on a Linux system, the user stack has the organization shown in Figure 8.19.
Let’s work our way from the bottom of the stack (the highest address) to the top (the lowest address). First

(dynamic linker variables)

null-terminated
environment variable strings

null-terminated
command-line arg strings

(unused)
envp[n] == NULL

envp[n-1]

...
envp[0]

argv[argc] = NULL

argv[argc-1]

...
argv[0]

argv

argc

stack frame for
main

0xbfffffff

environ

0xbffffa7c

bottom of stack

top of stack

envp

Figure 8.19:Typical organization of the user stack when a new program starts.

are the argument and environment strings, which are stored contiguously on the stack, one after the other
without any gaps. These are followed further up the stack by a null-terminated array of pointers, each of
which points to an environment variable string on the stack. The global variableenviron points to the
first of these pointers,envp[0]. The environment array is followed immediately by the null-terminated
argv[] array, with each element pointing to an argument string on the stack. At the top of the stack are the
three arguments to themain routine: (1)envp, which points theenvp[] array, (2)argv, which points
to theargv[] array, and (3)argc, which gives the number of non-null pointers in theargv[] array.

Unix provides several functions for manipulating the environment array.

8.4. PROCESS CONTROL 417

#include <stdlib.h>

char *getenv(const char *name);
returns: ptr toname if exists, NULL if no match.

Thegetenv function searches the environment array for a string “name=value”. If found, it returns a
pointer tovalue, otherwise it returns NULL.

#include <stdlib.h>

int setenv(const char *name, const char *newvalue, int overwrite);
returns: 0 on success, -1 on error.

void unsetenv(const char *name);
returns: nothing.

If the environment array contains a string of the form “name=oldvalue” then unsetenv deletes it and
setenv replacesoldvalue with newvalue, but only if overwrite is nonzero. Ifname does not
exist, thensetenv adds “name=newvalue” to the array.

Aside: Setting environment variables in Solaris systems
Solaris provides theputenv function in place of thesetenv function. It provides no counterpart to theun-
setenv function.End Aside.

Aside: Programs vs. processes.
This is a good place to stop and make sure you understand the distinction between a program and a process. A
program is a collection of code and data; programs can exist as object modules on disk or as segments in an address
space. A process is a specific instance of a program in execution; a program always runs in the context of some
process. Understanding this distinction is important if you want to understand thefork andexecve functions.
The fork function runs the same program in a new child process that is a duplicate of the parent. Theexecve
function loads and runs a new program in the context of the current process. While it overwrites the address space
of the current process, it doesnot create a new process. The new program still has the same PID, and it inherits all
of the file descriptors that were open at the time of the call to theexecve function.End Aside.

Practice Problem 8.6:

Write a program, calledmyecho , that prints its command line arguments and environment variables.
For example:

unix> ./myecho arg1 arg2
Command line arguments:

argv[0]: myecho
argv[1]: arg1
argv[2]: arg2

Environment variables:
envp[0]: PWD=/usr0/droh/ics/code/ecf
envp[1]: TERM=emacs

418 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

...

envp[25]: USER=droh
envp[26]: SHELL=/usr/local/bin/tcsh
envp[27]: HOME=/usr0/droh

8.4.6 Usingfork and execve to Run Programs

Programs such as Unix shells and Web servers (Chapter 12) make heavy use of thefork andexecve
functions. A shell is an interactive application-level program that runs other programs on behalf of the
user. The original shell was thesh program, which was followed by variants such ascsh, tcsh, ksh,
andbash. A shell performs a sequence ofread/evaluatesteps, and then terminates. The read step reads a
command line from the user. The evaluate step parses the command line and runs programs on behalf of the
user.

Figure 8.20 shows the main routine of a simple shell. The shell print a command-line prompt, waits for the

code/ecf/shellex.c

1 #include "csapp.h"
2 #define MAXARGS 128
3

4 /* function prototypes */
5 void eval(char*cmdline);
6 int parseline(const char *cmdline, char **argv);
7 int builtin_command(char **argv);
8

9 int main()
10 {
11 char cmdline[MAXLINE]; /* command line */
12

13 while (1) {
14 /* read */
15 printf("> ");
16 Fgets(cmdline, MAXLINE, stdin);
17 if (feof(stdin))
18 exit(0);
19

20 /* evaluate */
21 eval(cmdline);
22 }
23 }

code/ecf/shellex.c

Figure 8.20:The main routine for a simple shell program.

user to type a command line onstdin, and then evaluates the command line.

8.5. SIGNALS 419

Figure 8.21 shows the code that evaluates the command line. Its first task is to call theparseline function
(Figure 8.22), which parses the space-separated command-line arguments and builds theargv vector that
will eventually be passed toexecve. The first argument is assumed to be either the name of a built-in
shell command that is interpreted immediately, or an executable object file that will be loaded and run in the
context of a new child process.

If the last argument is a “&” character, thenparseline returns 1, indicating that the program should be
executed in thebackground(the shell does not wait for it to complete). Otherwise it returns 0, indicating
that the program should be run in theforeground(the shell waits for it to complete).

After parsing the command line, theeval function calls thebuiltin commandfunction, which checks
whether the first command line argument is a built-in shell command. If so, it interprets the command
immediately and returns 1. Otherwise, it returns 0. Our simple shell has just one built-in command, the
quit command, which terminates the shell. Real shells have numerous commands, such aspwd, jobs,
andfg.

If builtin commandreturns 0, then the shell creates a child process and executes the requested program
inside the child. If the user has asked for the program to run in the background, then the shell returns to the
top of the loop and waits for the next command line. Otherwise the shell uses thewaitpid function to
wait for the job to terminate. When the job terminates, the shell goes on to the next iteration.

Notice that this simple shell is flawed because it does not reap any of its background children. Correcting
this flaw requires the use of signals, which we describe in the next section.

8.5 Signals

To this point in our study of exceptional control flow, we have seen how hardware and software cooperate
to provide the fundamental low-level exception mechanism. We have also seen how the operating system
uses exceptions to support a higher-level form of exceptional control flow known as the context switch. In
this section we will study a higher-level software form of exception, known as a Unixsignal, that allows
processes to interrupt other processes.

A signal is a message that notifies a process that an event of some type has occurred in the system. For
example, Figure 8.23 shows the 30 different types of signals that are supported on Linux systems.

Each signal type corresponds to some kind of system event. Low-level hardware exceptions are processed
by the kernel’s exception handlers and would not normally be visible to user processes. Signals provide
a mechanism for exposing the occurrence of such exceptions to user processes. For example, if a process
attempts to divide by zero, then the kernel sends it a SIGFPE signal (number 8). If a process executes an
illegal instruction, the kernel sends it a SIGILL signal (number 4). If a process makes an illegal memory
reference, the kernel sends it a SIGSEGV signal (number 11). Other signals correspond to higher-level
software events in the kernel or in other user processes. For example, if you type actrl-c (i.e., press
thectrl key and thec key at the same time) while a process is running in the foreground, then the kernel
sends a SIGINT (number 2) to the foreground process. A process can forcibly terminate another process
by sending it a SIGKILL signal (number 9). When a child process terminates or stops, the kernel sends a
SIGCHLD signal (number 17) to the parent.

420 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

code/ecf/shellex.c

1 /* eval - evaluate a command line */
2 void eval(char *cmdline)
3 {
4 char *argv[MAXARGS]; /* argv for execve() */
5 int bg; /* should the job run in bg or fg? */
6 pid_t pid; /* process id */
7

8 bg = parseline(cmdline, argv);
9 if (argv[0] == NULL)

10 return; /* ignore empty lines */
11

12 if (!builtin_command(argv)) {
13 if ((pid = Fork()) == 0) { /* child runs user job */
14 if (execve(argv[0], argv, environ) < 0) {
15 printf("%s: Command not found.\n", argv[0]);
16 exit(0);
17 }
18 }
19

20 /* parent waits for foreground job to terminate */
21 if (!bg) {
22 int status;
23 if (waitpid(pid, &status, 0) < 0)
24 unix_error("waitfg: waitpid error");
25 }
26 else
27 printf("%d %s", pid, cmdline);
28 }
29 return;
30 }
31

32 /* if first arg is a builtin command, run it and return true */
33 int builtin_command(char **argv)
34 {
35 if (!strcmp(argv[0], "quit")) /* quit command */
36 exit(0);
37 if (!strcmp(argv[0], "&")) /* ignore singleton & */
38 return 1;
39 return 0; /* not a builtin command */
40 }

code/ecf/shellex.c

Figure 8.21:eval: evaluates the shell command line.

8.5. SIGNALS 421

code/ecf/shellex.c

1 /* parseline - parse the command line and build the argv array */
2 int parseline(const char *cmdline, char **argv)
3 {
4 char array[MAXLINE]; /* holds local copy of command line */
5 char *buf = array; /* ptr that traverses command line */
6 char *delim; /* points to first space delimiter */
7 int argc; /* number of args */
8 int bg; /* background job? */
9

10 strcpy(buf, cmdline);
11 buf[strlen(buf)-1] = ’ ’; /* replace trailing ’\n’ with space */
12 while (*buf && (*buf == ’ ’)) /* ignore leading spaces */
13 buf++;
14

15 /* build the argv list */
16 argc = 0;
17 while ((delim = strchr(buf, ’ ’))) {
18 argv[argc++] = buf;
19 *delim = ’\0’;
20 buf = delim + 1;
21 while (*buf && (*buf == ’ ’)) /* ignore spaces */
22 buf++;
23 }
24 argv[argc] = NULL;
25

26 if (argc == 0) /* ignore blank line */
27 return 1;
28

29 /* should the job run in the background? */
30 if ((bg = (*argv[argc-1] == ’&’)) != 0)
31 argv[--argc] = NULL;
32

33 return bg;
34 }

code/ecf/shellex.c

Figure 8.22:parseline: parses a line of input for the shell.

422 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

Number Name Default action Corresponding event

1 SIGHUP terminate Terminal line hangup
2 SIGINT terminate Interrupt from keyboard
3 SIGQUIT terminate Quit from keyboard
4 SIGILL terminate Illegal instruction
5 SIGTRAP terminate and dump core Trace trap
6 SIGABRT terminate and dump core Abort signal fromabort function
7 SIGBUS terminate Bus error
8 SIGFPE terminate and dump core Floating point exception
9 SIGKILL terminate* Kill program

10 SIGUSR1 terminate User-defined signal 1
11 SIGSEGV terminate and dump core Invalid memory reference (seg fault)
12 SIGUSR2 terminate User-defined signal 2
13 SIGPIPE terminate Wrote to a pipe with no reader
14 SIGALRM terminate Timer signal fromalarm function
15 SIGTERM terminate Software termination signal
16 SIGSTKFLT terminate Stack fault on coprocessor
17 SIGCHLD ignore A child process has stopped or terminated
18 SIGCONT ignore Continue process if stopped
19 SIGSTOP stop until next SIGCONT* Stop signal not from terminal
20 SIGTSTP stop until next SIGCONT Stop signal from terminal
21 SIGTTIN stop until next SIGCONT Background process read from terminal
22 SIGTTOU stop until next SIGCONT Background process wrote to terminal
23 SIGURG ignore Urgent condition on socket
24 SIGXCPU terminate CPU time limit exceeded
25 SIGXFSZ terminate File size limit exceeded
26 SIGVTALRM terminate Virtual timer expired
27 SIGPROF terminate Profiling timer expired
28 SIGWINCH ignore Window size changed
29 SIGIO terminate I/O now possible on a descriptor.
30 SIGPWR terminate Power failure

Figure 8.23:Linux signals. Other Unix versions are similar. Notes: (1) *This signal can neither be caught
nor ignored. (2) Years ago, main memory was implemented with a technology known ascore memory.
“Dumping core” is an historical term that means writing an image of the code and data memory segments
to disk.

8.5. SIGNALS 423

8.5.1 Signal Terminology

The transfer of a signal to a destination process occurs in two distinct steps:

� Sending a signal.The kernelsends(delivers) a signal to a destination process by updating some state
in the context of the destination process. The signal is delivered for one of two reasons: (1) the kernel
has detected a system event such as a divide-by-zero error or the termination of a child process; (2) A
process has invoked thekill function (discussed in the next section) to explicitly request the kernel
to send a signal to the destination process. A process can send a signal to itself.

� Receiving a signal.A destination processreceivesa signal when it is forced by the kernel to react in
some way to the delivery of the signal. The process can either ignore the signal, terminate, orcatch
the signal by executing a user-level function called asignal handler.

A signal that has been sent but not yet received is called apending signal. At any point in time, there
can be at most one pending signal of a particular type. If a process has a pending signal of typek, then
any subsequent signals of typek sent to that process arenot queued; they are simply discarded. A process
can selectivelyblock the receipt of certain signals. When a signal is blocked, it can be delivered, but the
resulting pending signal will not be received until the process unblocks the signal.

A pending signal is received at most once. For each process, the kernel maintains the set of pending signals
in thepending bit vector, and the set of blocked signals in theblocked bit vector. The kernel sets bit
k in pending whenever a signal of typek is delivered and clears bitk in pending whenever a signal of
typek is received.

8.5.2 Sending Signals

Unix systems provide a number of mechanisms for sending signals to processes. All of the mechanisms rely
on the notion of aprocess group.

Process Groups

Every process belongs to exactly oneprocess group, which is identified by a positive integerprocess group
ID. Thegetpgrp function returns the process group ID of the current process.

#include <unistd.h>

pid t getpgrp(void);
returns: process group ID of calling process

By default, a child process belongs to the same process group as its parent. A process can change the process
group of itself or another process by using thesetpgid function:

424 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

#include <unistd.h>

pid t setpgid(pid t pid, pid t pgid);
returns: 0 on success, -1 on error.

Thesetpgid function changes the process group of processpid to pgid. If pid is zero, the PID of the
current process is used. Ifpgid is zero, the PID of the process specified bypid is used for the process
group ID. For example, if process 15213 is the calling process, then

setpgid(0, 0);

creates a new process group whose process group ID is 15213, and adds process 15213 to this new group.

Sending Signals With thekill Program

The/bin/kill program sends an arbitrary signal to another process. For example

unix> kill -9 15213

sends signal 9 (SIGKILL) to process 15213. A negative PID causes the signal to be sent to every process in
process group PID. For example,

unix> kill -9 -15213

sends a SIGKILL signal to every process in process group 15213.

Sending Signals From the Keyboard

Unix shells use the abstraction of ajob to represent the processes that are created as a result of evaluating a
single command line. At any point in time, there is at most one foreground job and zero or more background
jobs. For example, typing

unix> ls | sort

creates a foreground job consisting of two processes connected by a Unix pipe: one running thels program,
the other running thesort program.

The shell creates a separate process group for each job. Typically, the process group ID is taken from one
of the parent processes in the job. For example, Figure 8.24 shows a shell with one foreground job and two
background jobs. The parent process in the foreground job has a PID of 20 and a process group ID of 20.
The parent process has created two children, each of which are also members of process group 20.

Typingctrl-c at the keyboard causes a SIGINT signal to be sent to the shell. The shell catches the signal
(see Section 8.5.3) and then sends a SIGINT to every process in the foreground process group. In the default
case, the result is to terminate the foreground job. Similarly, typingcrtl-z sends a SIGTSTP signal to the
shell, which catches it and sends a SIGTSTP signal to every process in the foreground process group. In the
default case, the result is to stop (suspend) the foreground job.

8.5. SIGNALS 425

fore-
ground

job

back-
ground
job #1

back-
ground
job #2

shell

child child

pid=10
pgid=10

foreground
process group 20

background
process group 32

backgroud
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

Figure 8.24:Foreground and background process groups.

Sending Signals With thekill Function

Processes send signals to other processes (including themselves) by calling thekill function.

#include <sys/types.h>
#include <signal.h>

int kill(pid t pid, int sig);
returns: 0 if OK, -1 on error

If pid is greater than zero, then thekill function sends signal numbersig to processpid. If pid is less
than zero, thankill sends signalsig to every process in process groupabs(pid). Figure 8.25 shows
an example of a parent that uses thekill function to send a SIGKILL signal to its child.

Sending Signals With thealarm Function

A process can send SIGALRM signals to itself by calling thealarm function.

#include <unistd.h>

unsigned int alarm(unsigned int secs);
returns: remaining secs of previous alarm, or 0 if no previous alarm

Thealarm function arranges for the kernel to send a SIGALRM signal to the calling process insecs sec-
onds. Ifsecs is zero, then no new alarm is scheduled. In any event, the call toalarm cancels any pending
alarms, and returns the number of seconds remaining until any pending alarm was due to be delivered (had

426 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

code/ecf/kill.c

1 #include "csapp.h"
2

3 int main()
4 {
5 pid_t pid;
6

7 /* child sleeps until SIGKILL signal received, then dies */
8 if ((pid = Fork()) == 0) {
9 Pause(); /* wait for a signal to arrive */

10 printf("control should never reach here!\n");
11 exit(0);
12 }
13

14 /* parent sends a SIGKILL signal to a child */
15 Kill(pid, SIGKILL);
16 exit(0);
17 }

code/ecf/kill.c

Figure 8.25:Using thekill function to send a signal to a child.

not this call toalarm cancelled it), or 0 if there were no pending alarms.

Figure 8.26 shows a program calledalarm that arranges to be interrupted by a SIGALRM signal every
second for five seconds. When the sixth SIGALRM is delivered it terminates. When we run the program in
Figure 8.26, we get the following output: a “BEEP” every second for five seconds, followed by a “BOOM”
when the program terminates.

unix> ./alarm
BEEP
BEEP
BEEP
BEEP
BEEP
BOOM!

Notice that the program in Figure 8.26 uses thesignal function to install a signal handlerfunction
(handler) that is called asynchronously, interrupting the infinitewhile loop in main, whenever the
process receives a SIGALRM signal. When thehandler function returns, control passes back tomain,
which picks up where it was interrupted by the arrival of the signal. Installing and using signal handlers can
be quite subtle, and is the topic of the next three sections.

8.5.3 Receiving Signals

When the kernel is returning from an exception handler and is ready to pass control to processp, it checks
the set of unblocked pending signals (pending & ˜blocked). If this set is empty (the usual case), then

8.5. SIGNALS 427

code/ecf/alarm.c

1 #include "csapp.h"
2

3 void handler(int sig)
4 {
5 static int beeps = 0;
6

7 printf("BEEP\n");
8 if (++beeps < 5)
9 Alarm(1); /* next SIGALRM will be delivered in 1s */

10 else {
11 printf("BOOM!\n");
12 exit(0);
13 }
14 }
15

16 int main()
17 {
18 Signal(SIGALRM, handler); /* install SIGALRM handler */
19 Alarm(1); /* next SIGALRM will be delivered in 1s */
20

21 while (1) {
22 ; /* signal handler returns control here each time */
23 }
24 exit(0);
25 }

code/ecf/alarm.c

Figure 8.26:Using thealarm function to schedule periodic events.

428 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

the kernel passes control to the next instruction (Inext) in the logical control flow ofp.

However, if the set is nonempty, then the kernel chooses some signalk in the set (typically the smallestk)
and forcesp to receivesignalk. The receipt of the signal triggers someaction by the process. Once the
process completes the action, then control passes back to the next instruction (Inext) in the logical control
flow of p. Each signal type has a predefineddefault action, which is one of the following:

� The process terminates.

� The process terminates and dumps core.

� The process stops until restarted by a SIGCONT signal.

� The process ignores the signal.

Figure 8.23 shows the default actions associated with each type of signal. For example, the default action
for the receipt of a SIGKILL is to terminate the receiving process. On the other hand, the default action for
the receipt of a SIGCHLD is to ignore the signal. A process can modify the default action associated with
a signal by using thesignal function. The only exceptions are SIGSTOP and SIGKILL, whose default
actions cannot be changed.

#include <signal.h>

typedef void handler t(int)

handler t *signal(int signum, handler t *handler)
returns: ptr to previous handler if OK, SIGERR on error (does not set errno)

Thesignal function can change the action associated with a signalsignum in one of three ways:

� If handler is SIG IGN, then signals of typesignum are ignored.

� If handler is SIG DFL, then the action for signals of typesignum reverts to the default action.

� Otherwise,handler is the address of a user-defined function, called asignal handler, that will
be called whenever the process receives a signal of typesignum. Changing the default action by
passing the address of a handler to thesignal function is known asinstalling the handler. The
invocation of the handler is calledcatching the signal. The execution of the handler is referred to as
handling the signal.

When a process catches a signal of typek, the handler installed for signalk is invoked with a single integer
argument set tok. This argument allows the same handler function to catch different types of signals.

When the handler executes itsreturn statement, control (usually) passes back to the instruction in the
control flow where the process was interrupted by the receipt of the signal. We say “usually” because in
some systems, interrupted system calls return immediately with an error. More on this in the next section.

8.5. SIGNALS 429

Figure 8.27 shows a program that catches the SIGINT signal sent by the shell whenever the user types
ctrl-c at the keyboard. The default action for SIGINT is to immediately terminate the process. In this
example, we modify the default behavior to catch the signal, print a message, and then terminate the process.

code/ecf/sigint1.c

1 #include "csapp.h"
2

3 void handler(int sig) /* SIGINT handler */
4 {
5 printf("Caught SIGINT\n");
6 exit(0);
7 }
8

9 int main()
10 {
11 /* Install the SIGINT handler */
12 if (signal(SIGINT, handler) == SIG_ERR)
13 unix_error("signal error");
14

15 pause(); /* wait for the receipt of a signal */
16

17 exit(0);
18 }

code/ecf/sigint1.c

Figure 8.27:A program that catches a SIGINT signal.

The handler function is defined in lines 3–7. The main routine installs the handler in lines 12–13, and then
goes to sleep until a signal is received (line 15). When the SIGINT signal is received, the handler runs,
prints a message (line 5) and then terminates the process (line 6).

Practice Problem 8.7:

Write a program, calledsnooze , that takes a single command line argument, calls thesnooze function
from Problem 8.5 with this argument, and then terminates. Write your program so that the user can
interrupt the snooze function by typingctrl-c at the keyboard. For example:

unix> ./snooze 5
Slept for 3 of 5 secs. User hits crtl-c after 3 seconds

unix>

8.5.4 Signal Handling Issues

Signal handling is straightforward for programs that catch a single signal and then terminate. However,
subtle issues arise when a program catches multiple signals.

430 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

� Pending signals can be blocked.Unix signal handlers typically block pending signals of the type
currently being processed by the handler. For example, suppose a process has caught a SIGINT
signal and is currently running its SIGINT handler. If another SIGINT signal is sent to the process,
then the SIGINT will become pending, but will not be received until after the handler returns.

� Pending signals are not queued.There can be at most one pending signal of any particular type.
Thus, if two signals of typek are sent to a destination process while signalk is blocked because
the destination process is currently executing a handler for signalk, then the second signal is simply
discarded; it is not queued. The key idea is that the existence of a pending signal merely indicates that
at leastone signal has arrived.

� System calls can be interrupted.System calls such asread, wait, and accept that can potentially
block the process for a long period of time are calledslow system calls. On some systems, slow
system calls that are interrupted when a handler catches a signal do not resume when the signal
handler returns, but instead return immediately to the user with an error condition anderrno set to
EINTR.

Let’s look more closely at the subtleties of signal handling, using a simple application that is similar in nature
to real programs such as shells and Web servers. The basic structure is that a parent process creates some
children that run independently for a while and then terminate. The parent must reap the children to avoid
leaving zombies in the system. But we also want the parent to be free to do other work while the children
are running. So we decide to reap the children with a SIGCHLD handler, instead of explicitly waiting for
the children the terminate. (Recall that the kernel sends a SIGCHLD signal to the parent whenever one of
its children terminates or stops.)

Figure 8.28 shows our first attempt. The parent installs a SIGCHLD handler, and then creates three children,
each of which runs for 1 second and then terminates. In the meantime, the parent waits for a line of
input from the terminal and then processes it. This processing is modeled by an infinite loop. When each
child terminates, the kernel notifies the parent by sending it a SIGCHLD signal. The parent catches the
SIGCHLD, reaps one child, does some additional cleanup work (modeled by thesleep(2) statement),
and then returns.

The signal1 program in Figure 8.28 seems fairly straightforward. But when we run it on our Linux
system, we get the following output:

linux> ./signal1
Hello from child 10320
Hello from child 10321
Hello from child 10322
Handler reaped child 10320
Handler reaped child 10322

<cr>
Parent processing input

From the output, we see that even though three SIGCHLD signals were sent to the parent, only two of these
signals were received, and thus the parent only reaped two children. If we suspend the parent process, we
see that indeed child process 10321 was never reaped and remains a zombie:

8.5. SIGNALS 431

code/ecf/signal1.c

1 #include "csapp.h"
2

3 void handler1(int sig)
4 {
5 pid_t pid;
6

7 if ((pid = waitpid(-1, NULL, 0)) < 0)
8 unix_error("waitpid error");
9 printf("Handler reaped child %d\n", (int)pid);

10 Sleep(2);
11 return;
12 }
13

14 int main()
15 {
16 int i, n;
17 char buf[MAXBUF];
18

19 if (signal(SIGCHLD, handler1) == SIG_ERR)
20 unix_error("signal error");
21

22 /* parent creates children */
23 for (i = 0; i < 3; i++) {
24 if (Fork() == 0) {
25 printf("Hello from child %d\n", (int)getpid());
26 Sleep(1);
27 exit(0);
28 }
29 }
30

31 /* parent waits for terminal input and then processes it */
32 if ((n = read(STDIN_FILENO, buf, sizeof(buf))) < 0)
33 unix_error("read");
34

35 printf("Parent processing input\n");
36 while (1)
37 ;
38

39 exit(0);
40 }

code/ecf/signal1.c

Figure 8.28:signal1: This program is flawed because it fails to deal with the facts that signals can block,
signals are not queued, and system calls can be interrupted.

432 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

<ctrl-z>
Suspended
linux> ps
PID TTY STAT TIME COMMAND
...
10319 p5 T 0:03 signal1
10321 p5 Z 0:00 (signal1 <zombie>)
10323 p5 R 0:00 ps

What went wrong? The problem is that our code failed to account for the facts that signals can block and
that signals are not queued. Here’s what happened:

The first signal is received and caught by the parent. While the handler is still processing the first signal, the
second signal is delivered and added to the set of pending signals. However, since SIGCHLD signals are
blocked by the SIGCHLD handler, the second signal is not received. Shortly thereafter, while the handler
is still processing the first signal, the third signal arrives. Since there is already a pending SIGCHLD, this
third SIGCHLD signal is discarded. Sometime later, after the handler has returned, the kernel notices that
there is a pending SIGCHLD signal and forces the parent to receive the signal. The parent catches the signal
and executes the handler a second time. After the handler finishes processing the second signal, there are
no more pending SIGCHLD signals, and there never will be, because all knowledge of the third SIGCHLD
has been lost. The crucial lesson is that signals cannot be used to count the occurrence of events in other
processes.

To fix the problem, we must recall that the existence of a pending signal only implies that at least one signal
has been delivered since the last time the process received a signal of that type. So we must modify the
SIGCHLD handler to reap as many zombie children as possible each time it is invoked. Figure 8.29 shows
the modified SIGCHLD handler. When we runsignal2 on our Linux system, it now correctly reaps all
of the zombie children:

linux> ./signal2
Hello from child 10378
Hello from child 10379
Hello from child 10380
Handler reaped child 10379
Handler reaped child 10378
Handler reaped child 10380

<cr>
Parent processing input

However, we are not done yet. If we run thesignal2 program on a Solaris system, it correctly reaps all of
the zombie children. However, now the blockedread system call returns prematurely with an error, before
we are able to type in our input on the keyboard:

solaris> ./signal2
Hello from child 18906
Hello from child 18907
Hello from child 18908
Handler reaped child 18906
Handler reaped child 18908

8.5. SIGNALS 433

code/ecf/signal2.c

1 #include "csapp.h"
2

3 void handler2(int sig)
4 {
5 pid_t pid;
6

7 while ((pid = waitpid(-1, NULL, 0)) > 0)
8 printf("Handler reaped child %d\n", (int)pid);
9 if (errno != ECHILD)

10 unix_error("waitpid error");
11 Sleep(2);
12 return;
13 }
14

15 int main()
16 {
17 int i, n;
18 char buf[MAXBUF];
19

20 if (signal(SIGCHLD, handler2) == SIG_ERR)
21 unix_error("signal error");
22

23 /* parent creates children */
24 for (i = 0; i < 3; i++) {
25 if (Fork() == 0) {
26 printf("Hello from child %d\n", (int)getpid());
27 Sleep(1);
28 exit(0);
29 }
30 }
31

32 /* parent waits for terminal input and then processes it */
33 if ((n = read(STDIN_FILENO, buf, sizeof(buf))) < 0)
34 unix_error("read error");
35

36 printf("Parent processing input\n");
37 while (1)
38 ;
39

40 exit(0);
41 }

code/ecf/signal2.c

Figure 8.29: signal2: An improved version of Figure 8.28 that correctly accounts for the facts that
signals can block and are not queued. However it does not allow for the possibility that system calls can be
interrupted.

434 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

Handler reaped child 18907
read: Interrupted system call

What went wrong? The problem arises because on this particular Solaris system, slow system calls such
asread are not restarted automatically after they are interrupted by the delivery of a signal. Instead they
return prematurely to the calling application with an error condition, unlike Linux systems, which restart
interrupted system calls automatically.

In order to write portable signal handling code, we must allow for the possibility that system calls will
return prematurely and then restart them manually when this occurs. Figure 8.30 shows the modification to
signal1 that manually restarts abortedread calls. The EINTR return code inerrno indicates that the
read system call returned prematurely after it was interrupted.

When we run our newsignal3 program on a Solaris system, the program runs correctly:

solaris> ./signal3
Hello from child 19571
Hello from child 19572
Hello from child 19573
Handler reaped child 19571
Handler reaped child 19572
Handler reaped child 19573
<cr>
Parent processing input

8.5.5 Portable Signal Handling

The differences in signal handling semantics from system to system — such as whether or not an interrupted
slow system call is restarted or aborted prematurely — is an ugly aspect of Unix signal handling. To deal
with this problem, the Posix standard defines thesigaction function, which allows users on Posix-
compliant systems such as Linux and Solaris to clearly specify the signal-handling semantics they want.

#include <signal.h>

int sigaction(int signum, struct sigaction *act, struct sigaction *oldact);
returns: 0 if OK, -1 on error

Thesigaction function is unwieldy because it requires the user to set the entries of a structure. A cleaner
approach, originally proposed by Stevens [77], is to define a wrapper function, calledSignal, that calls
sigaction for us. Figure 8.31 shows the definition ofSignal, which is invoked in the same way as
the signal function. TheSignal wrapper installs a signal handler with the following signal-handling
semantics:

� Only signals of the type currently being processed by the handler are blocked.

� As with all signal implementations, signals are not queued.

8.5. SIGNALS 435

code/ecf/signal3.c

1 #include "csapp.h"
2

3 void handler2(int sig)
4 {
5 pid_t pid;
6

7 while ((pid = waitpid(-1, NULL, 0)) > 0)
8 printf("Handler reaped child %d\n", (int)pid);
9 if (errno != ECHILD)

10 unix_error("waitpid error");
11 Sleep(2);
12 return;
13 }
14

15 int main() {
16 int i, n;
17 char buf[MAXBUF];
18 pid_t pid;
19

20 if (signal(SIGCHLD, handler2) == SIG_ERR)
21 unix_error("signal error");
22

23 /* parent creates children */
24 for (i = 0; i < 3; i++) {
25 pid = Fork();
26 if (pid == 0) {
27 printf("Hello from child %d\n", (int)getpid());
28 Sleep(1);
29 exit(0);
30 }
31 }
32

33 /* Manually restart the read call if it is interrupted */
34 while ((n = read(STDIN_FILENO, buf, sizeof(buf))) < 0)
35 if (errno != EINTR)
36 unix_error("read error");
37

38 printf("Parent processing input\n");
39 while (1)
40 ;
41

42 exit(0);
43 }

code/ecf/signal3.c

Figure 8.30:signal3: An improved version of Figure 8.29 that correctly accounts for the fact that system
calls can be interrupted.

436 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

code/src/csapp.c

1 handler_t *Signal(int signum, handler_t *handler)
2 {
3 struct sigaction action, old_action;
4

5 action.sa_handler = handler;
6 sigemptyset(&action.sa_mask); /* block sigs of type being handled */
7 action.sa_flags = SA_RESTART; /* restart syscalls if possible */
8

9 if (sigaction(signum, &action, &old_action) < 0)
10 unix_error("Signal error");
11 return (old_action.sa_handler);
12 }

code/src/csapp.c

Figure 8.31: Signal: A wrapper for sigaction that provides portable signal handling on Posix-
compliant systems.

� Interrupted system calls are automatically restarted whenever possible.

� Once the signal handler is installed, it remains installed untilSignal is called with ahandler
argument of either SIGIGN or SIG DFL. (Some older Unix systems restore the signal action to its
default action after a signal has been processed by a handler.)

Figure 8.32 shows a version of thesignal2 program from Figure 8.29 that uses ourSignal wrapper to
get predictable signal handling semantics on different computer systems. The only difference is that we have
installed the handler with a call toSignal rather than a call tosignal. The program now runs correctly
on both our Solaris and Linux systems, and we no longer need to manually restart interruptedread system
calls.

8.6 Nonlocal Jumps

C provides a form of user-level exceptional control flow, called anonlocal jump, that transfers control
directly from one function to another currently executing function, without having to go through the normal
call-and-return sequence. Nonlocal jumps are provided by thesetjmp andlongjmp functions.

#include <setjmp.h>

int setjmp(jmp buf env);
int sigsetjmp(sigjmp buf env, int savesigs);

returns: 0 from setjmp, nonzero from longjmps)

The setjmp function saves the current stack context in theenv buffer, for later use bylongjmp, and

8.6. NONLOCAL JUMPS 437

code/ecf/signal4.c

1 #include "csapp.h"
2

3 void handler2(int sig)
4 {
5 pid_t pid;
6

7 while ((pid = waitpid(-1, NULL, 0)) > 0)
8 printf("Handler reaped child %d\n", (int)pid);
9 if (errno != ECHILD)

10 unix_error("waitpid error");
11 Sleep(2);
12 return;
13 }
14

15 int main()
16 {
17 int i, n;
18 char buf[MAXBUF];
19 pid_t pid;
20

21 Signal(SIGCHLD, handler2); /* sigaction error-handling wrapper */
22

23 /* parent creates children */
24 for (i = 0; i < 3; i++) {
25 pid = Fork();
26 if (pid == 0) {
27 printf("Hello from child %d\n", (int)getpid());
28 Sleep(1);
29 exit(0);
30 }
31 }
32

33 /* parent waits for terminal input and then processes it */
34 if ((n = read(STDIN_FILENO, buf, sizeof(buf))) < 0)
35 unix_error("read error");
36

37 printf("Parent processing input\n");
38 while (1)
39 ;
40 exit(0);
41 }

code/ecf/signal4.c

Figure 8.32:signal4: A version of Figure 8.29 that uses ourSignal wrapper to get portable signal-
handling semantics.

438 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

returns a 0.

#include <setjmp.h>

void longjmp(jmp buf env, int retval);
void siglongjmp(sigjmp buf env, int retval);

never returns)

The longjmp function restores the stack context from theenv buffer and then triggers a return from the
most recentsetjmp call that initializedenv. The setjmp then returns with the nonzero return value
retval.

The interactions betweensetjmp and longjmp can be confusing at first glance. Thesetjmp function
is called once but returnsmultiple times: once when thesetjmp is first called and the stack context is
stored in theenv buffer, and once for each correspondinglongjmp call. On the other hand, thelongjmp
function is called once but never returns.

An important application of nonlocal jumps is to permit an immediate return from a deeply nested function
call, usually as a result of detecting some error condition. If an error condition is detected deep in a nested
function call, we can use a nonlocal jump to return directly to a common localized error handler instead of
laboriously unwinding the call stack.

Figure 8.33 shows an example of how this might work. Themain routine first callssetjmp to save
the current stack context, and then calls functionfoo, which in turn calls function bar. If foo or bar
encounter an error, they return immediately from thesetjmp via a longjmp call. The nonzero return
value of thesetjmp indicates the error type, which can then be decoded and handled in one place in the
code.

Another important application of nonlocal jumps is to branch out of a signal handler to a specific code
location, rather than returning to the instruction that was interrupted by the arrival of the signal. For example,
if a Web server attempts to send data to a browser that has unilaterally aborted the network connection
between the client and the server, (e.g., as a result of the browser’s user clicking the STOP button), the
kernel will send a SIGPIPE signal to the server. The default action for the SIGPIPE signal is to terminate
the process, which is clearly not a good thing for a server that is supposed to run forever. Thus, a robust Web
server will install a SIGPIPE handler to catch these signals. After cleaning up, the SIGPIPE handler should
jump to the code that waits for the next request from a browser, rather than returning to the instruction that
was interrupted by the receipt of the SIGPIPE signal. Nonlocal jumps are the only way to handle this kind
of error recovery.

Figure 8.34 shows a simple program that illustrates this basic technique. The program uses signals and
nonlocal jumps to do a soft restart whenever the user typesctrl-c at the keyboard. Thesigsetjmp and
siglongjmp functions are versions ofsetjmp andlongjmp that can be used by signal handlers.

The initial call to thesigsetjmp function saves the stack and signal context when the program first starts.
The main routine then enters an infinite processing loop. When the user types ctrl-c, the shell sends a
SIGINT signal to the process, which catches it. Instead of returning from the signal handler, which would
pass back control back to the interrupted processing loop, the handler performs a nonlocal jump back to the

8.6. NONLOCAL JUMPS 439

code/ecf/setjmp.c

1 #include "csapp.h"
2

3 jmp_buf buf;
4

5 int error1 = 0;
6 int error2 = 1;
7

8 void foo(void), bar(void);
9

10 int main()
11 {
12 int rc;
13

14 rc = setjmp(buf);
15 if (rc == 0)
16 foo();
17 else if (rc == 1)
18 printf("Detected an error1 condition in foo\n");
19 else if (rc == 2)
20 printf("Detected an error2 condition in foo\n");
21 else
22 printf("Unknown error condition in foo\n");
23 exit(0);
24 }
25

26 /* deeply nested function foo */
27 void foo(void)
28 {
29 if (error1)
30 longjmp(buf, 1);
31 bar();
32 }
33

34 void bar(void)
35 {
36 if (error2)
37 longjmp(buf, 2);
38 }

code/ecf/setjmp.c

Figure 8.33:Nonlocal jump example. This example shows the framework for using nonlocal jumps to
recover from error conditions in deeply nested functions without having to unwind the entire stack.

440 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

code/ecf/restart.c

1 #include "csapp.h"
2

3 sigjmp_buf buf;
4

5 void handler(int sig)
6 {
7 siglongjmp(buf, 1);
8 }
9

10 int main()
11 {
12 Signal(SIGINT, handler);
13

14 if (!sigsetjmp(buf, 1))
15 printf("starting\n");
16 else
17 printf("restarting\n");
18

19 while(1) {
20 Sleep(1);
21 printf("processing...\n");
22 }
23 exit(0);
24 }

code/ecf/restart.c

Figure 8.34:A program that uses nonlocal jumps to restart itself when the user typesctrl-c.

8.7. TOOLS FOR MANIPULATING PROCESSES 441

beginning of themain program.

When we ran the program on our system, we got the following output:

unix> ./restart
starting
processing...
processing...
restarting user hits ctrl-c

processing...
restarting User hits ctrl-c

processing...

8.7 Tools for Manipulating Processes

Unix systems provide a number of useful tools for monitoring and manipulating processes.

STRACE: Prints a trace of each system call invoked by a program and its children. A fascinating tool for the
curious student. Compile your program with-static to get a cleaner trace without a lot of output
related to shared libraries.

PS: Lists processes (including zombies) currently in the system.

TOP: Prints information about the resource usage of current processes.

KILL : Sends a signal to a process. Useful for debugging programs with signal handlers and cleaning up
wayward processes.

/proc (Linux and Solaris) : A virtual filesystem that exports the contents of numerous kernel data struc-
tures in an ASCII text form that can be read by user programs. For example, type “cat /proc/loadavg”
to see the current load average on your Linux system.

8.8 Summary

Exceptional control flow occurs at all levels of a computer system. At the hardware level, exceptions are
abrupt changes in the control flow that are triggered by events in the processor. At the operating system
level, the kernel triggers abrupt changes in the control flows between different processes when it performs
context switches. At the interface between the operating system and applications, applications can create
child processes, wait for their child processes to stop or terminate, run new programs, and catch signals from
other processes. The semantics of signal handling is subtle and can vary from system to system. However,
mechanisms exist on Posix-compliant systems that allow programs to clearly specify the expected signal-
handling semantics. Finally, at the application level, C programs can use nonlocal jumps to bypass the
normal call/return stack discipline and branch directly from one function to another.

442 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

Bibliographic Notes

The Intel macro-architecture specification contains a detailed discussion of exceptions and interrupts on
Intel processors [17]. Operating systems texts [66, 71, 79] contain additional information on exceptions,
processes, and signals. The classic work by Stevens [72], while somewhat outdated, remains a valuable and
highly readable description of how to work with processes and signals from application programs. Bovet
and Cesati give a wonderfully clear description of the Linux kernel, including details of the process and
signal implementations.

Homework Problems

Homework Problem 8.8[Category 1]:

In this chapter, we have introduced some functions with unusual call and return behaviors:setjmp,
longjmp, execve, and fork. Match each function with one of the following behaviors:

A. Called once, returns twice.

B. Called once, never returns.

C. Called once, returns one or more times.

Homework Problem 8.9[Category 1]:

What is one possible output of the following program?

code/ecf/forkprob3.c

1 #include "csapp.h"
2

3 int main()
4 {
5 int x = 3;
6

7 if (Fork() != 0)
8 printf("x=%d\n", ++x);
9

10 printf("x=%d\n", --x);
11 exit(0);
12 }

code/ecf/forkprob3.c

Homework Problem 8.10[Category 1]:

How many “hello” output lines does this program print?

code/ecf/forkprob5.c

8.8. SUMMARY 443

1 #include "csapp.h"
2

3 void doit()
4 {
5 if (Fork() == 0) {
6 Fork();
7 printf("hello\n");
8 exit(0);
9 }

10 return;
11 }
12

13 int main()
14 {
15 doit();
16 printf("hello\n");
17 exit(0);
18 }

code/ecf/forkprob5.c

Homework Problem 8.11[Category 1]:

How many “hello” output lines does this program print?

code/ecf/forkprob6.c

1 #include "csapp.h"
2

3 void doit()
4 {
5 if (Fork() == 0) {
6 Fork();
7 printf("hello\n");
8 return;
9 }

10 return;
11 }
12

13 int main()
14 {
15 doit();
16 printf("hello\n");
17 exit(0);
18 }

code/ecf/forkprob6.c

Homework Problem 8.12[Category 1]:

What is the output of the following program?

code/ecf/forkprob7.c

444 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

1 #include "csapp.h"
2 int counter = 1;
3

4 int main()
5 {
6 if (fork() == 0) {
7 counter--;
8 exit(0);
9 }

10 else {
11 Wait(NULL);
12 printf("counter = %d\n", ++counter);
13 }
14 exit(0);
15 }

code/ecf/forkprob7.c

Homework Problem 8.13[Category 1]:

Enumerate all of the possible outputs of the program in Problem 8.4.

Homework Problem 8.14[Category 2]:

Consider the following program:

code/ecf/forkprob2.c

1 #include "csapp.h"
2

3 void end(void)
4 {
5 printf("2");
6 }
7

8 int main()
9 {

10 if (Fork() == 0)
11 atexit(end);
12 if (Fork() == 0)
13 printf("0");
14 else
15 printf("1");
16 exit(0);
17 }

code/ecf/forkprob2.c

Determine which of the following outputs are possible. Note: Theatexit function takes a pointer to a
function and adds it to a list of functions (initially empty) that will be called when theexit function is
called.

A. 112002

8.8. SUMMARY 445

B. 211020

C. 102120

D. 122001

E. 100212

Homework Problem 8.15[Category 2]:

Useexecve to write a program, calledmyls, whose behavior is identical to the/bin/ls program. Your
program should accept the same command line arguments, interpret the identical environment variables,
and produce the identical output.

The ls program gets the width of the screen from the COLUMNS environment variable. If COLUMNS
is unset, thenls assumes that the screen is 80 columns wide. Thus, you can check your handling of the
environment variables by setting the COLUMNS environment to something smaller than 80:

unix> setenv COLUMNS 40
unix> ./myls

...output is 40 columns wide

unix> unsetenv COLUMNS
unix> ./myls

...output is now 80 columns wide

Homework Problem 8.16[Category 3]:

Modify the program in Figure 8.15 so that

1. Each child terminates abnormally after attempting to write to a location in the read-only text segment.

2. The parent prints output that is identical (except for the PIDs) to the following:

child 12255 terminated by signal 11: Segmentation fault
child 12254 terminated by signal 11: Segmentation fault

Hint: Read themanpages forwait(2) andpsignal(3).

Homework Problem 8.17[Category 3]:

Write your own version of the Unixsystem function:

int mysystem(char *command);

Themysystem function executescommandby calling “/bin/sh -c command”, and then returns af-
tercommandhas completed. Ifcommandexits normally (by calling theexit function or executing are-
turn statement), thenmysystem returns thecommandexit status. For example, ifcommandterminates

446 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

by calling exit(8), then system returns the value 8. Otherwise, ifcommand terminates abnormally,
thenmysystem returns the status returned by the shell.

Homework Problem 8.18[Category 1]:

One of your colleagues is thinking of using signals to allow a parent process to count events that occur in a
child process. The idea is to notify the parent each time an event occurs by sending it a signal, and letting
the parent’s signal handler increment a globalcounter variable, which the parent can then inspect after
the child has terminated. However, when he runs the test program in Figure 8.35 on his system, he discovers
that when the parent callsprintf, counter always has a value of 2, even though the child has sent five
signals to the parent. Perplexed, he comes to you for help. Can you explain the bug?

code/ecf/counterprob.c

1 #include "csapp.h"
2

3 int counter = 0;
4

5 void handler(int sig)
6 {
7 counter++;
8 sleep(1); /* do some work in the handler */
9 return;

10 }
11

12 int main()
13 {
14 int i;
15

16 Signal(SIGUSR2, handler);
17

18 if (Fork() == 0) { /* child */
19 for (i = 0; i < 5; i++) {
20 Kill(getppid(), SIGUSR2);
21 printf("sent SIGUSR2 to parent\n");
22 }
23 exit(0);
24 }
25

26 Wait(NULL);
27 printf("counter=%d\n", counter);
28 exit(0);
29 }

code/ecf/counterprob.c

Figure 8.35:Counter program referenced in Problem 8.18.

Homework Problem 8.19[Category 3]:

Write a version of thefgets function, calledtfgets, that times out after 5 seconds. Thetfgets

8.8. SUMMARY 447

function accepts the same inputs asfgets. If the user doesn’t type an input line within 5 seconds,tfgets
returns NULL. Otherwise it returns a pointer to the input line.

Homework Problem 8.20[Category 4]:

Using the example in Figure 8.20 as a starting point, write a shell program that supports job control. Your
shell should have the following features:

� The command line typed by the user consists of aname and zero or more arguments, all separated
by one or more spaces. Ifname is a built-in command, the shell handles it immediately and waits for
the next command line. Otherwise, the shell assumes thatname is an executable file, which it loads
and runs in the context of an initial child process (job). The process group ID for the job is identical
to the PID of the child.

� Each job is identified by either a process ID (PID) or a job ID (JID), which is a small arbitrary positive
integer assigned by the shell. JIDs are denoted on the command line by the prefix ’%’. For example,
“%5” denotes JID 5, and “5” denotes PID 5.

� If the command line ends with an ampersand, then the shell runs the job in the background. Otherwise,
the shell runs the job in the foreground.

� Typing ctrl-c (ctrl-z) causes the shell to send a SIGINT (SIGTSTP) signal to every process in
the foreground process group.

� The jobs built-in command lists all background jobs.

� Thebg <job> built-in command restarts<job> by sending it a SIGCONT signal, and then runs it
in the background. The<job> argument can be either a PID or a JID.

� Thefg <job> built-in command restarts<job> by sending it a SIGCONT signal, and then runs it
in the foreground.

� The shell reaps all of its zombie children. If any job terminates because it receives a signal that was
not caught, then the shell prints a message to the terminal with the job’s PID and a description of the
offending signal.

Figure 8.36 shows an example shell session.

448 CHAPTER 8. EXCEPTIONAL CONTROL FLOW

unix> ./shell Run your shell program

> bogus
bogus: Command not found. Execve can’t find executable

> foo 10
Job 5035 terminated by signal: Interrupt User types ctrl-c

> foo 100 &
[1] 5036 foo 100 &
> foo 200 &
[2] 5037 foo 200 &
> jobs
[1] 5036 Running foo 100 &
[2] 5037 Running foo 200 &
> fg %1
Job [1] 5036 stopped by signal: Stopped User types ctrl-z

> jobs
[1] 5036 Stopped foo 100 &
[2] 5037 Running foo 200 &
> bg 5035
5035: No such process
> bg 5036
[1] 5036 foo 100 &
> /bin/kill 5036
Job 5036 terminated by signal: Terminated
> fg %2 Wait for fg job to finish.

> quit
unix> Back to the Unix shell

Figure 8.36:Sample shell session for Problem 8.20.

Chapter 9

Measuring Program Execution Time

One common question people ask is “How fast does ProgramX run on MachineY ?” Such a question might
be raised by a programmer trying to optimize program performance, or by a customer trying to decide which
machine to buy. In our earlier discussion of performance optimization (Chapter 5), we assumed this question
could be answered with perfect accuracy. We were trying to establish the cycles per element (CPE) measure
for programs down to two decimal places. This requires an accuracy of 0.1% for a procedure having a CPE
of 10. In this chapter, we address this problem and discover that it is surprisingly complex.

You might expect that making near-perfect timing measurements on a computer system would be straight-
forward. After all, for a particular combination of program and data, the machine will execute a fixed
sequence of instructions. Instruction execution is controlled by a processor clock that is regulated by a
precision oscillator. There are many factors, however, that can vary from one execution of a program to an-
other. Computers do not simply execute one program at a time. They continually switch from one process to
another, executing some code on behalf of one process before moving on to the next. The exact scheduling
of processor resources for one program depends on such factors as the number of users sharing the system,
the network traffic, and the timing of disk operations. The access patterns to the caches depend not just on
the references made by the program we are trying to measure, but on those of other processes executing
concurrently. Finally, the branch prediction logic tries to guess whether branches will be taken or not based
on past history. This history can vary from one execution of a program to another.

In this chapter, we describe two basic mechanisms computers use to record the passage of time—one based
on a low frequency timer that periodically interrupts the processor and one based on a counter that is in-
cremented every clock cycle. Application programmers can gain access to the first timing mechanism by
calling library functions. Cycle timers can be accessed by library functions on some systems, but they
require writing assembly code on others. We have deferred the discussion of program timing until now,
because it requires understanding aspects of both the CPU hardware and the way the operating system
manages process execution.

Using the two timing mechanisms, we investigate methods to get reliable measurements of program perfor-
mance. We will see that timing variations due to context switching tend to be very large and hence must be
eliminated. Variations caused by other factors such as cache and branch prediction are generally managed
by evaluating program operation under carefully controlled conditions. Generally, we can get accurate mea-
surements for durations that are either very short (less than around 10 millisecond) or very long (greater than

449

450 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

Time Scale (1 Ghz Machine)

1.E-09 1.E-06 1.E-03 1.E+00

Time (seconds)

Time Scale (1 Ghz Machine)

1.E-09 1.E-06 1.E-03 1.E+00

Time (seconds)

1 ns 1 µs 1 ms 1 s

Integer Add

FP Multiply

FP Divide
Keystroke
Interrupt
Handler

Disk Access

Screen Refresh

Keystroke

Microscopic Macroscopic

Figure 9.1:Time Scale of Computer System Events.The processor hardware works at a microscopic a
time scale in which events having durations on the order of a few nanoseconds (ns). The OS must deal on a
macroscopic time scale with events having durations on the order of a few milliseconds (ms).

around 1 second), even on heavily loaded machines. Times between around 10 milliseconds and 1 second
require special care to measure accurately.

Much of the understanding of performance measurement is part of the folklore of computer systems. Dif-
ferent groups and individuals have developed their own techniques for measuring program performance, but
there is no widely available body of literature on the subject. Companies and research groups concerned
with getting highly accurate performance measurements often set up specially configured machines that
minimize any sources of timing irregularity, such as by limiting access and by disabling many OS and net-
working services. We want methods that application programmers can use on ordinary machines, but there
are no widely available tools for this. Instead, we will develop our own.

In this presentation we work through the issues systematically. We describe the design and evaluation of a
number of experiments that helped us arrive at methods to achieve accurate measurements on a small set
of systems. It is unusual to find a detailed experimental study in a book at this level. Generally, people
expect the final answers, not a description of how those answers were determined. In this case, however,
we cannot provide definitive answers on how to measure program execution time for an arbitrary program
on an arbitrary system. There are too many variations of timing mechanisms, operating system behaviors,
and runtime environment to have one single, simple solution. Instead, we anticipate that you will need to
run your own experiments and develop your own performance measurement code. We hope that our case
study will help you in this task. We summarize our findings in the form of a protocol that can guide your
experiments.

9.1 The Flow of Time on a Computer System

Computers operate on two fundamentally different time scales. At a microscopic level, they execute instruc-
tions at a rate of one or more per clock cycle, where each clock cycle requires only around one nanosecond
(abbreviated “ns”), or10�9 seconds. On a macroscopic scale, the processor must respond to external events

9.1. THE FLOW OF TIME ON A COMPUTER SYSTEM 451

that occur on time scales measured in milliseconds (abbreviated “ms”), or10�3 seconds. For example,
during video playback, the graphics display for most computers must be refreshed every 33 ms. A world-
record typist can only type keystrokes at a rate of around one every 50 milliseconds. Disks typically require
around 10 ms to initiate a disk transfer. The processor continually switches between these many tasks on a
macroscopic time scale, devoting around 5 to 20 milliseconds to each task at a time. At this rate, the user
perceives the tasks as being performed simultaneously, since a human cannot discern time durations shorter
than around 100 ms. Within that time the processor can execute millions of instructions.

Figure 9.1 plots the durations of different event types on a logarithmic scale, with microscopic events having
durations measured in nanoseconds and macroscopic events having durations measured in milliseconds. The
macroscopic events are managed by OS routines that require around 5,000 to 200,000 clock cycles. These
time ranges are measured in microseconds (abbreviated�s, where� is the Greek letter “mu”). Although
that may sound like a lot of computation, it is so much faster than the macroscopic events being processed
that these routines place only a small load on the processor.

Practice Problem 9.1:

When a user is editing files with a real-time editor such asEMACS, every keystroke generates an interrupt
signal. The operating system must then schedule the editor process to take the appropriate action for this
keystroke. Suppose we had a system with a 1 GHz clock, and we had 100 users runningEMACS typing
at a rate of 100 words per minute. Assume an average of 6 characters per word. Assume also that the
OS routine handling keystrokes requires, on average, 100,000 clock cycles per keystroke. What fraction
of the processor load is consumed by all of the keystroke processing?

Note that this is a very pessimistic analysis of the load induced by keyboard usage. It’s hard to imagine
a real-life scenario with so many users typing this fast.

9.1.1 Process Scheduling and Timer Interrupts

External events such as keystrokes, disk operations, and network activity generate interrupt signals that make
the operating system scheduler take over and possibly switch to a different process. Even in the absence of
such events, we want the processor to switch from one process to another so that it will appear to the users
as if the processor is executing many programs simultaneously. For this reason, computers have an external
timer that periodically generates an interrupt signal to the processor. The spacing between these interrupt
signals is called theinterval time. When a timer interrupt occurs, the operating system scheduler can choose
to either resume the currently executing process or to switch to a different process. This interval must be set
short enough to ensure that the processor will switch between tasks often enough to provide the illusion of
performing many tasks simultaneously. On the other hand, switching from one process to another requires
thousands of clock cycles to save the state of the current process and to set up the state for the next, and
hence setting the interval too short would cause poor performance. Typical timer intervals range between 1
and 10 milliseconds, depending on the processor and how it is configured.

Figure 9.2(a) illustrates the system’s perspective of a hypothetical 150 ms of operation on a system with a
10 ms timer interval. During this period there are two active processes: A and B. The processor alternately
executes part of process A, then part of B, and so on. As it executes these processes, it operates either in
user mode, executing the instructions of the application program; or inkernel mode, performing operating
system functions on behalf of the program, such as, handling page faults, input, or output. Recall that kernel

452 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

(a) System Perspective

B BAA A

(b) Application A�s Perspective

User

Kernel

Active

Inactive

Figure 9.2:System’s vs. Applications View of Time.The system switches from process to process, oper-
ating in either user or kernel mode. The application only gets useful computation done when its process is
executing in user mode.

operation is considered part of each regular process rather than a separate process. The operating system
scheduler is invoked every time there is an external event or a timer interrupt. The occurrences of timer
interrupts are indicated by the tick marks in the figure. This means that there is actually some amount of
kernel activity at every tick mark, but for simplicity we do not show it in the figure.

When the scheduler switches from process A to process B, it must enter kernel mode to save the state of
process A (still considered part of process A) and to restore the state of process B (considered part of process
B). Thus, there is kernel activity during each transition from one process to another. At other times, kernel
activity can occur without switching processes, such as when a page fault can be satisfied by using a page
that is already in memory.

9.1.2 Time from an Application Program’s Perspective

From the perspective of an application program, the flow of time can be viewed as alternating between
periods when the program isactive(executing its instructions), andinactive(waiting to be scheduled by the
operating system). It only performs useful computation when its process is operating in user mode. Figure
9.2(b) illustrates how program A would view the flow of time. It is active during the light-colored regions,
when process A is executing in user mode; otherwise it is inactive.

As a way to quantify the alternations between active and inactive time periods, we wrote a program that
continuously monitors itself and determines when there have been long periods of inactivity. It then gener-
ates atraceshowing the alternations between periods of activity and inactivity. Details of this program are
described later in the chapter. An example of such a trace is shown in Figure 9.3, generated while running
on a Linux machine with a clock rate of around 550 MHz. Each period is labeled as either active (“A”) or
inactive “I”). The periods are numbered 0 to 9 for identification. For each period, the start time (relative
to the beginning of the trace) and the duration are indicated. Times are expressed in both clock cycles and
milliseconds. This trace shows a total of 20 time periods (10 active and 10 inactive) having a total duration
of 66.9 ms. In this example, the periods of inactivity are fairly short, with the longest being 0.50 ms. Most
of these periods of inactivity were caused by timer interrupts. The process was active for around 95.1% of
the total time monitored. Figure 9.4 shows a graphical rendition of the trace shown in Figure 9.3. Observe
the regular spacing of the boundaries between the activity periods indicated by the gray triangles. These

9.1. THE FLOW OF TIME ON A COMPUTER SYSTEM 453

A0 Time 0 (0.00 ms), Duration 3726508 (6.776448 ms)
I0 Time 3726508 (6.78 ms), Duration 275025 (0.500118 ms)
A1 Time 4001533 (7.28 ms), Duration 0 (0.000000 ms)
I1 Time 4001533 (7.28 ms), Duration 7598 (0.013817 ms)
A2 Time 4009131 (7.29 ms), Duration 5189247 (9.436358 ms)
I2 Time 9198378 (16.73 ms), Duration 251609 (0.457537 ms)
A3 Time 9449987 (17.18 ms), Duration 2250102 (4.091686 ms)
I3 Time 11700089 (21.28 ms), Duration 14116 (0.025669 ms)
A4 Time 11714205 (21.30 ms), Duration 2955974 (5.375275 ms)
I4 Time 14670179 (26.68 ms), Duration 248500 (0.451883 ms)
A5 Time 14918679 (27.13 ms), Duration 5223342 (9.498358 ms)
I5 Time 20142021 (36.63 ms), Duration 247113 (0.449361 ms)
A6 Time 20389134 (37.08 ms), Duration 5224777 (9.500967 ms)
I6 Time 25613911 (46.58 ms), Duration 254340 (0.462503 ms)
A7 Time 25868251 (47.04 ms), Duration 3678102 (6.688425 ms)
I7 Time 29546353 (53.73 ms), Duration 8139 (0.014800 ms)
A8 Time 29554492 (53.74 ms), Duration 1531187 (2.784379 ms)
I8 Time 31085679 (56.53 ms), Duration 248360 (0.451629 ms)
A9 Time 31334039 (56.98 ms), Duration 5223581 (9.498792 ms)
I9 Time 36557620 (66.48 ms), Duration 247395 (0.449874 ms)

Figure 9.3:Example Trace Showing Activity Periods. From the perspective of an application program,
processor operation alternates between periods when the program is actively executing (italicized) and when
it is inactive. This trace shows a log of these periods for a program over a total duration of 66.9 ms. The
program was active for 95.1% of this time.

Activity Periods, Load = 1

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

Figure 9.4:Graphical Representation of Trace in Figure 9.3. Timer interrupts are indicated with gray
triangles.

454 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

A48 Time 191514104 (349.40 ms), Duration 5224961 (9.532449 ms)
I48 Time 196739065 (358.93 ms), Duration 247557 (0.451644 ms)
A49 Time 196986622 (359.38 ms), Duration 858571 (1.566382 ms)
I49 Time 197845193 (360.95 ms), Duration 8297 (0.015137 ms)
A50 Time 197853490 (360.97 ms), Duration 4357437 (7.949733 ms)
I50 Time 202210927 (368.91 ms), Duration 5718758 (10.433335 ms)
A51 Time 207929685 (379.35 ms), Duration 2047118 (3.734774 ms)
I51 Time 209976803 (383.08 ms), Duration 7153 (0.013050 ms)
A52 Time 209983956 (383.10 ms), Duration 3170650 (5.784552 ms)
I52 Time 213154606 (388.88 ms), Duration 5726129 (10.446783 ms)
A53 Time 218880735 (399.33 ms), Duration 5217543 (9.518916 ms)
I53 Time 224098278 (408.85 ms), Duration 5718135 (10.432199 ms)
A54 Time 229816413 (419.28 ms), Duration 2359281 (4.304286 ms)
I54 Time 232175694 (423.58 ms), Duration 7096 (0.012946 ms)
A55 Time 232182790 (423.60 ms), Duration 2859227 (5.216390 ms)
I55 Time 235042017 (428.81 ms), Duration 5718793 (10.433399 ms)

Figure 9.5:Example Trace Showing Activity Periods on Loaded Machine.When other active processes
are present, the tracing process is inactive for longer periods of time. This trace shows a log of these periods
for a program over a total duration of 89.8 ms. The process was active for 53.0% of this time.

boundaries are caused by timer interrupts.

Figure 9.5 shows a portion of a trace when there is one other active process sharing the processor. The
graphical rendition of this trace is shown in Figure 9.6. Note that the time scales do not line up, since the
portion of the trace we show in Figure 9.5 started at 349.4 ms into the tracing process. In this example we
can see that while handling some of the timer interrupts, the OS also decides to switch context from one
process to another. As a result, each process is only active around 50% of the time.

Practice Problem 9.2:

This problem concerns the interpretation of the section of the trace shown in Figure 9.5.

A. At what times during this portion of the trace did timer interrupts occur? (Some of these time
points can be extracted directly from the trace, while others must be estimated by interpolation.)

B. Which of these occurred while the tracing process was active, and which while it was inactive?

C. Why are the longest periods of inactivity longer than the longest periods of activity?

D. Based on the pattern of active and inactive periods shown in this trace, what percent of the time
would you expect the tracing process to be inactive when averaged over a longer time scale?

9.2 Measuring Time by Interval Counting

The operating system also uses the timer to record the cumulative time used by each process. This infor-
mation provides a somewhat imprecise measure of program execution time. Figure 9.7 provides a graphic
illustration of how this accounting works for the example of system operation shown in Figure 9.2. In this
discussion, we refer to the period during which just one process executes as atime segment.

9.2. MEASURING TIME BY INTERVAL COUNTING 455

Activity Periods, Load = 2

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

Figure 9.6:Graphical Representation of Activity Periods for Trace in Figure 9.5. Timer interrupts are
indicated by gray triangles

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

Figure 9.7:Process Timing by Interval Counting. With a timer interval of 10 ms, every 10 ms segment
is assigned to a process as part of either its user (u) or system (s) time. This accounting provides only an
approximate measure of program execution time.

456 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

9.2.1 Operation

The operating system maintains counts of the amount of user time and the amount of system time used by
each process. When a timer interrupt occurs, the operating system determines which process was active
and increments one of the counts for that process by the timer interval. It increments the system time if the
system was executing in kernel mode, and the user time otherwise. The example shown in Figure 9.7(a)
indicates this accounting for the two processes. The tick marks indicate the occurrences of timer interrupts.
Each is labeled by the count that gets incremented: eitherAu or As for process A’s user or system time,
or Bu or Bs for process B’s user or system time. Each tick mark is labeled according to the activity to its
immediate left. The final accounting shows that process A used a total of 150 milliseconds: 110 of user time
and 40 of system time. It shows that B used a total of 100 milliseconds: 70 of user time and 30 of system
time.

9.2.2 Reading the Process Timers

When executing a command from the Unix shell, the user can prefix the command with the word “time” to
measure the execution time of the command. This command uses the values computed using the accounting
scheme described above. For example, to time the execution time of programprog with command line
arguments-n 17, the user can simply type the command:

unix> time prog -n 17

After the program has executed, the shell will print a line summarizing the run time statistics, for example,

2.230u 0.260s 0:06.52 38.1% 0+0k 0+0io 80pf+0w

The first three numbers shown in this line are times. The first two show the seconds of user and system
time. Observe how both of these show a 0 in the third decimal place. With a timer interval of 10 ms,
all timings are multiples of hundredths of seconds. The third number is the total elapsed time, given in
minutes and seconds. Observe that the system and user time sum to 2.49 seconds, less than half of the
elapsed time of 6.52 seconds, indicating that the processor was executing other processes at the same time.
The percentage indicates what fraction the combined user and system times were of the elapsed time, e.g.,
(2:23 + 0:26)=6:52 = 0:381. The remaining statistics summarize the paging and I/O behavior.

Programmers can also read the process timers by calling the library functiontimes, declared as follows:

#include <sys/times.h>

struct tms f
clock t tms utime; /* user time */
clock t tms stime; /* system time */
clock t tms cutime; /* user time of reaped children */
clock t tms cstime; /* system time of reaped children */

g;

clock t times(struct tms *buf);
Returns: number of clock ticks elapsed since system started

9.2. MEASURING TIME BY INTERVAL COUNTING 457

These time measurements are expressed in terms of a unit calledclock ticks. The defined constantCLK TCK
specifies the number of clock ticks per second. The data typeclock t is typically defined to be a long
integer. The fields indicating child times give the accumulated times used by children that have terminated
and have been reaped. Thus,times cannot be used to monitor the time used by any ongoing children. As a
return value,times returns the total number of clock ticks that have elapsed since the system was started.
We can therefore compute the total time (in clock ticks) between two different points in a program execution
by making two calls totimes and computing the difference of the return values.

The ANSI C standard also defines a functionclock that measures the total time used by the current process:

#include <time.h>

clock t clock(void);
Returns: total time used by process

Although the return value is declared to be the same typeclock t used with thetimes function, the
two functions do not, in general, express time in the same units. To scale the time reported byclock to
seconds, it should be divided by the defined constantCLOCKSPERSEC. This value need not be the same
as the constantCLK TCK.

9.2.3 Accuracy of Process Timers

As the example illustrated in Figure 9.7 shows, this timing mechanism is only approximate. Figure 9.7(b)
shows the actual times used by the two processes. Process A executed for a total of 153.3 ms, with 120.0 in
user mode and 33.3 in kernel mode. Process B executed for a total of 96.7 ms, with 73.3 in user mode and
23.3 in kernel mode. The interval accounting scheme makes no attempt to resolve time more finely than the
timer interval.

Practice Problem 9.3:

What would the operating system report as the user and system times for the execution sequence illus-
trated below. Assume a 10 ms timer interval.

B BAA A

Practice Problem 9.4:

On a system with a timer interval of 10 ms, some segment of process A is recorded as requiring 70 ms,
combining both system and user time. What are the minimum and maximum actual times used by this
segment?

Practice Problem 9.5:

What would the counters record as the system and user times for the trace shown in Figure 9.3? How
does this compare to the actual time during which the process was active?

458 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

Intel Pentium III, Linux, Process Timer

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
e

a
s

u
re

d
:E

x
p

e
c

te
d

 E
rr

o
r

Load 1

Load 11

Intel Pentium III, Linux, Process Timer

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
e

a
s

u
re

d
:E

x
p

e
c

te
d

 E
rr

o
r

Load 1

Load 11

Figure 9.8:Experimental Results for Measuring Interval Counting Accuracy. The error is unacceptably
high when measuring activities less than around 100 ms (10 timer intervals). Beyond this, the error rate is
generally less than 10% regardless of whether running on lightly loaded (Load 1) or heavily loaded (Load
11) machine.

For programs that run long enough, (at least several seconds), the inaccuracies in this scheme tend to com-
pensate for each other. The execution times of some segments are underestimated while those of others are
overestimated. Averaged over a number of segments, the expected error approaches zero. From a theoretical
perspective, however, there is no guaranteed bound on how far these measurements vary from the true run
times.

To test the accuracy of this timing method, we ran a series of experiments that compared the timeTm
measured by the operating system for a sample computation versus our estimate of what the timeTc would
be if the system resources were dedicated solely to performing this computation. In general,Tc will differ
from Tm for several reasons:

1. The inherent inaccuracies of the interval counting scheme can causeTm to be either less or greater
thanTc.

2. The kernel activity caused by the timer interrupt consumes 4 to 5% of the total CPU cycles, but these
cycles are not accounted for properly. As can be seen in the trace illustrated in Figure 9.4, this activity
finishes before the next timer interrupt and hence does not get counted explicitly. Instead, it simply

9.3. CYCLE COUNTERS 459

reduces the number of cycles available for the process executing during the next time interval. This
will tend to increaseTm relative toTc.

3. When the processor switches from one task to another, the cache tends to perform poorly for a tran-
sient period until the instructions and data for the new task get loaded into the cache. Thus the
processor does not run as efficiently when switching between our program and other activities as it
would if it executed our program continuously. This factor will tend to increaseTm relative toTc.

We discuss how we can determine the value ofTc for our sample computation later in this chapter.

Figure 9.8 shows the results of this experiment running under two different loading conditions. The graphs
show our measurements of the error rate, defined as the value of(Tm � Tc)=Tc as a function ofTc. This
error measure is negative whenTm underestimatesTc and is positive whenTm overestimatesTc. The two
series show measurements taken under two different loading conditions. The series labeled “Load 1” shows
the case where the process performing the sample computation is the only active process. The series labeled
“Load 11” shows the case where 10 other processes are also attempting the same computation. The latter
represents a very heavy load condition; the system is noticeably slow responding to keystrokes and other
service requests. Observe the wide range of error values shown on this graph. In general, only measurements
that are within�10% of the true value are acceptable, and hence we want only errors ranging from around
�0:1 to +0:1.

Below around 100 ms (10 timer intervals), the measurements are not at all accurate due to the coarse-
ness of the timing method. Interval counting is only useful for measuring relatively long computations—
100,000,000 clock cycles or more. Beyond this, we see that the error generally ranges between0:0 and0:1,
that is, up to 10% error. There is no noticeable difference between the two different loading conditions.
Notice also that the errors have a positive bias; the average error for all measurements withTm � 100ms is
1.04, due to the fact that the timer interrupts are consuming around 4% of the CPU time.

These experiments show that the process timers are useful only for getting approximate values of program
performance. They are too coarse-grained to use for any measurement having duration of less than 100 ms.
On this machine they have a systematic bias, overestimating computation times by an average of around
4%. The main virtue of this timing mechanism is that its accuracy does not depend strongly on the system
load.

9.3 Cycle Counters

To provide greater precision for timing measurements, many processors also contain a timer that operates at
the clock cycle level. This timer is a special register that gets incremented every single clock cycle. Special
machine instructions can be used to read the value of the counter. Not all processors have such counters,
and those that do vary in the implementation details. As a result, there is no uniform, platform-independent
interface by which programmers can make use of these counters. On the other hand, with just a small
amount of assembly code, it is generally easy to create a program interface for any specific machine.

460 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

9.3.1 IA32 Cycle Counters

All of the timings we have reported so far were measured using the IA32 cycle counter. With the IA32
architecture, cycle counters were introduced in conjunction with the “P6” microarchitecture (the PentiumPro
and its successors). The cycle counter is a 64-bit, unsigned number. For a processor operating with a 1 GHz
clock, this counter will wrap around from264 � 1 to 0 only once every1:8 � 1010 seconds, or every 570
years. On the other hand, if we consider only the low order 32 bits of this counter as an unsigned integer, this
value will wrap around every 4.3 seconds. One can therefore understand why the IA32 designers decided to
implement a 64-bit counter.

The IA32 counter is accessed with therdtsc (for “read time stamp counter”) instruction. This instruction
takes no arguments. It sets register%edx to the high-order 32 bits of the counter and register%eax to the
low-order 32 bits. To provide a C program interface, we would like to encapsulate this instruction within a
procedure:

void access counter(unsigned *hi, unsigned *lo);

This procedure should set locationhi to the high-order 32 bits of the counter andlo to the low-order 32
bits. Implementingaccess counter is a simple exercise in using the embedded assembly feature of
GCC, as described in Section 3.15. The code is shown in Figure 9.9.

Based on this routine, we can now implement a pair of functions that can be used to measure the total
number of cycles that elapse between any two time points:

#include "clock.h"

void start counter();

double get counter();
Returns: number of cycles since last call tostart counter

We return the time as adouble to avoid the possible overflow problems of using just a 32-bit integer.
The code for these two routines is also shown in Figure 9.9. It builds on our understanding of unsigned
arithmetic to perform the double-precision subtraction and to convert the result to adouble.

9.4 Measuring Program Execution Time with Cycle Counters

Cycle counters provide a very precise tool for measuring the time that elapses between two different points in
the execution of a program. Typically, however, we are interested in measuring the time required to execute
some particular piece of code. Our cycle counter routines compute the total number of cycles between a
call tostart counter and a call toget counter. They do not keep track of which process uses those
cycles or whether the processor is operating in kernel or user mode. We must be careful when using such a
measuring device to determine execution time. We investigate some of these difficulties and how they can
be overcome.

As an example of code that uses the cycle counter, the routine in Figure 9.10 provides a way to determine
the clock rate of a processor. Testing this function on several systems with parametersleeptime equal

9.4. MEASURING PROGRAM EXECUTION TIME WITH CYCLE COUNTERS 461

code/perf/clock.c

1 /* Initialize the cycle counter */
2 static unsigned cyc_hi = 0;
3 static unsigned cyc_lo = 0;
4

5

6 /* Set *hi and *lo to the high and low order bits of the cycle counter.
7 Implementation requires assembly code to use the rdtsc instruction. */
8 void access_counter(unsigned *hi, unsigned *lo)
9 {

10 asm("rdtsc; movl %%edx,%0; movl %%eax,%1" /* Read cycle counter */
11 : "=r" (*hi), "=r" (*lo) /* and move results to */
12 : /* No input */ /* the two outputs */
13 : "%edx", "%eax");
14 }
15

16 /* Record the current value of the cycle counter. */
17 void start_counter()
18 {
19 access_counter(&cyc_hi, &cyc_lo);
20 }
21

22 /* Return the number of cycles since the last call to start_counter. */
23 double get_counter()
24 {
25 unsigned ncyc_hi, ncyc_lo;
26 unsigned hi, lo, borrow;
27 double result;
28

29 /* Get cycle counter */
30 access_counter(&ncyc_hi, &ncyc_lo);
31

32 /* Do double precision subtraction */
33 lo = ncyc_lo - cyc_lo;
34 borrow = lo > ncyc_lo;
35 hi = ncyc_hi - cyc_hi - borrow;
36 result = (double) hi * (1 << 30) * 4 + lo;
37 if (result < 0) {
38 fprintf(stderr, "Error: counter returns neg value: %.0f\n", result);
39 }
40 return result;
41 }

code/perf/clock.c

Figure 9.9:Code Implementing Program Interface to IA32 Cycle CounterAssembly code is required
to make use of the counter reading instruction.

462 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

code/perf/clock.c

1 /* Estimate the clock rate by measuring the cycles that elapse */
2 /* while sleeping for sleeptime seconds */
3 double mhz(int verbose, int sleeptime)
4 {
5 double rate;
6

7 start_counter();
8 sleep(sleeptime);
9 rate = get_counter() / (1e6*sleeptime);

10 if (verbose)
11 printf("Processor clock rate ˜= %.1f MHz\n", rate);
12 return rate;
13 }

code/perf/clock.c

Figure 9.10:mhz: Determines the clock rate of a processor.

to 1 shows that it reports a clock rate within 1.0% of the rated performance for the processor. This example
clearly shows that our routines measure elapsed time rather than the time used by a particular process.
When our program callssleep, the operating system will not resume the process until the sleep time of
one second has expired. The cycles that elapse during that time are spent executing other processes.

9.4.1 The Effects of Context Switching

A naive way to measuring the run time of some procedureP is to simply use the cycle counter to time one
execution ofP, as in the following code:

1 double time_P()
2 {
3 start_counter();
4 P();
5 return get_counter();
6 }

This could easily yield misleading results if some other process also executes between the two calls to the
counter routines. This is especially a problem if either the machine is heavily loaded, or if the run time
for P is especially long. This phenomenon is illustrated in Figure 9.11. This figure shows the result of
repeatedly measuring a program that computes the sum of an array of 131,072 integers. The times have
been converted into milliseconds. Note that the run times are all over 36 ms, greater than the timer interval.
Two trials were run, each measuring 18 executions of the exact same procedure. The series labeled “Load
1” indicates the run times on a lightly loaded machine, where this is the only process actively running. All
of the measurements are within 3.4% of the minimum run time. The series labeled “Load 4” indicates the
run times when three other processes making heavy use of the CPU and memory system are also running.

9.4. MEASURING PROGRAM EXECUTION TIME WITH CYCLE COUNTERS 463

Measurement Examples: Large Array

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Sample

T
im

e
 (

m
s)

Load 1

Load 4

Figure 9.11:Measurements of Long Duration Procedure under Different Loading ConditionsOn a
lightly loaded system, the results are consistent across samples, but on a heavily loaded system, many of the
measurements overestimate the true execution time.

The first seven of these samples have times within 2% of the fastest Load 1 sample, but others range as
much as 4.3 times greater.

As this example illustrates, context switching causes extreme variations in execution time. If a process is
swapped out for an entire time interval it will fall behind by millions of instructions. Clearly, any scheme
we devise to measure program execution times must avoid such large errors.

9.4.2 Caching and Other Effects

The effects of caching and branch prediction create smaller timing variations than does context switching.
As an example, Figure 9.12 shows a series of measurements similar to those in Figure 9.11, except that
the array is 4 times smaller, yielding execution times of around 8 ms. These execution times are shorter
than the timer interval and therefore the executions are less likely to be affected by context switching. We
see significant variations among the measurements—the slowest is 1.1 times slower the fastest, but none of
these variations are as extreme as would be caused by context switching.

The variations shown in Figure 9.12 are due mainly to cache effects. The time to execute a block of code
can depend greatly on whether or not the data and the instructions used by this code are present in the data
and instruction caches at the beginning of execution.

As an example, we wrote two identical procedures,procA andprocB, that are given a pointer of type
double * and set the eight consecutive elements starting at this pointer to 0.0. We measured the number
of clock cycles for various calls to these procedures with three different pointers:b1, b2, andb3. The call
sequence and the resulting measurements are shown in Figure 9.13. The timings vary by almost a factor of
4, even though the calls perform identical computations. There were no conditional branches in this code,
and hence we conclude that the variations must be due to cache effects.

464 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

Measurement Examples: Small Array

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Sample

T
im

e
 (

m
s)

Load 1

Load 4

Figure 9.12:Measurements of Short Duration Procedure under Different Loading ConditionsThe
variations are not as extreme as they were in Figure 9.11, but they are still unacceptably large.

Measurement Call Cycles
1 procA(b1) 399
2 procA(b2) 132
3 procA(b3) 134
4 procA(b1) 100
5 procB(b1) 317
6 procB(b2) 100

Figure 9.13:Measurement Sequence with Identical Procedures Operating on Identical Data Sets.The
variations in these measurements are due to different miss conditions in the instruction and data caches.

9.4. MEASURING PROGRAM EXECUTION TIME WITH CYCLE COUNTERS 465

Practice Problem 9.6:

Let c be the number of cycles that would be required by a call toprocA or procB if there were no
cache misses. For each computation, the cycles wasted due to cache misses can be apportioned between
the different items needing to be brought into the cache:

� The instructions implementing the measurement code (e.g.,start counter , get counter ,
and so on). Let the number of cycles for this bem.

� The instructions implementing the procedure being measured (procA or procB). Let the number
of cycles for this bep.

� The data locations being updated (designated byb1 , b2 , or b3). Let the number of cycles for this
bed.

Based on the measurements shown in Figure 9.13, give estimates of the values ofc,m, p, andd.

Given the variations shown in these measurements, a natural question to ask is “Which one is right?” Un-
fortunately, the answer to this question is not simple. It depends on both the conditions under which our
code will actually be used as well as the conditions under which we can get reliable measurements. One
problem is that the measurements are not even consistent from one run to the next. The measurement table
shown in Figure 9.13 show the data for just one testing run. In repeated tests, we have seen Measurement
1 range from 317 and 606, and Measurement 5 range from 301 to 326. On the other hand, the other four
measurements only vary by at most a few cycles from one run to another.

Clearly Measurement 1 is an overestimate, because it includes the cost of loading the measurement code
and data structures into cache. Furthermore, it is the most subject to wide variations. Measurement 5
includes the cost of loadingprocB into the cache. This is also subject to significant variations. In most real
applications, the same code is executed repeatedly. As a result, the time to load the code into the instruction
cache will be relatively insignificant. Our example measurements are somewhat artificial in that the effects
of instruction cache misses were proportionally greater than what would occur in a real application.

To measure the time required by a procedureP where the effects of instruction cache misses are minimized
we can execute the following code:

1 double time_P_warm()
2 {
3 P(); /* Warm up the cache */
4 start_counter();
5 P();
6 return get_counter();
7 }

ExecutingP once before starting the measurement will have the effect of bringing the code used byP into
the instruction cache.

The code above also minimizes the effects of data cache misses, since the first execution ofP will also
have the effect of bringing the data accessed byP into the data cache. For proceduresprocA or procB, a
measurement bytime P warm would yield 100 cycles. This would be the right conditions to measure if
we expect our code to access the same data repeatedly. For some applications, however, we would be more

466 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

likely to access new data with each execution. For example, a procedure that copies data from one region of
memory to another would most likely be called under conditions where neither block is cached. Procedure
time_P_warm would tend to underestimate the execution time for such a procedure. ForprocA or
procB, it would yield 100 rather than the 132 to 134 measured when the procedure is applied to uncached
data.

To force the timing code to measure the performance of a procedure where none of the data is initially
cached, we can flush the cache of any useful data before performing the actual measurement. The following
procedure does this for a system with caches of no more than 512KB:

code/perf/timep.c

1 /* Number of bytes in the largest cache to be cleared */
2 #define CBYTES (1<<19)
3 #define CINTS (CBYTES/sizeof(int))
4

5 /* A large array to bring into cache */
6 static int dummy[CINTS];
7 volatile int sink;
8

9 /* Evict the existing blocks from the data caches */
10 void clear_cache()
11 {
12 int i;
13 int sum = 0;
14

15 for (i = 0; i < CINTS; i++)
16 dummy[i] = 3;
17 for (i = 0; i < CINTS; i++)
18 sum += dummy[i];
19 sink = sum;
20 }

code/perf/timep.c

This procedure simply performs a computation over a very large arraydummy, effectively evicting every-
thing else from the cache. The code has several peculiar features to avoid common pitfalls. It both stores
values intodummyand reads them back so that it will be cached regardless of the cache allocation pol-
icy. It performs a computation using array values and stores the result to a global integer (the declaration
volatile indicates that any update to this variable must be performed), so that a clever optimizing com-
piler will not optimize away this part of the code.

With this procedure, we can get a measurement ofP under conditions where its instructions are cached but
its data is not by the following procedure:

1 double time_P_cold()
2 {
3 P(); /* Warm up data caches */
4 clear_cache(); /* Clear data caches */
5 start_counter();

9.4. MEASURING PROGRAM EXECUTION TIME WITH CYCLE COUNTERS 467

6 P();
7 return get_counter();
8 }

Of course, even this method has deficiencies. On a machine with a unified L2 cache, procedureclear cache
will cause all instructions fromP to be evicted. Fortunately, the instructions in the L1 instruction cache will
remain. Procedureclear cache also evicts much of the runtime stack from the cache, leading to an
overestimate of the time required byP under more realistic conditions.

As this discussion shows, the effects of caching pose particular difficulties for performance measurement.
Programmers have little control over what instructions and data get loaded into the caches and what gets
evicted when new values must be loaded. At best, we can set up measurement conditions that somewhat
match the anticipated conditions of our application by some combination of cache flushing and loading.

As mentioned earlier, the branch prediction logic also influences program performance, since the time
penalty caused by branch instruction is much less when the branch direction and target are correctly pre-
dicted. This logic makes its predictions based on the past history of branch instructions that have been exe-
cuted. When the system switches from one process to another, it initially makes predictions about branches
in the new process based on those executed in the previous process. In practice, however, these effects cre-
ate only minor performance variations from one execution of a program to another. The predictions depend
most strongly on recent branches, and hence the influence by one process on another is very small.

9.4.3 TheK-Best Measurement Scheme

Although our measurements using cycle timers are vulnerable to errors due to context switching, cache
operation, and branch prediction, one important feature is that the errors will always cause overestimates of
the true execution time. Nothing done by the processor can artificially speed up a program. We can exploit
this property to get reliable measurements of execution times even when there are variances due to context
switching and other effects.

Suppose we repeatedly execute a procedure and measure the number of cycles using eithertime_P_warm
or time_P_cold. We record the K (e.g., 3) fastest times. If we find these measurements agree within
some small tolerance� (e.g., 0.1%), then it seems reasonable that the fastest of these represents the true
execution time of the procedure. As an example, suppose for the runs shown in Figure 9.11 we set the
tolerance to 1.0%. Then the fastest six measurements for Load 1 are within this tolerance, as are the fastest
three for Load 4. We would therefore conclude that the run times are 35.98 ms and 35.89 ms, respectively.
For the Load 4 case, we also see measurements clustered around 125.3 ms, and six around 155.8 ms, but we
can safely discard these as overestimates.

We call this approach to measurement the “K-Best Scheme.” It requires setting three parameters:

K: The number of measurements we require to be within some close range of the fastest.

�: How close the measurements must be. That is, if the measurements in ascending order are labeled
v1; v2; : : : ; vi; : : : , then we require(1 + �)v1 � vK .

M : The maximum number of measurements before we give up.

468 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

Our implementation performs a series of trials, and maintains an array of theK fastest times in sorted order.
With each new measurement, it checks whether it is faster than the current one in array positionK. If so,
it replaces array elementK and then performs a series of interchanges between adjacent array positions to
move this value to the appropriate position in the array. This process continues until either the error criterion
is satisfied, in which case we indicate that the measurements have “converged,” or we exceed the limitM ,
in which case we indicate that the measurements failed to converge.

Experimental Evaluation

We conducted a series of experiments to test the accuracy of theK-best measurement scheme. Some issues
we wished to determine were:

1. Does this scheme produce accurate measurements?

2. When and how quickly do the measurements converge?

3. Can the scheme determine the accuracy of its own measurements?

One challenge in designing such an experiment is to know the actual run times of the programs we are trying
to measure. Only then can we determine the accuracy of our measurements. We know that our cycle timer
gives accurate results as long as the computation we are measuring do not get interrupted. The likelihood of
an interrupt is small for computations that are much shorter than the timer interval and when running on a
lightly loaded machine. We exploit these properties to get reliable estimates of true run times.

As our object to measure, we used a procedure that repeatedly writes values to an array of 2,048 integers
and then reads them back, similar to the code forclear cache. By setting the number of repetitionsr,
we could create computations requiring a range of times. We first determined theexpectedrun time of this
procedure as a function ofr, denotedT (r), by timing it forr ranging from 1 to 10 (giving times ranging from
0.09 to 0.9 milliseconds), and performing a least squares fit to find a formula of the formT (r) =mr+b. By
using small values ofr, performing 100 measurements for each value ofr, and running on a lightly loaded
system we were able to get a very accurate characterization ofT (r). Our least squares analysis indicated
that the formulaT (r) = 49273:4r + 166 (in units of clock cycles) fits this data with a maximum error less
than 0.04%. This gave us confidence in our ability to accurately predict the actual computation time for the
procedure as a function ofr.

We then measured performance using theK-best scheme with parametersK = 3, � = 0:001, andM = 30.
We did this for a number of values ofr to get expected run times in a range from 0.27 to 50 milliseconds.
For each of the resulting measurementsM(r) we computed the measurement errorEm(r) asEm(r) =
(M(r) � T (r))=T (r). Figure 9.14 shows an experimental validation of theK-best scheme on an Intel
Pentium III running Linux. In this figure we show the measurement errorEm(r) as a function ofT (r),
where we showT (r) in units of milliseconds. Note that we showEm(r) on a logarithmic scale; each
horizontal line represents an order of magnitude difference in measurement error. In order to be accurate
within 1% we must have an error below0:01. We do not attempt to show any errors smaller than0:001 (i.e.,
0.1%), since our testing setup does not provide high enough precision for this.

The three series indicate the errors under three different loading conditions. Observe that in all three cases
the measurements for run times shorter than around 7.5 ms were very accurate. Thus, our scheme can be

9.4. MEASURING PROGRAM EXECUTION TIME WITH CYCLE COUNTERS 469

Intel Pentium III, Linux

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
ea

su
re

d
:E

xp
ec

te
d

 E
rr

o
r

Load 1

Load 2

Load 11

Figure 9.14:Experimental Validation if K-Best Measurement Scheme on Linux SystemWe can con-
sistently obtain very accurate measurements (around 0.1% error) for execution times up to around 8 ms.
Beyond this, we encounter a systematic overestimate of around 4 to 6% on a lightly loaded machine and
very poor results on a heavily loaded machine.

470 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

used to measure relatively short execution times even on a heavily loaded machine. Series “Load 1” indicates
the case where there is only one active process. For execution times above 10 ms, the measurementsTm
consistently overestimate the computation timesTc by around 4 to 6%. These overestimates are due to the
time spent handling timer interrupts. They are consistent with the trace shown in Figure 9.3, showing that
even on a lightly loaded machine, an application program can execute for only 95 to 96% of the time. Series
“Load 2” and “Load 11” show the performance when other processes are actively executing. In both cases,
the measurements become hopelessly inaccurate for execution times above around 7 ms. Note that an error
of 1.0 means thatTm is twice Tc, while an error of 10.0 means thatTm is eleven times greater thanTc.
Evidently, the operating system schedules each active process for one time interval. Whenn processes are
active, each one only gets1=nth of the processor time.

From these results, we conclude that theK-best scheme provides accurate results only for very short com-
putations. It is not really good enough for measuring execution times longer than around 7 ms, especially in
the presence of other active processes.

Unfortunately, we found that our measurement program could not reliably determine whether or not it
had obtained an accurate measurement. Our measurement procedure computes a prediction of its error as
Ep(r) = (vk � v1)=v1, wherevi is thei th smallest measurement. That is, it computes how well it achieves
our convergence criterion. We found these estimates to be wildly optimistic. Even for the Load 11 case,
where the measurements were off by a factor of 10, the program consistently estimated its error to be less
than0:001.

Setting the value ofK

In our earlier experiments, we arbitrarily chose a value of 3 for the parameterK, determining the number of
measurements we require to be within a small factor of the fastest in order to terminate. To more carefully
evaluate the effect of this factor, we performed a series of measurements using values ofK ranging from 1
to 5, as shown in Figure 9.15. We performed these measurements for execution times ranging up to 9 ms,
since this is the upper limit of times for which our scheme can get useful results.

When we haveK = 1, the procedure returns after making a single measurement. This can yield highly
erratic results, especially when the machine is heavily loaded. If a timer interrupt happens to occur, the
result is extremely inaccurate. Even without such a catastrophic event, the measurements will be subject to
many sources of inaccuracy. SettingK to 2 greatly improves the accuracy. For execution times less than
5 ms, we consistently get accuracy better than 0.1%. SettingK even higher gives better results, both in
consistency and accuracy, up to a limit of around 8 ms. These experiments show that our initial guess of
K = 3 is a reasonable choice.

Compensating for Timer Interrupt Handling

The timer interrupts occur in a predictable way and cause a large systematic error in our measurements for
execution times over around 7 ms. It would be good to remove this bias by subtracting from the measured
run time for a program an estimate of the time spent handling timer interrupts. This requires determining
two factors.

9.4. MEASURING PROGRAM EXECUTION TIME WITH CYCLE COUNTERS 471

Pentium III, Linux
K = 1

0.001

0.01

0.1

1

10

100

0 2 4 6 8 10

Expected CPU Time (ms)

Load 1

Load 2

Load 11

M
ea

su
re

d
:E

xp
ec

te
d

 E
rr

o
r

Pentium III, Linux
K = 2

0.001

0.01

0.1

1

10

100

0 2 4 6 8 10

Expected CPU Time (ms)

Load 1

Load 2

Load 11
M

ea
su

re
d

:E
xp

ec
te

d
 E

rr
o

r

Pentium III, Linux
K = 3

0.001

0.01

0.1

1

10

100

0 2 4 6 8 10

Expected CPU Time (ms)

Load 1

Load 2

Load 11

M
ea

su
re

d
:E

xp
ec

te
d

 E
rr

o
r

Pentium III, Linux
K = 5

0.001

0.01

0.1

1

10

100

0 2 4 6 8 10

Expected CPU Time (ms)

M
e

a
s

u
re

d
:E

x
p

e
c

te
d

 E
rr

o
r

Load 1

Load 2

Load 11

Figure 9.15:Effectiveness ofK-best scheme for different values ofK. K must be at least 2 to have
reasonable accuracy. Values greater than 2 help on heavily loaded systems as the program times approach
the timer interval.

472 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

Intel Pentium III, Linux
Compensate for Timer Interrupt Handling

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
ea

su
re

d
:E

xp
ec

te
d

 E
rr

o
r

Load 1

Load 2

Load 11

Figure 9.16:Measurements with Compensation for Timer Interrupt Overhead This approach greatly
improves the accuracy of longer duration measurements on a lightly loaded machine.

1. We must determine how much time is required to handle a single timer interrupt. To preserve the
property that we never underestimate the execution time of the procedure, we should determine the
minimum number of clock cycles required to service a timer interrupt. That way we will never
overcompensate.

2. We must determine how many timer interrupts occur during the period we are measuring.

Using a method similar to that used to generate the traces shown in Figures 9.3 and 9.5, we can detect
periods of inactivity and determine their duration. Some of these will be due to timer interrupts, and some
will be due to other system events. We can determine whether a timer interrupt has occurred by using the
times procedure, since the value it returns will be increase one tick each time a timer interrupt occurs.
We conducted such an evaluation for 100 periods of inactivity and found that the minimum timer interrupt
processing period required 251,466 cycles. To determine the number of timer interrupts that occur during
the program we are measuring, we simply call thetimes function twice—once before and once after the
program, and then compute their difference.

Figure 9.16 shows the results obtained by this revised measurement scheme. As the figure illustrates, we
can now get very accurate (within 1.0%) measurements on a lightly loaded machine, even for programs that
execute for multiple time intervals. By removing the systematic error of timer interrupts, we now have a
very reliable measurement scheme. On the other hand, we can see that this compensation does not help for
programs running on heavily loaded machines.

9.4. MEASURING PROGRAM EXECUTION TIME WITH CYCLE COUNTERS 473

Intel Pentium III, Linux

0.0001

0.001

0.01

0.1

1

10

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
e

a
s

u
re

d
:E

x
p

e
c

te
d

 E
rr

o
r

Load 1

Load 11

Intel Pentium III, Linux

0.0001

0.001

0.01

0.1

1

10

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
e

a
s

u
re

d
:E

x
p

e
c

te
d

 E
rr

o
r

Load 1

Load 11

Figure 9.17:Experimental Validation if K-Best Measurement Scheme on IA32/Linux System with
Older Version of the Kernel. On this system we could get more accurate measurements even for programs
with longer execution times, especially on lightly loaded machine.

Evaluation on Other Machines

Since our scheme depends heavily on the scheduling policy of the operating system, we also ran experiments
on three other system configurations:

1. Intel Pentium III running older version (2.0.36 vs. 2.2.16) of the Linux kernel.

2. Intel Pentium II running Windows-NT. Although this system uses an IA32 processor, the operating
system is fundamentally different from Linux.

3. Compaq Alpha running Tru64 Unix. This uses a very different processor, but the operating system is
similar to Linux.

As Figure 9.17 indicates, the performance characteristics under an older version of Linux are very different.
On a lightly loaded machine, the measurements are within 0.2% accuracy for programs of almost arbitrary
duration. We found that the processor spends only around 3500 cycles processing a timer interrupt with this
version of Linux. Even on a heavily loaded machine, it will allow processes to run up to around 180 ms
at a time. This experiment shows that the internal details of the operating system can greatly affect system
performance and our ability to obtain accurate measurements.

Figure 9.18 shows the results on the Windows-NT system. Overall, the results are similar to those for
the older Linux system. For short computations, or on a lightly loaded machine, we could get accurate

474 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

Pentium II, Windows-NT

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300

Expected CPU Time (ms)

Load 1

Load 2

Load 11

M
ea

su
re

d
:E

xp
ec

te
d

 E
rr

o
r

Figure 9.18:Experimental Validation of K-Best Measurement Scheme on Windows-NT System.On a
lightly loaded system, we can consistently obtain accurate measurements (around 1.0% error). On a heavily
loaded system, the accuracy becomes very poor for measurements longer than around 48 ms.

9.4. MEASURING PROGRAM EXECUTION TIME WITH CYCLE COUNTERS 475

Compaq Alpha

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

Load 1

Load 2

Load 11

M
ea

su
re

d
:E

xp
ec

te
d

 E
rr

o
r

Figure 9.19:Experimental Validation if K-Best Measurement Scheme on Compaq Alpha System.For
a lightly loaded system, we can consistently obtain accurate (< 1.0% error) measurements. For a heavily
loaded system, durations beyond around 10 ms cannot be measured accurately.

measurements. In this case, our accuracies were around 0.01 (i.e., 1.0%), rather than 0.001. Still, this is
good enough for most applications. In addition, our threshold between reliable and unreliable measurements
on a heavily loaded machine was around 48 ms. One interesting feature is that we were sometimes able
to get accurate measurements on a heavily loaded machine even for computations ranging up to 245 ms.
Evidently, the NT scheduler will sometimes allow processes to remain active for longer durations, but we
cannot rely on this property.

The Compaq Alpha results are shown in Figure 9.19. Again, we find that on a lightly loaded machine,
programs of almost arbitrary duration can be measured with an error of less than 1%. On a heavily loaded
machine, only programs with durations less than around 10 ms can be measured accurately.

Practice Problem 9.7:

Suppose we wish to measure a procedure that requirest milliseconds. The machine is heavily loaded
and hence will not allow our measurement process to run more than 50 ms at a time.

A. Each trial involves measuring one execution of the procedure. What is the probability this trial will
be allowed to run to completion without being swapped out, assuming it starts at some arbitrary
point within the 50 ms time segment? Express your answer as a function oft, considering all
possible values oft.

B. What is the expected number of trials required so that three of them are reliable measurements of
the procedure, i.e., each runs within a single time segment? Express your answer as a function of
t. What values do you predict fort = 20 andt = 40?

476 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

Observations

These experiments demonstrate that theK-best measurement scheme works fairly well on a variety of
machines. On lightly loaded processors, it consistently gets accurate results on most machines, even for
computations with long durations. Only the newer version of Linux incurs a sufficiently high timer interrupt
overhead to seriously affect the measurement accuracy. For this system, compensating for this overhead
greatly improves the measurement accuracy.

On heavily loaded machines, getting accurate measurements becomes difficult as execution times become
longer. Most systems have some maximum execution time beyond which the measurement accuracy be-
comes very poor. The exact value of this threshold is highly system dependent, but typically ranges between
10 and 200 milliseconds.

9.5 Time-of-Day Measurements

Our use of the IA32 cycle counter provides high-precision timing measurements, but it has the drawback
that it only works on IA32 systems. It would be good to have a more portable solution. We have seen that
the library functionstimes andclock are implemented using interval counters and hence are not very
accurate.

Another possibility is to use the library functiongettimeofday. This function queries the system clock
to determine the current date and time.

#include "time.h"

struct timeval f
long tv sec; /* Seconds */
long tv usec; /* Microseconds */

g

int gettimeofday(struct timeval *tv, NULL);
Returns: 0 for success, -1 for failure

The function writes the time into a structure passed by the caller that includes one field in units of seconds,
and another field in units of microseconds. The first field encodes the total number of seconds that have
elapsed since January 1, 1970. (This is the standard reference point for all Unix systems.) Note that
the second argument togettimeofday should simply beNULLon Linux systems, since it refers to an
unimplemented feature for performing time zone correction.

Practice Problem 9.8:

On what date will thetv sec field written bygettimeofday become negative on a 32-bit machine?

As shown in Figure 9.20, we can can usegettimeofday to create a pair of timer functionsstart timer
andget timer that are similar to our cycle-timing functions, except that they measure time in seconds
rather than clock cycles.

9.5. TIME-OF-DAY MEASUREMENTS 477

code/perf/tod.c

1 #include <sys/time.h>
2 #include <unistd.h>
3

4 static struct timeval tstart;
5

6 /* Record current time */
7 void start_timer()
8 {
9 gettimeofday(&tstart, NULL);

10 }
11

12 /* Get number of seconds since last call to start_timer */
13 double get_timer()
14 {
15 struct timeval tfinish;
16 long sec, usec;
17

18 gettimeofday(&tfinish, NULL);
19 sec = tfinish.tv_sec - tstart.tv_sec;
20 usec = tfinish.tv_usec - tstart.tv_usec;
21 return sec + 1e-6*usec;
22 }

code/perf/tod.c

Figure 9.20: Timing Procedures Using Unix Time of Day Clock. This code is very portable, but its
accuracy depends on how the clock is implemented.

System Resolution (�s) Latency (�s)
Pentium II, Windows-NT 10,000 5.4
Compaq Alpha 977 0.9
Pentium III Linux 1 0.9
Sun UltraSparc 2 1.1

Figure 9.21:Characteristics of gettimeofday Implementations. Some implementations use interval
counting, while others use cycle timers. This greatly affects the measurement precision.

478 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

The utility of this timing mechanism depends on howgettimeofday is implemented, and this varies from
one system to another. Although the fact that the function generates a measurement in units of microseconds
looks very promising, it turns out that the measurements are not always that precise. Figure 9.21 shows the
result of testing the function on several different systems. We define theresolutionof the function to be the
minimum time value the timer can resolve. We computed this by repeatedly callinggettimeofday until
the value written to the first argument changed. The resolution is then the number of microseconds by which
it changed. As indicated in the table, some implementations can actually resolve times at a microsecond
level, while others are much less precise. These variations occur, because some systems use cycle counters
to implement the function, while others use interval counting. In the former case, the resolution can be very
high—potentially higher than the 1 microsecond resolution provided by the data representation. In the latter
case, the resolution will be poor—no better than what is provided by functionstimes andclock.

Figure 9.21 also shows thelatencyrequired by a call toget timer on various systems. This property
indicates the minimum time required for a call to the function. We computed this by repeatedly calling the
function until one second had elapsed and dividing 1 by the number of calls. As can be seen, this function
requires around 1-microsecond on most systems, and several microseconds on others. By comparison, our
procedureget counter requires only around 0.2 microseconds per call. In general, system calls involve
more overhead than ordinary function calls. This latency also limits the precision of our measurements.
Even if the data structure allowed expressing time in units with higher resolution, it is unclear how much
more precisely we could measure time when each measurement incurs such a long delay.

Figure 9.22 shows the performance we get from an implementation of theK-best measurement scheme
using gettimeofday rather than our own functions to access the cycle counter. We show the results
on two different machines to illustrate the effect of the time resolution on accuracy. The measurements
on a Windows-NT system show characteristics similar to those we found for Linux usingtimes (Figure
9.8). Sincegettimeofday is implemented using the process timers, the error can be negative or positive,
and it is especially erratic for short duration measurements. The accuracy improves for longer durations,
to the point where the error is less than 2.0% for durations greater than 200 ms. The measurements on
a Linux system give results similar to those seen when making direct use of cycle counters. This can be
seen by comparing the measurements to the Load 1 results in Figure 9.14 (without compensation) and in
Figure 9.16 (with compensation). Using compensation, we can achieve better than 0.04% accuracy, even
for measurements as long as 300 ms. Thus,gettimeofday performs just as well as directly accessing
the cycle counter on this machine.

9.6 Putting it Together: An Experimental Protocol

We can summarize our experimental findings in the form of a protocol to determine how to answer the
question “How fast does ProgramX run on MachineY ?”

� If the anticipated run times ofX are long (e.g., greater than 1.0 second), then interval counting should
work well enough and be less sensitive to processor load.

� If the anticipated run times ofX are in a range of around 0.01 to 1.0 seconds, then it is essential to
perform measurements on a lightly loaded system, and to use accurate, cycle-based timing. We should

9.6. PUTTING IT TOGETHER: AN EXPERIMENTAL PROTOCOL 479

Using gettimeofday

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
e

a
s

u
re

d
:E

x
p

e
c

te
d

 E
rr

o
r

Win-NT

Linux

Linux-comp

Figure 9.22:Experimental Validation if K-Best Measurement Scheme Usinggettimeofday Func-
tion. Linux implements this function using cycle counters and hence achieve the same accuracy as do our
own timing routines. Windows-NT implements this function using interval counting, and hence the accuracy
is low, especially for small duration measurements.

480 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

perform tests of thegettimeofday library function to determine whether its implementation on
machineY is cycle based or interval based.

– If the function is cycle based, then use it as the basis for theK-best timing function.

– If the function is interval based, then we must find some method of using the machine’s cycle
counters. This may require assembly language coding.

� If the anticipated run times ofX are less than around 0.01 second, then accurate measurements can be
performed even on a heavily loaded system, as long as it is uses cycle-based timing. We then proceed
in implementing aK-best timing function using eithergettimeofday or by direct access to the
machine’s cycle counter.

9.7 Looking into the Future

There are several features that are being incorporated into systems that will have significant impact on
performance measurements.

� Process-specific cycle timing. It is relatively easy for the operating system to manage the cycle counter
so that it indicates the elapsed number of cycles for a specific process. All that is required is to store
the count as part of the process’ state. Then when the process is reactivated, the cycle counter is set
to the value it had when the process was last deactivated, effectively freezing the counter while the
process is inactive. Of course, the counter will still be affected by the overhead of kernel operation
and by cache effects, but at least the effects of other processes will not be as severe. Already some
systems support this feature. In terms of our protocol, this will allow us to use cycle-based timing
to get accurate measurements of durations greater than around 0.01 second, even on heavily loaded
systems.

� Variable Rate Clocks. In an effort to reduce power consumption, future systems will vary the clock
rate, since power consumption is directly proportional to the clock rate. In that case, we will not
have a simple conversion between clock cycles and nanoseconds. It even becomes difficult to know
which unit should be used to express program performance. For a code optimizer, we gain more
insight by counting cycles, but for someone implementing an application with real-time performance
constraints, actual run times are more important.

9.8 Life in the Real World: An Implementation of the K-Best Measurement
Scheme

We have created a library functionfcyc that uses theK-best scheme to measure the number of clock cycles
required by a functionf .

9.9. SUMMARY 481

#include "clock.h"
#include "fcyc.h"

typedef void (*test funct)(int *);

double fcyc(test funct f, int *params);
Returns: number of cycles used byf runningparams

The parameterparams is a pointer to an integer. In general, it can point to an array of integers that form
the parameters of the function being measured. For example, when measuring the lower-case conversion
functionslower1 and lower2, we pass as a parameter a pointer to a singleint, which is the length of
the string to be converted. When generating the memory mountain (Chapter 6, we pass a pointer to an array
of size two containing the size and the stride.

There are a number of parameters that control the measurement, such as the values ofK, �, andM , and
whether or not to clear the cache before each measurement. These parameters can be set by functions that
are also in the library. See the filefcyc.h for details.

9.9 Summary

We have seen that computer systems have two fundamentally different methods of recording the passage of
time. Timer interrupts occur at a rate that seems very fast when viewed on a macroscopic scale but very
slow when viewed on a microscopic scale. By counting intervals, the system can get a very rough measure
of program execution time. This method is only useful for long-duration measurements. Cycle counters are
very fast, giving good measurements on a microscopic scale. For cycle counters that measure absolute time,
the effects of context switching can induce error ranging from small (on a lightly loaded system) to very
large (on a heavily loaded system). Thus, no scheme is ideal. It is important to understand the accuracy
achievable on a particular system.

Through this effort to devise an accurate timing scheme and to evaluate its performance on a number of
different systems, we have learned some important lessons:

� Every system is different.Details about the hardware, operating system, and library function imple-
mentations can have a significant effect on what kinds of programs can be measured and with what
accuracy.

� Experiments can be quite revealing.We gained a great deal of insight into the operating system
scheduler running simple experiments to generate activity traces. This led to the compensation scheme
that greatly improves accuracy on a lightly loaded Linux system. Given the variations from one system
to the next, and even from one release of the OS kernel to the next, it is important to be able to analyze
and understand the many aspects of a system that affect its performance.

� Getting accurate timings on heavily loaded systems is especially difficult.Most systems researchers
do all of their measurements on dedicated benchmark systems. They often run the system with many
OS and networking features disabled to reduce sources of unpredictable activity. Unfortunately, or-
dinary programmers to not have this luxury. They must share the system with other users. Even on

482 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

heavily loaded systems, ourK-best scheme is reasonably robust for measuring durations shorter than
the timer interval.

� The experimental setup must control some sources of performance variations.Cache effects can
greatly affect the execution time for a program. The conventional technique is to make sure that the
cache is flushed of any useful data before the timing begins, or else that it is loaded with any data that
would typically be in the cache initially.

Through a series of experiments, we were able to design and validate theK-best timing scheme, where
we make repeated measurements until the fastestK are within some close range to each other. On some
systems, we can make measurements using the library functions for finding the time of day. On other
systems, we must access the cycle counters via assembly code.

Bibliographic Notes

There is surprisingly little literature on program timing. Stevens’ Unix programming book [77] documents
all of the different library functions for program timing. Wadleigh and Crawford’s book on software opti-
mization [81] describe code profiling and standard timing functions.

Homework Problems

Homework Problem 9.9[Category 2]:

Determine the following based on the trace shown in Figure 9.3. Our program estimated the clock rate as
549.9 MHz. It then computed the millisecond timings in the trace by scaling the cycle counts. That is, for
a time expressed in cycles asc, the program computed the millisecond timing asc=549900. Unfortunately,
the program’s method of estimating the clock rate is imperfect, and hence some of the millisecond timings
are slightly inaccurate.

A. The timer interval for this machine is 10 ms. Which of the time periods above were initiated by a
timer interrupt?

B. Based on this trace, what is the minimum number of clock cycles required by the operating system to
service a timer interrupt?

C. From the trace data, and assuming the timer interval is exactly 10.0 ms, what can you infer as the
value of the true clock rate?

Homework Problem 9.10[Category 2]:

Write a program that uses library functionssleep and times to determine the approximate number of
clock ticks per second. Try compiling the program and running it on multiple systems. Try to find two
different systems that produce results that differ by at least a factor of two.

9.9. SUMMARY 483

Homework Problem 9.11[Category 1]:

We can use the cycle counter to generate activity traces such as was shown in Figures 9.3 and 9.5. Use the
functionsstart counter andget counter to write a function:

#include "clock.h"

int inactiveduration(int thresh);
Returns: Number of inactive cycles

This function continually checks the cycle counter and detects when two successive readings differ by more
thanthresh cycles, an indication that the process has been inactive. Return the duration (in clock cycles)
of that inactive period.

Homework Problem 9.12[Category 1]:

Suppose we call functionmhz (Figure 9.10) with parametersleeptime equal to 2. The system has a
10 ms timer interval. Assume thatsleep is implemented as follows. The processor maintains a counter
that is incremented by one every time a timer interrupt occurs. When the system executessleep(x), the
system schedules the process to be restarted when the counter reachest+100x, wheret is the current value
of the counter.

A. Let w denote the time that our process is inactive due to the call tosleep. Ignoring the various
overheads of function calls, timer interrupts, etc., what range of values canw have?

B. Suppose a call tomhzyields 1000.0. Again ignoring the various overheads, what is the possible range
of the true clock rate?

484 CHAPTER 9. MEASURING PROGRAM EXECUTION TIME

Chapter 10

Virtual Memory

Processes in a system share the CPU and main memory with other processes. However, sharing the main
memory poses some special challenges. As demand on the CPU increases, processes slow down in some
reasonably smooth way. But if too many processes need too much memory, then some of them will simply
not be able to run. When a program is out of space, it is out of luck.

Memory is also vulnerable to corruption. If some process inadvertently writes to the memory used by
another process, that process might fail in some bewildering fashion totally unrelated to the program logic.

In order to manage memory more efficiently and robustly, modern systems provide an abstraction of main
memory known asvirtual memory (VM). Virtual memory is an elegant interaction of hardware exceptions,
hardware address translation, main memory, disk files, and kernel software that provides each process with
a large, uniform, and private address space. With one clean mechanism, virtual memory provides three
important capabilities. (1) It uses main memory efficiently by treating it as a cache for an address space
stored on disk, keeping only the active areas in main memory, and transferring data back and forth between
disk and memory as needed. (2) It simplifies memory management by providing each process with a uniform
address space. (3) It protects the address space of each process from corruption by other processes.

Virtual memory is one of the great ideas in computer systems. A big reason for its success is that it works
silently and automatically, without any intervention from the application programmer. Since virtual memory
works so well behind the scenes, why would a programmer need to understand it? There are several reasons.

� Virtual memory is central.Virtual memory pervades all levels of computer systems, playing key roles
in the design of hardware exceptions, assemblers, linkers, loaders, shared objects, files, and processes.
Understanding virtual memory will help you better understand how systems work in general.

� Virtual memory is powerful.Virtual memory gives applications powerful capabilities to create and
destroy chunks of memory, map chunks of memory to portions of disk files, and share memory with
other processes. For example, did you know that you can read or modify the contents of a disk file
by reading and writing memory locations? Or that you can load the contents of a file into memory
without doing any explicit copying? Understanding virtual memory will help you harness its powerful
capabilities in your applications.

� Virtual memory is dangerous.Applications interact with virtual memory every time they reference a

485

486 CHAPTER 10. VIRTUAL MEMORY

variable, dereference a pointer, or make a call to a dynamic allocation package such asmalloc. If
virtual memory is used improperly, applications can suffer from perplexing and insidious memory-
related bugs. For example, a program with a bad pointer can crash immediately with a “Segmentation
fault” or a “Protection fault”, run silently for hours before crashing, or scariest of all, run to completion
with incorrect results. Understanding virtual memory, and the allocation packages such asmalloc
that manage it, can help you avoid these errors.

This chapter looks at virtual memory from two angles. The first half of the chapter describes how virtual
memory works. The second half describes how virtual memory is used and managed by applications. There
is no avoiding the fact that VM is complicated, and the discussion reflects this in places. The good news is
that if you work through the details, you will be able to simulate the virtual memory mechanism of small
system by hand, and the virtual memory idea will be forever demystified. The second half builds on this
understanding, showing you how to use and manage virtual memory in your programs. You will learn how
to manage virtual memory via explicit memory mapping and calls to dynamic storage allocators such as the
malloc package. You will also learn about a host of common memory-related errors in C programs and
how to avoid them.

10.1 Physical and Virtual Addressing

The main memory of a computer system is organized as an array ofM contiguous byte-sized cells. Each
byte has a uniquephysical address (PA). The first byte has an address of 0, the next byte an address of 1,
the next byte an address of 2, and so on. Given this simple organization, the most natural way for a CPU to
access memory would be to use physical addresses. We call this approachphysical addressing. Figure 10.1
shows an example of physical addressing in the context of a load instruction that reads the word starting at
physical address 4.

0:
1:

M -1:

Main memory

Physical
address

(PA)
CPU

2:
3:
4:
5:
6:
7:

4

Data word

8: ...

Figure 10.1:A system that uses physical addressing.

When the CPU executes the load instruction, it generates an effective physical address and passes it to main
memory over the memory bus. The main memory fetches the four-byte word starting at physical address 4
and returns it to the CPU, which stores it in a register.

10.2. ADDRESS SPACES 487

Early PCs used physical addressing, and systems such as digital signal processors, embedded microcon-
trollers, and Cray supercomputers continue to do so. However, modern processors designed for general-
purpose computing use a form of addressing known asvirtual addressing(Figure 10.2).

MMU

Physical
address

(PA)

...

0:
1:

M-1:

Main memory

Virtual
Address

(VA)
CPU

2:
3:
4:
5:
6:
7:

4100

Data word

4

CPU chip

Address
translation

Figure 10.2:A system that uses virtual addressing.

With virtual addressing, the CPU accesses main memory by generating avirtual address (VA), which is
converted to the appropriate physical address before being sent to the memory. The task of converting a vir-
tual address to a physical one is known asaddress translation. Like exception handling, address translation
requires close cooperation between the CPU hardware and the operating system. Dedicated hardware on
the CPU chip called thememory management unit (MMU)translates virtual addresses on the fly, using a
look-up table stored in main memory whose contents are managed by the operating system.

10.2 Address Spaces

An address spaceis an ordered set of nonnegative integer addresses

f0; 1; 2; : : :g:

If the integers in the address space are consecutive, then we say that it is alinear address space. To simplify
our discussion, we will always assume linear address spaces. In a system with virtual memory, the CPU
generates virtual addresses from an address space ofN = 2n addresses called thevirtual address space:

f0; 1; 2; : : : ; N � 1g:

The size of an address space is characterized by the number of bits that are needed to represent the largest
address. For example, a virtual address space withN = 2n addresses is called ann-bit address space.
Modern systems typically support either 32-bit or 64-bit virtual address spaces.

A system also has aphysical address spacethat corresponds to theM bytes of physical memory in the
system:

f0; 1; 2; : : : ;M � 1g:
M is not required to be a power of two, but to simplify the discussion we will assume thatM = 2m.

488 CHAPTER 10. VIRTUAL MEMORY

The concept of an address space is important because it makes a clean distinction between data objects
(bytes) and their attributes (addresses). Once we recognize this distinction, then we can generalize and
allow each data object to have multiple independent addresses, each chosen from a different address space.
This is the basic idea of virtual memory. Each byte of main memory has a virtual address chosen from the
virtual address space, and a physical address chosen from the physical address space.

Practice Problem 10.1:

Complete the following table, filling in the missing entries and replacing each question mark with the
appropriate integer. Use the following units:K = 2

10 (Kilo), M = 2
20 (Mega),G = 2

30 (Giga),
T = 2

40 (Tera),P = 2
50 (Peta), orE = 2

60 (Exa).

virtual address bits (n) # virtual addresses (N) Largest possible virtual address

8

2
?
= 64K

2
32 � 1 = ?G� 1

2
?
= 256T

64

10.3 VM as a Tool for Caching

Conceptually, a virtual memory is organized as an array ofN contiguous byte-sized cells stored on disk.
Each byte has a unique virtual address that serves as an index into the array. The contents of the array on
disk are cached in main memory. As with any other cache in the memory hierarchy, the data on disk (the
lower level) is partitioned into blocks that serve as the transfer units between the disk and the main memory
(the upper level). VM systems handle this by partitioning the virtual memory into fixed-sized blocks called
virtual pages (VPs). Each virtual page isP = 2p bytes in size. Similarly, physical memory is partitioned
into physical pages (PPs), alsoP bytes in size. (Physical pages are also referred to aspage frames.)

PP 2m-p-1

Physical memory

empty

empty

uncached

VP 0
VP 1

VP 2n-p-1

Virtual Memory

unallocated

cached

uncached

unallocated

cached

uncached

PP 0
PP 1

empty
cached

0

N-1
M-1

0

Virtual pages (VP's)
stored on disk

Physical pages (PP's)
cached in DRAM

Figure 10.3:How a VM system uses main memory as a cache.

At any point in time, the set of virtual pages is partitioned into three disjoint subsets:

� Unallocated: Pages that have not yet been allocated (or created) by the VM system. Unallocated
blocks do not have any data associated with them, and thus do not occupy any space on disk.

10.3. VM AS A TOOL FOR CACHING 489

� Cached: Allocated pages that are currently cached in physical memory.

� Uncached:Allocated pages that are not cached in physical memory.

The example in Figure 10.3 shows a small virtual memory with 8 virtual pages. Virtual pages 0 and 3 have
not been allocated yet, and thus do not yet exist on disk. Virtual pages 1, 4, and 6 are cached in physical
memory. Pages 2, 3, 5, and 7 are allocated, but are not currently cached in main memory.

10.3.1 DRAM Cache Organization

To help us keep the different caches in the memory hierarchy straight, we will use the termSRAM cacheto
denote the L1 and L2 cache memories between the CPU and main memory, and the termDRAM cacheto
denote the VM system’s cache that caches virtual pages in main memory.

The position of the DRAM cache in the memory hierarchy has a big impact on the way that it is organized.
Recall that a DRAM is about 10 times slower than an SRAM and that disk is about 100,000 times slower
than a DRAM. Thus, misses in DRAM caches are very expensive compared to misses in SRAM caches
because DRAM cache misses are served from disk, while SRAM cache misses are usually served from
DRAM-based main memory. Further, the cost of reading the first byte from a disk sector is about 100,000
times slower than reading successive bytes in the sector. The bottom line is that the organization of the
DRAM cache is driven entirely by the enormous cost of misses.

Because of the large miss penalty and the expense of accessing the first byte, virtual pages tend to be large,
typically four to eight KB. Due to the large miss penalty, DRAM caches are fully associative, that is, any
virtual page can be placed in any physical page. The replacement policy on misses also assumes greater
importance, because the penalty associated with replacing the wrong virtual page is so high. Thus, operating
systems use much more sophisticated replacement algorithms for DRAM caches than the hardware does for
SRAM caches. (These replacement algorithms are beyond our scope.) Finally, because of the large access
time of disk, DRAM caches always use write-back instead of write-through.

10.3.2 Page Tables

As with any cache, the VM system must have some way to determine if a virtual page is cached somewhere
in DRAM. If so, the system must determine which physical page it is cached in. If there is a miss, the
system must determine where the virtual page is stored on disk, select a victim page in physical memory,
and copy the virtual page from disk to DRAM, replacing the victim page.

These capabilities are provided by a combination of operating system software, address translation hardware
in the MMU (memory management unit), and a data structure stored in physical memory known as apage
table that maps virtual pages to physical pages. The address translation hardware reads the page table each
time it converts a virtual address to a physical address. The operating system is responsible for maintaining
the contents of the page table and transferring pages back and forth between disk and DRAM.

Figure 10.4 shows the basic organization of a page table. A page table is an array ofpage table entries
(PTEs). Each page in the virtual address space has a PTE at a fixed offset in the page table. For our
purposes, we will assume that each PTE consists of avalid bit and ann-bit address field. The valid bit

490 CHAPTER 10. VIRTUAL MEMORY

indicates whether the virtual page is currently cached in DRAM. If the valid bit is set, the address field
indicates the start of the corresponding physical page in DRAM where the virtual page is cached. If the
valid bit is not set, then a null address indicates that the virtual page has not yet been allocated. Otherwise,
the address points to the start of the virtual page on disk.

null

null

Memory resident
page table
(DRAM)

Physical Memory
(DRAM)

VP 7
VP 4

Virtual Memory
(disk)

Valid
0

1

0
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Figure 10.4:Page table.

The example in Figure 10.4 shows a page table for a system with 8 virtual pages and 4 physical pages. Four
virtual pages (VP 1, VP 2, VP 4, and VP 7) are currently cached in DRAM. Two pages (VP 0 and VP 5)
have not yet been allocated, and the rest (VP 3 and VP 6) have been allocated but are not currently cached.
An important point to notice about Figure 10.4 is that because the DRAM cache is fully associative, any
physical page can contain any virtual page.

Practice Problem 10.2:

Determine the number of page table entries (PTEs) that are needed for the following combinations of
virtual address size (n) and page size (P).

n P = 2
p # PTEs

16 4K
16 8K
32 4K
32 8K

10.3.3 Page Hits

Consider what happens when the CPU reads a word of virtual memory contained in VP 2, which is cached
in DRAM (Figure 10.5). Using a technique we will describe in detail in Section 10.6, the address translation
hardware uses the virtual address as an index to locate PTE 2 and read it from memory. Since the valid bit is
set, the address translation hardware knows that VP 2 is cached in memory. So it uses the physical memory

10.3. VM AS A TOOL FOR CACHING 491

address in the PTE (which points to the start of the cached page in PP 0) to construct the physical address
of the word.

null

null

Memory resident
page table
(DRAM)

Physical Memory
(DRAM)

VP 7
VP 4

Virtual Memory
(disk)

Valid
0

1

0
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

Virtual address

VP 3

Figure 10.5:VM page hit. The reference to a word in VP 2 is a hit.

10.3.4 Page Faults

In virtual memory parlance, a DRAM cache miss is known as apage fault. Figure 10.6 shows the state of
our example page table before the fault. The CPU has referenced a word in VP 3, which is not cached in
DRAM. The address translation hardware reads PTE 3 from memory, infers from the valid bit that VP 3 is
not cached, and triggers a page fault exception.

null

null

Memory resident
page table
(DRAM)

Physical Memory
(DRAM)

VP 7
VP 4

Virtual Memory
(disk)

Valid
0

1

0
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

Virtual address

VP 3

Figure 10.6:VM page fault (before). The reference to a word in VP 3 is a miss and triggers a page fault.

The page fault exception invokes a page fault exception handler in the kernel, which selects a victim page,

492 CHAPTER 10. VIRTUAL MEMORY

in this case VP 4 stored in PP 3. If VP 4 has been modified, then the kernel copies it back to disk. In either
case, the kernel modifies the page table entry for VP 4 to reflect the fact that VP 4 is no longer cached in
main memory.

Next the kernel copies VP 3 from disk to PP 3 in memory, updates PTE 3, and then returns. When the
handler returns, it restarts the faulting instruction, which resends the faulting virtual address to the address
translation hardware. But now, VP 3 is cached in main memory, and the page hit is handled normally by the
address translation hardware, as we saw in Figure 10.5. Figure 10.7 shows the state of our example page
table after the page fault.

null

null

Memory resident
page table
(DRAM)

Physical Memory
(DRAM)

VP 7
VP 3

Virtual Memory
(disk)

Valid
0

1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

Virtual address

VP 3

Figure 10.7:VM page fault (after). The page fault handler selects VP 4 as the victim and replaces it with
a copy of VP 3 from disk. After the page fault handler restarts the faulting instruction, it will read the word
from memory normally, without generating an exception.

Virtual memory was invented in the early 1960s, long before the widening CPU-memory gap spawned
SRAM caches. As a result, virtual memory systems use a different terminology from SRAM caches, even
though many of the ideas are similar. In virtual memory parlance, blocks are known as pages. The activity
of transferring a page between disk and memory is known asswappingor paging. Pages areswapped
in (paged in) from disk to DRAM, and swapped out(paged out) from DRAM to disk. The strategy of
waiting until the last moment to swap in a page, when a miss occurs, is known asdemand paging. Other
approaches, such as trying to predict misses and swap pages in before they are actually referenced, are
possible. However, all modern systems use demand paging.

10.3.5 Allocating Pages

Figure 10.8 shows the effect on our example page table when the operating system allocates a new page of
virtual memory, for example, as a result of callingmalloc. In the example, VP 5 is allocated by creating
room on disk and updating PTE 5 to point to the newly created page on disk.

10.4. VM AS A TOOL FOR MEMORY MANAGEMENT 493

null

Memory resident
page table
(DRAM)

Physical Memory
(DRAM)

VP 7
VP 3

Virtual Memory
(disk)

Valid
0

1

0
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

Figure 10.8:Allocating a new virtual page. The kernel allocates VP 5 on disk and points PTE 5 to this
new location.

10.3.6 Locality to the Rescue Again

When many of us learn about the idea of virtual memory, our first impression is often that it must be terribly
inefficient. Given the large miss penalties, we worry that paging will destroy program performance. In
practice, virtual memory works pretty well because of our old friendlocality.

Although the total number of pages that programs reference during an entire run might exceed the total size
of physical memory, the principle of locality promises that at any point in time they will tend to work on
a smaller set ofactive pagesknown as theworking setor resident set. After an initial overhead where the
working set is paged into memory, subsequent references to the working set result in hits, with no additional
disk traffic.

As long as our programs have good temporal locality, virtual memory systems work quite well. But of
course, not all programs exhibit good temporal locality. If the working set size exceeds the size of physi-
cal memory, then the program can produce an unfortunate situation known asthrashing, where pages are
swapped in and out continuously. Although virtual memory is usually efficient, if a program’s performance
slows to a crawl, the wise programmer will consider the possibility that it is thrashing.

Aside: Counting page faults.
You can monitor the number of page faults (and lots of other information) with the Unixgetrusage function.
End Aside.

10.4 VM as a Tool for Memory Management

In the last section we saw how virtual memory provides a mechanism for using the DRAM to cache pages
from a typically larger virtual address space. Interestingly, some early systems such as the DEC PDP-11/70
supported a virtual address space that wassmallerthan the physical memory. Yet virtual memory was still a

494 CHAPTER 10. VIRTUAL MEMORY

useful mechanism because it greatly simplified memory management and provided a natural way to protect
memory.

To this point we have assumed a single page table that maps a single virtual address space to the physical
address space. In fact, operating systems provide a separate page table, and thus a separate virtual address
space, for each process. Figure 10.9 shows the basic idea. In the example, the page table for processi maps
VP 1 to PP 2 and VP 2 to PP 7. Similarly, the page table for processj maps VP 1 to PP 7 and VP 2 to PP
10. Notice that multiple virtual pages can be mapped to the same shared physical page.

Process i:

Virtual address spaces Physical memory

VP 1
VP 2

Process j:

Address Translation0

0

N-1

0

N-1

M-1

VP 1
VP 2

Shared page

Figure 10.9: How VM provides processes with separate address spaces.The operating maintains a
separate page table for each process in the system.

The combination of demand paging and separate virtual address spaces has a profound impact on the way
that memory is used and managed in a system. In particular, VM simplifies linking and loading, the sharing
of code and data, and allocating memory to applications.

10.4.1 Simplifying Linking

A separate address space allows each process to use the same basic format for its memory image, regardless
of where the code and data actually reside in physical memory. For example, every Linux process uses the
format shown in Figure 10.10.

The text section always starts at virtual address0x08048000, the stack always grows down from address
0xbfffffff, shared library code always starts at address 0x40000000, and the operating system code
and data start always start at address0xc0000000. Such uniformity greatly simplifies the design and
implementation of linkers, allowing them to produce fully linked executables that are independent of the
ultimate location of the code and data in physical memory.

10.4.2 Simplifying Sharing

Separate address spaces provide the operating system with a consistent mechanism for managing sharing
between user processes and the operating system itself. In general, each process has its own private code,
data, heap, and stack areas that are not shared with any other process. In this case, the operating system
creates page tables that map the corresponding virtual pages to disjoint physical pages.

10.4. VM AS A TOOL FOR MEMORY MANAGEMENT 495

kernel virtual memory

memory mapped region for
shared libraries

run-time heap
(created at runtime by malloc)

user stack
(created at runtime)

unused0

%esp (stack pointer)

memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment
(.data, .bss)

read-only segment
(.init, .text, .rodata)

loaded from the
executable file

Figure 10.10: The memory image of a Linux process. Programs always start at virtual address
0x08048000. The user stack always starts at virtual address0xbfffffff. Shared objects are always
loaded in the region beginning at virtual address0x40000000.

However, in some instances it is desirable for processes to share code and data. For example, every process
must call the same operating system kernel code, and every C program makes calls to routines in the standard
C library such asprintf. Rather than including separate copies of the kernel and standard C library in
each process, the operating system can arrange for multiple processes to share a single copy of this code by
mapping the appropriate virtual pages in different processes to the same physical pages.

10.4.3 Simplifying Memory Allocation

Virtual memory provides a simple mechanism for allocating additional memory to user processes. When a
program running in a user process requests additional heap space (e.g., as a result of callingmalloc), the
operating system allocates an appropriate number, sayk, of contiguous virtual memory pages, and maps
them tok arbitrary physical pages located anywhere in physical memory. Because of the way page tables
work, there is no need for the operating system to locatek contiguous pages of physical memory. The pages
can be scattered randomly in physical memory.

10.4.4 Simplifying Loading

Virtual memory also makes it easy to load executable and shared object files into memory. Recall that the
.text and.data sections in ELF executables are contiguous. To load these sections into a newly created
process, the Linux loader allocates a contiguous chunk of virtual pages starting at address0x08048000,

496 CHAPTER 10. VIRTUAL MEMORY

marks them as invalid (i.e., not cached), and points their page table entries to the appropriate locations in
the object file.

The interesting point is that the loader never actually copies any data from disk into memory. The data is
paged in automatically and on demand by the virtual memory system the first time each page is referenced,
either by the CPU when it fetches an instruction, or by an executing instruction when it references a memory
location.

This notion of mapping a set of contiguous virtual pages to an arbitrary location in an arbitrary file is known
asmemory mapping. Unix provides a system call calledmmapthat allows application programs to do their
own memory mapping. We will describe application-level memory mapping in more detail in Section 10.8.

10.5 VM as a Tool for Memory Protection

Any robust computer system must provide the means for the operating system to control access to the
memory system. A user process should not be allowed to modify its read-only text section. It should not be
allowed to read or modify any of the code and data structures in the kernel. It should not be allowed to read
or write the private memory of other processes. And it should not be allowed to modify any virtual pages
that are shared with other processes unless all parties explicitly allow it (via calls to explicit interprocess
communication system calls).

As we have seen, providing separate virtual address spaces makes it easy to isolate the private memories
of different processes. But the address translation mechanism can be extended in a natural way to provide
even finer access control. Since the address translation hardware reads a PTE each time the CPU generates
an address, it is straightforward to control access to the contents of a virtual page by adding some additional
permission bits to the PTE. Figure 10.11 shows the general idea.

Page tables with permission bits

Process i:

AddressREAD WRITE

PP 9yes no

PP 4yes yes

PP 2yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

PP 0

Physical memory

yes

•
•
•

PP 4

PP 6

PP 9

SUP

no

no

yes

AddressREAD WRITE

PP 9yes no

PP 6yes yes

PP 11yes

•
•
•

yes

SUP

no

yes

no

VP 0:

VP 1:

VP 2:

PP 2

PP 11

Figure 10.11:Using VM to provide page-level memory protection.

In this example, we have added three permission bits to each PTE. The SUP bit indicates whether processes
must be running in kernel (supervisor) mode to access the page. Processes running in kernel mode can

10.6. ADDRESS TRANSLATION 497

Basic parameters
Symbol Description

N = 2
n Number of addresses in virtual address space

M = 2
m Number of addresses in physical address space

P = 2
p Page size (bytes)

Components of a virtual address (VA)
Symbol Description

VPO Virtual page offset (bytes)
VPN Virtual page number
TLBI TLB index
TLBT TLB tag

Components of a physical address (PA)
Symbol Description

PPO Physical page offset (bytes)
PPN Physical page number
CO Byte offset within cache block
CI Cache index
CT Cache tag

Figure 10.12:Summary of address translation symbols.

access any page, but processes running in user mode are only allowed to access pages for which SUP is 0.
The READ and WRITE bits control read and write access to the page. For example, if processi is running
in user mode, then it has permission to read VP 0 and to read or write VP 1. However, it is not allowed to
access VP 2.

If an instruction violates these permissions, then the CPU triggers a general protection fault that transfers
control to an exception handler in the kernel. Unix shells typically report this exception as a “segmentation
fault.”

10.6 Address Translation

This section covers the basics of address translation. Our aim is to give you an appreciation of the hardware’s
role in supporting virtual memory, with enough detail so that you can work through some concrete examples
by hand. However, keep in mind that we are omitting a number of details, especially related to timing, that
are important to hardware designers, but are beyond our scope. For your reference, Figure 10.12 summarizes
the symbols that we will using throughout this section.

Formally, address translation is a mapping between the elements of anN -element virtual address space
(VAS) and anM -element physical address space (PAS),

MAP: VAS! PAS[;

498 CHAPTER 10. VIRTUAL MEMORY

where

MAP(A) = A0 if data at virtual addrA is present at physical addrA0 in PAS.

= ; if data at virtual addrA is not present in physical memory.

Figure 10.13 shows how the MMU uses the page table to perform this mapping. A control register in the
CPU, the page table base register (PTBR)points to the current page table. Then-bit virtual address has
two components: ap-bit virtual page offset (VPO)and an(n � p)-bit virtual page number (VPN). The
MMU uses the VPN to select the appropriate PTE. For example, VPN 0 selects PTE 0, VPN 1 selects VPN
1, and so on. The corresponding physical address is the concatenation of thephysical page number (PPN)
from the page table entry and the VPO from the virtual address. Notice that since the physical and virtual
pages are bothP bytes, thephysical page offset (PPO)is identical to the VPO.

virtual page number (VPN) virtual page offset (VPO)

 VIRTUAL ADDRESS

physical page number (PPN)

PHYSICAL ADDRESS

0p–1pm–1

n–1 0p–1ppage table
 base register

(PTBR)

if valid=0
then page
not in memory
(page fault)

valid physical page number (PPN)

The VPN acts
as index into
the page table

Page
Table

physical page offset (PPO)

Figure 10.13:Address translation with a page table.

Figure 10.14(a) shows the steps that the CPU hardware performs when there is a page hit.

� Step 1: The processor generates a virtual address and sends it to the MMU.

� Step 2: The MMU generates the PTE address and requests it from the cache/main memory.

� Step 3: The cache/main memory returns the PTE to the MMU.

� Step 3: The MMU constructs the physical address and sends it to cache/main memory.

� Step 4: The cache/main memory returns the requested data word to the processor.

Unlike a page hit, which is handled entirely by hardware, handling a page fault requires cooperation between
hardware and the operating system kernel (Figure 10.14(b)).

� Steps 1 to 3: The same as Steps 1 to 3 in Figure 10.14(a).

10.6. ADDRESS TRANSLATION 499

VA

1
Processor MMU cache/

memory

PTEA

PTE

PA

data

2

3

4

5

CPU chip

(a) Page hit.

page fault exception handler
exception

VA

1
Processor MMU cache/

memory

4

5

CPU chip

disk

victim page

new page

6

7

PTEA

PTE

2

3

(b) Page fault.

Figure 10.14:Operational view of page hits and page faults.VA: virtual address. PTEA: page table entry
address. PTE: page table entry. PA: physical address.

500 CHAPTER 10. VIRTUAL MEMORY

� Step 4: The valid bit in the PTE is zero, so the MMU triggers an exception, which transfers control in
the CPU to a page fault exception handler in the operating system kernel.

� Step 5: The fault handler identifies a victim page in physical memory, and if that page has been
modified, pages it out to disk.

� Step 6: The fault handler pages in the new page and updates the PTE in memory.

� Step 7: The fault handler returns to the original process, causing the faulting instruction to be restarted.
The CPU resends the offending virtual address to the MMU. Because the virtual page is now cached
in physical memory, there is a hit, and after the MMU performs the steps in Figure 10.14(b), the main
memory returns the requested word to the processor

Practice Problem 10.3:

Given a 32-bit virtual address space and a 24-bit physical address, determine the number of bits in the
VPN, VPO, PPN, and PPO for the following page sizesP :

P # VPN bits # VPO bits # PPN bits # PPO bits

1 KB
2 KB
4 KB
8 KB

10.6.1 Integrating Caches and VM

In any system that uses both virtual memory and SRAM caches, there is the issue of whether to use virtual
or physical addresses to access the cache. Although a detailed discussion of the tradeoffs is beyond our
scope, most systems opt for physical addressing. With physical addressing it is straightforward for multiple
processes to have blocks in the cache at the same time and to share blocks from the same virtual pages.
Further, the cache does not have to deal with protection issues because access rights are checked as part of
the address translation process.

Figure 10.15 shows how a physically-addressed cache might be integrated with virtual memory. The main
idea is that the address translation occurs before the cache lookup. Notice that page table entries can be
cached, just like any other data words.

10.6.2 Speeding up Address Translation with a TLB

As we have seen, every time the CPU generates a virtual address, the MMU must refer to a PTE in order
the translate the virtual address into a physical address. In the worst case, this requires an additional fetch
from memory, at a cost of tens to hundreds of cycles. If the PTE happens to be cached in L1, then the cost
goes down to one or two cycles. However, many systems try to eliminate even this cost by including a small
cache of PTEs in the MMU called atranslation lookaside buffer (TLB).

10.6. ADDRESS TRANSLATION 501

VAProcessor MMU

PTEA

PTE

PA

data

CPU chip

memory
PAPA

miss

PTEAPTEA
miss

PTEA
hit

PA
hit

data

PTE

L1
Cache

Figure 10.15:Integrating VM with a physically-addressed cache.VA: virtual address. PTEA: page table
entry address. PTE: page table entry. PA: physical address.

A TLB is a small, virtually-addressed cache where each line holds a block consisting of a single PTE. A
TLB usually has a high degree of associativity. As shown in Figure 10.16, the index and tag fields that are
used for set selection and line matching are extracted from the virtual page number in the virtual address. If
the TLB hasT = 2t sets, then theTLB index (TLBI)consists of thet least significant bits of the VPN, and
the TLB tag (TLBT)consists of the remaining bits in the VPN.

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

VPO

VPN

p+t-1p+t

Figure 10.16:Components of a virtual address that are used to access the TLB.

Figure 10.17(a) shows the steps involved when there is a TLB hit (the usual case). The key point here is that
all of the address translation steps are performed inside the on-chip MMU, and thus are fast.

� Step 1: The CPU generates a virtual address.

� Steps 2 and 3: The MMU fetches the appropriate PTE from the TLB.

� Step 4: The MMU translates the virtual address to a physical address and sends it to the cache/main
memory.

� Step 5: The cache/main memory returns the requested data word to the CPU.

When there is a TLB miss, then the MMU must fetch the PTE from the L1 cache, as shown in Fig-
ure 10.17(b). The newly fetched PTE is stored in the TLB, possibly overwriting an existing entry.

10.6.3 Multi-level Page Tables

To this point we have assumed that the system uses a single page table to do address translation. But if we
had a 32-bit address space, 4-KB pages, and a 4-byte PTE, then we would need a 4-MB page table resident

502 CHAPTER 10. VIRTUAL MEMORY

VAProcessor Trans-
lation

cache/
memoryPA

data

CPU chip

TLB

VPN PTE

1

2 3

4

5

(a) TLB hit.

VAProcessor Trans-
lation

cache/
memory

PTEA

data

CPU chip

TLB

VPN PTE

PA

1

2

3

4

5

6

(b) TLB miss.

Figure 10.17:Operational view of a TLB hit and miss.

10.6. ADDRESS TRANSLATION 503

in memory at all times, even if the application referenced only a small chunk of the virtual address space.
The problem is compounded for systems with 64-bit addresses spaces.

The common approach for compacting the page table is to a use a hierarchy of page tables instead. The idea
is easiest to understand with a concrete example. Suppose the 32-bit virtual address space is partitioned into
four-KB pages, and that page table entries are four bytes each. Suppose also that at this point in time the
virtual address space has the following form: The first 2K pages of memory are allocated for code and data,
the next 6K pages are unallocated, the next 1023 pages are also unallocated, and the next page is allocated
for the user stack. Figure 10.18 shows how we might construct a two-level page table hierarchy for this
virtual address space.

Level 1
Page Table

...
Level 2

Page Tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages
VP 9215

Virtual
Memory

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

Figure 10.18:A two-level page table hierarchy.Notice that addresses increase from top to bottom.

Each PTE in the level-1 table is responsible for mapping a four-MB chunk of the virtual address space,
where each chunk consists of 1024 contiguous pages. For example, PTE 0 maps the first chunk, PTE 1 the
next chunk, and so on. Given that the address space is four GB, 1024 PTEs are sufficient to cover the entire
space.

If every page in chunki is unallocated, then level-1 PTEi is null. For example, in Figure 10.18, chunks 2–7
are unallocated. However, if at least one page in chunki is allocated, then level-1 PTEi points to the base
of a level-2 page table. For example, in Figure 10.18, all or portions of chunks 0, 1, and 8 are allocated, so
their level-1 PTEs point to level-2 page tables.

Each PTE in a level-2 page table is responsible for mapping a 4-KB page of virtual memory, just as before
when we looked at single-level page tables. Notice that with 4-byte PTEs, each level-1 and level-2 page
table is 4K bytes, which conveniently is the same size as a page.

This scheme reduces memory requirements in two ways. First, if a PTE in the level-1 table is null, then the
corresponding level-2 page table does not even have to exist. This represents a significant potential savings,
since most of the 4-GB virtual address space for a typical program is unallocated. Second, only the level-1

504 CHAPTER 10. VIRTUAL MEMORY

table needs to be in main memory at all times. The level-2 page tables can be created and paged in and out
by the VM system as they are needed, which reduces pressure on main memory. Only the most heavily used
level-2 page tables need to be cached in main memory.

Figure 10.19 summarizes address translation with ak-level page table hierarchy. The virtual address is
partitioned intok VPNs and a VPO. Each VPNi, 1 � i � k, is an index into a page table at leveli. Each
PTE in a level-j table,1 � j � k � 1, points to the base of some page table at levelj + 1. Each PTE in
a level-k table contains either the PPN of some physical page or the address of a disk block. To construct
the physical address, the MMU must accessk PTEs before it can determine the PPN. As with a single-level
hierarchy, the PPO is identical to the VPO.

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...
Level 1

Page Table
Level 2

Page Table
Level k

Page Table

Figure 10.19:Address translation with a k-level page table.

Accessingk PTEs may seem expensive and impractical at first glance. However, the TLB comes to the
rescue here by caching PTEs from the page tables at the different levels. In practice, address translation
with multi-level page tables is not significantly slower than with single-level page tables.

10.6.4 Putting it Together: End-to-end Address Translation

In this section we put it all together with a concrete example of end-to-end address translation on a small
system with a TLB and L1 d-cache. To keep things manageable, we make the following assumptions:

� The memory is byte addressable.

� Memory accesses are to1-byte words(not 4-byte words).

� Virtual addresses are 14 bits wide (n = 14).

� Physical addresses are 12 bits wide (m = 12).

� The page size is 64 bytes (P = 64).

� The TLB is four-way set associative with 16 total entries.

� The L1 d-cache is physically-addressed and direct mapped, with a 4-byte line size and 16 total sets.

10.6. ADDRESS TRANSLATION 505

Figure 10.20 shows the formats of the virtual and physical addresses. Since each page is26 = 64 bytes,
the low-order six bits of the virtual and physical addresses serve as the VPO and PPO respectively. The
high-order eight bits of the virtual address serve as the VPN. The high-order six bits of the physical address
serve as the PPN.

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

(Virtual Page Number) (Virtual Page Offset)

(Physical Page Number) (Physical Page Offset)

Virtual
Address

Physical
Address

Figure 10.20:Addressing for small memory system.Assume 14-bit virtual addresses (n = 14), 12-bit
physical addresses (m = 12), and 64-byte pages (P = 64).

Figure 10.21 shows a snapshot of our little memory system, including the TLB (a), a portion of the page
table (b), and the L1 cache (c). Above the figures of the TLB and cache, we have also shown how the bits
of the virtual and physical addresses are partitioned by the hardware it accesses these devices.

� TLB: The TLB is virtually addressed using the bits of the VPN. Since the TLB has four sets, the two
low-order bits of the VPN serve as the set index (TLBI). The remaining six high-order bits serve as
the tag (TLBT) that distinguishes the different VPNs that might map to the same TLB set.

� Page table.The page table is a single-level design with a total of28 = 256 page table entries (PTEs).
However, we are only interested in the first sixteen of these. For convenience, we have labelled each
PTE with the VPN that indexes it; but keep in mind though that these VPNs are not part of the page
table and not stored in memory. Also, notice that the PPN of each invalid PTE is denoted with a dash
to reinforce the idea that whatever bit values might happen to be stored there are not meaningful.

� Cache.The direct-mapped cache is addressed by the fields in the physical address. Since each block
is 4 bytes, the low-order 2 bits of the physical address serve as the block offset (CO). Since there are
16 sets, the next 4 bits serve as the set index (CI). The remaining 6 bits serve as the tag (CT).

Given this initial setup, lets see what happens when the CPU executes a load instruction that reads the byte
at address0x03d4. (Recall that our hypothetical CPU reads one-byte words rather than four-byte words.)
To begin this kind of manual simulation, we find it helpful to write down the bits in the virtual address,
identify the various fields we will need, and determine their hex values. The hardware perform a similar
task when it decodes the address.

506 CHAPTER 10. VIRTUAL MEMORY

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Virtual
Address

(a) TLB: Four sets, sixteen entries, four-way set associative.

VPN

10D0F0–07

1110E0–06

12D0D11605

0–0C0–04

0–0B10203

1090A13302

117090–01

1130812800

ValidPPNVPNValidPPN

(b) Page table: Only the first sixteen PTEs are shown.

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

Blk 3Blk 2Blk 1Blk 0ValidTagIdx

Physical
Address

(c) Cache: 16 sets, four-byte blocks, direct mapped.

Figure 10.21:TLB, page table, and cache for small memory system.All values in the TLB, page table,
and cache are in hexadecimal notation.

10.6. ADDRESS TRANSLATION 507

TLBT TLBI
0x03 0x03

bit position 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA = 0x03d4 0 0 0 0 1 1 1 1 0 1 0 1 0 0

VPN VPO
0x0f 0x14

To begin, the MMU extracts the VPN (0x0F) from the virtual address and checks with the TLB to see if
has cached a copy of PTE0x0F from some previous memory reference. The TLB extracts the TLB index
(0x03) and the TLB tag (0x3) from the VPN, hits on a valid match in the second entry of Set0x3, and
returns the cached PPN (0x0D) to the MMU.

If the TLB had missed, then the MMU would need to fetch the PTE from main memory. However, in this
case we got lucky and had a TLB hit. The MMU now has everything it needs to form the physical address.
It does this by concatenating the PPN (0x0D) from the PTE with the VPO (0x14) from the virtual address,
which forms the physical address (0x354).

Next, the MMU sends the physical address to the cache, which extracts the cache offset CO (0x0), the
cache set index CI (0x5), and the cache tag CT (0x0D) from the physical address.

CT CI CO
0x0d 0x05 0x0

bit position 11 10 9 8 7 6 5 4 3 2 1 0
PA = 0x354 0 0 1 1 0 1 0 1 0 1 0 0

PPN PPO
0x0d 0x14

Since the tag in Set0x5 matches CT, the cache detects a hit, reads out the data byte (0x36) at offset CO,
and returns it to the MMU, which then passes it back to the CPU.

Other paths through the translation process are also possible. For example, if the TLB misses, then the
MMU must fetch the PPN from a PTE in the page table. If the resulting PTE is invalid, then there is a page
fault and the kernel must page in the appropriate page and rerun the load instruction. Another possibility is
that the PTE is valid, but the necessary memory block misses in the cache.

Practice Problem 10.4:

Show how the example memory system in Section 10.6.4 translates a virtual address into a physical
address and accesses the cache. For the given virtual address, indicate the TLB entry accessed, physical
address, and cache byte value returned. Indicate whether the TLB misses, whether a page fault occurs,
and whether a cache miss occurs. If there is a cache miss, enter “–” for “Cache byte returned”. If there
is a page fault, enter “–” for “PPN” and leave parts C and D blank.

Virtual address: 0x03d7

A. Virtual address format
13 12 11 10 9 8 7 6 5 4 3 2 1 0

508 CHAPTER 10. VIRTUAL MEMORY

B. Address translation

Parameter Value

VPN
TLB index
TLB tag
TLB hit? (Y/N)
Page fault? (Y/N)
PPN

C. Physical address format
11 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference

Parameter Value

Byte offset
Cache index
Cache tag
Cache hit? (Y/N)
Cache byte returned

10.7 Case Study: The Pentium/Linux Memory System

We conclude our discussion of caches and virtual memory with a case study of a real system: a Pentium-
class system running Linux. Figure 10.22 gives the highlights of the Pentium memory system. The Pentium
has a 32-bit (4 GB) address space. Theprocessor packageincludes the CPU chip, a unified L2 cache,
and a cache bus (backside bus) that connects them. The CPU chip proper contains four different caches:
an instruction TLB, data TLB, L1 i-cache, and L1 d-cache. The TLBs are virtually addressed. The L1
and L2 caches are physically addressed. All caches in the Pentium (including the TLBs) are four-way set
associative.

The TLBs cache 32-bit page table entries. The instruction TLB caches PTEs for the virtual addresses
generated by the instruction fetch unit. The data TLB caches PTEs for the virtual instructions generated
by instructions. The instruction TLB has 32 entries. The data TLB has 64 entries. The page size can be
configured at start-up time as either 4 KB or 4 MB. Linux running on a Pentium uses 4-KB pages.

The L1 and L2 caches have 32-byte blocks. Each L1 caches is 16 KB in size and has 128 sets, each of
which contains four lines. The L2 cache size can vary from a minimum of 128 KB to a maximum of 2 MB.
A typical size is 512 KB.

10.7.1 Pentium Address Translation

This section discusses the address translation process on the Pentium. For your reference, Figure 10.23
summarizes the entire process, from the time the CPU generates a virtual address until a data word arrives

10.7. CASE STUDY: THE PENTIUM/LINUX MEMORY SYSTEM 509

bus interface unit

DRAM

external I/O bus

instruction

 fetch unit

L1

i-cache

L2

cache

cache bus

L1
d-cache

inst
TLB

data
TLB

processor package

 32 bit address space
 4 KB pagesize
 L1, L2, and TLB

• 4-way set associative
 inst TLB

• 32 entries, 8 sets
 data TLB

• 64 entries, 16 sets

 L1 i-cache and d-cache
• 16 KB, 128 sets
• 32 B block size

L2 cache
• unified
• 128 KB -- 2 MB

• 32 B block size

Figure 10.22:The Pentium memory system.

from memory.

Aside: Optimizing address translation.
In our discussion of address translation, we have described a sequential two-step process where the MMU (1)
translates the virtual address to a physical address, and then (2) passes the physical address to the L1 cache. However,
real hardware implementations use a neat trick that allows these steps to be partially overlapped, thus speeding up
accesses to the L1 cache.

For example, a virtual address on a Pentium with 4-KB pages has 12 bits of VPO, and these bits are identical to the
12 bits of PPO in the corresponding physical address. Since the four-way set-associative physically-addressed L1
caches have 128 sets and 32-byte cache blocks, each physical address has five (log

2
32) cache offset bits and seven

(log
2
128) index bits. These 12 bits fit exactly in the VPO of a virtual address, which is no accident! When the CPU

needs a virtual address translated, it sends the VPN to the MMU and the VPO to the L1 cache. While the MMU is
requesting a page table entry from the TLB, the L1 cache is busy using the VPO bits to find the appropriate set and
read out the four tags and corresponding data words in that set. When the MMU gets the PPN back from the TLB,
the cache is ready to try to match the PPN to one of these four tags.

This suggests the following question for you to ponder: What options do Intel engineers have if they want to increase
the L1 cache size in future systems and still be able to use this trick?End Aside.

Pentium Page Tables

Every Pentium system uses the two-level page table shown in Figure 10.24. The level-1 table, known as the
page directory, contains 1024 32-bitpage directory entries (PDEs), each of which points to one of 1024
level-2 page tables. Each page table contains 1024 32-bitpage table entries (PTEs), each of which points
to a page in physical memory or on disk.

Each process has a unique page directory and set of page tables. When a Linux process is running, both
the page directory and the page tables associated with allocated pages are all memory resident, although the
Pentium architecture allows the page tables to be swapped in and out. Thepage directory base register
(PDBR)points to the beginning of the page directory.

510 CHAPTER 10. VIRTUAL MEMORY

CPU

VPN VPO
20 12

TLBT TLBI
416

...

TLB (16 sets, 4
entries/set)VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO
20 12

Page tables

TLB
miss

TLB
hit

Physical
address

(PA)

Result
32

...

CT CO
20 5

CI
7

L2 and
Main memory

L1 (128 sets, 4 lines/set)

L1
hit

L1
miss

Virtual address (VA)

Figure 10.23:Summary of Pentium address translation.

Page Directory

...

Page Tables

1024 PTE's

1024 PTE's

1024 PTE's

1024 Page Directory Entries
(PDE's)

Page table 0

Page table 1

Page table 1023

PDE 0

PDE 1

PDE 1023

...

Figure 10.24:Pentium multi-level page table.

10.7. CASE STUDY: THE PENTIUM/LINUX MEMORY SYSTEM 511

Figure 10.25(a) shows the format of a PDE. WhenP = 1 (which is always the case with Linux), the address
field contains a 20-bit physical page number that points to the beginning of the appropriate page table.
Notice that this imposes a 4-KB alignment requirement on page tables. Figure 10.25(b) shows the format

Page table physical base addr unused G PS A CD WT U/S R/W P=1

31 12 11 9 8 7 6 5 4 3 2 1 0

Field Description

P page table is present in physical memory (1) or not (0)
R/W read-only or read-write access permission
U/S user or supervisor mode (kernel mode) access permission
WT write-through or write-back cache policy for this page table
CD cache disabled (1) or enabled (0)
A has the page been accessed? (set by MMU on reads and writes, cleared by software)
PS page size 4K (0) or 4M (1)
G global page (don’t evict from TLB on task switch)

PT base addr 20 most significant bits of physical page table address

(a) Page Directory Entry (PDE).

Page physical base address unused G 0 D A CD WT U/S R/W P=1

31 12 11 9 8 7 6 5 4 3 2 1 0

Available for OS (page location in secondary storage) P=0

Field Description

P page is present in physical memory (1) or not (0)
R/W read-only or read/write access permission
U/S user/supervisor mode (kernel mode) access permission
WT write-through or write-back cache policy for this page
CD cache disabled or enabled
A reference bit (set by MMU on reads and writes, cleared by software)
D dirty bit (set by MMU on writes, cleared by software)
G global page (don’t evict from TLB on task switch)

page base addr 20 most significant bits of physical page address

(b) Page Table Entry (PTE).

Figure 10.25:Formats of Pentium page directory entry (PDE) and page table entry (PTE).

of a PTE. WhenP = 1, the address field contains a 20-bit physical page number that points to the base of
some page in physical memory. Again, this imposes a 4-KB alignment requirement on physical pages.

The PTE has two permission bits that control access to the page. TheR=W bit determines whether the
contents of a page are read/write or read/only. TheU=S bit, which determines whether the page can be
accessed in user mode, protects code and data in the operating system kernel from user programs.

512 CHAPTER 10. VIRTUAL MEMORY

As the MMU translates each virtual address, it also updates two other bits that can be used by the kernel’s
page fault handler. The MMU sets theA bit, which is known as areference bit, each time a page is accessed.
The kernel can use the reference bit to implement its page replacement algorithm. The MMU sets theD

bit, or dirty bit, each time the page is written to. A page that has been modified is sometimes called adirty
page. The dirty bit tells the kernel whether or not it must write-back a victim page before it copies in a
replacement page. The kernel can call a special kernel-mode instruction to clear the reference the dirty bits.

Aside: Execute permissions and buffer overflow attacks.
Notice that a Pentium page table entry lacks an execute permission bit to control whether the contents of a page
can be executed. Buffer overflow attacks exploit this omission by loading and running code directly on the user
stack (Section 3.13). If there were such an execute bit, then the kernel could eliminate the threat of such attacks by
restricting execute privileges to the read-only code segment.End Aside.

Pentium Page Table Translation

Figure 10.26 shows how the Pentium MMU uses the two-level page table to translate a virtual address to
a physical address. The 20-bit VPN is partitioned into two 10-bit chunks. VPN1 indexes a PDE in the
page directory pointed at by the PDBR. The address in the PDE points to the base of some page table that
is indexed by VPN2. The PPN in the PTE indexed by VPN2 is concatenated with the VPO to form the
physical address.

PDE

PDBR
physical address
of page table base
(if P=1)

physical
address
of page base
(if P=1)

physical address
of page directory

word offset into
page directory

word offset into
page table

page directory page table

VPN1
10

VPO
10 12

VPN2 Virtual address

PTE

PPN PPO

20 12
Physical address

word offset into
physical and virtual
page

Figure 10.26:Pentium page table translation.

Pentium TLB Translation

Figure 10.27 summarizes the process of TLB translation in a Pentium system. If the PTE is cached in the set
indexed by the TLBI (a TLB hit), then the PPN is extracted from this cached PTE and concatenated with the
VPO to form the physical address. If the PTE is not cached, but the PDE is cached (a partial TLB hit), then

10.7. CASE STUDY: THE PENTIUM/LINUX MEMORY SYSTEM 513

the MMU must fetch the appropriate PTE from memory before it can form the physical address. Finally, if
neither the PDE or PTE is cached (a TLB miss), then the MMU must fetch both the PDE and the PTE from
memory in order to form the physical address.

CPU VPN VPO
20 12

TLBT TLBI
416

virtual address

PDE PTE

...

TLB
miss

TLB hit

page table translation

PPN PPO
20 12

physical address

partial
TLB hit

Figure 10.27:Pentium TLB translation.

10.7.2 Linux Virtual Memory System

A virtual memory system requires close cooperation between the hardware and the kernel software. While a
complete description is beyond our scope, our aim in this section is to describe enough of the Linux virtual
memory system to give you a sense of how a real operating system organizes virtual memory and how it
handles page faults.

Linux maintains a separate virtual address space for each process of the form shown in Figure 10.28. We
have seen this picture a number of times already, with its familiar code, data, heap, shared library, and stack
segments. Now that we understand address translation, we can fill in some more details about the kernel
virtual memory that lies above address0xc0000000.

The kernel virtual memory contains the code and data structures in the kernel. Some regions of the kernel
virtual memory are mapped to physical pages that are shared by all processes. For example, each process
shares the kernel’s code and global data structures. Interestingly, Linux also maps a set of contiguous virtual
pages (equal in size to the total amount of DRAM in the system) to the corresponding set of contiguous
physical pages. This provides the kernel with a convenient way to access any specific location in physical
memory, for example, when it needs to perform memory-mapped I/O operations on devices that are mapped
to particular physical memory locations.

Other regions of kernel virtual memory contain data that differs for each process. Examples include page
tables, the stack that the kernel uses when it is executing code in the context of the process, and various data
structures that keep track of the current organization of the virtual address space.

Linux Virtual Memory Areas

Linux organizes the virtual memory as a collection ofareas(also calledsegments). An area is a contiguous
chunk of existing (allocated) virtual memory whose pages are related in some way. For example, the code

514 CHAPTER 10. VIRTUAL MEMORY

kernel code and data

Memory mapped region
for shared libraries

runtime heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

user stack

forbidden
0

%esp

process
virtual
memorybrk

0xc0000000

physical memory
identical for
each process

process-specific data
structures

(e.g., page tables,
task and mm structs, kernel

stack) kernel
virtual
memory

0x40000000

0x08048000

different for
each process

Figure 10.28:The virtual memory of a Linux process.

segment, data segment, heap, shared library segment, and user stack are all distinct areas. Each existing
virtual page is contained in some area, and any virtual page that is not part of some area does not exist, and
cannot be referenced by the process. The notion of an area is important because it allows the virtual address
space to have gaps. The kernel does not keep track of virtual pages that do not exist, and such pages do not
consume any additional resources in memory, on disk, or in the kernel itself.

Figure 10.29 highlights the kernel data structures that keep track of the virtual memory areas in a process.
The kernel maintains a distinct task structure (task struct in the source code) for each process in the
system. The elements of the task structure either contain or point to all of the information that the kernel
needs to run the process, (e.g., the PID, pointer to the user stack, name of the executable object file, and
program counter).

One of the entries in the task structure points to anmmstruct that characterizes the current state of the
virtual memory. The two fields of interest to us arepgd, which points to the base of the page directory
table, andmmap, which points to a list ofvm area structs (area structs), each of which characterizes
an area of the current virtual address space. When the kernel runs this process, it storespgd in the PDBR
control register.

For our purposes, the area struct for a particular area contains the following fields:

� vm start: Points to the beginning of the area.

� vm end: Points to the end of the area.

� vm prot: Describes the read/write permissions for all of the pages contained in the area.

� vm flags: Describes (among other things) whether the pages in the area are shared with other
processes or private to this process.

10.7. CASE STUDY: THE PENTIUM/LINUX MEMORY SYSTEM 515

vm_next

vm_next

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

text

data

shared libraries

0

0x08048000

0x0804a020

0x40000000

vm_flags

vm_flags

vm_flags

process virtual memory

Figure 10.29:How Linux organizes virtual memory.

� vm next: Points to the next area struct in the list.

Linux Page Fault Exception Handling

Suppose the MMU triggers a page fault while trying to translate some virtual addressA. The exception
results in a transfer of control to the kernel’s page fault handler, which then performs the following steps:

1. Is virtual addressA legal? In other words, doesA lie within an area defined by some area struct?
To answer this question, the fault handler searches the list of area structs, comparingA with the
vm start andvm end in each area struct. If the instruction is not legal, then the fault handler trig-
gers a segmentation fault, which terminates the process. This situation is labeled “1” in Figure 10.30.

Because a process can create an arbitrary number of new virtual memory areas (using themmap
system call described later in Section 10.8), a sequential search of the list of area structs might be
very costly. So in practice, Linux superimposes a tree on the list, using some fields that we have not
shown, and performs the search on this tree.

2. Is the attempted memory access legal? In other words, does the process have permission to read or
write the pages in this area? For example, was the page fault the result of a store instruction trying
to write to a read-only page in the code segment? Is the page fault the result of a process running in
user mode that is attempting to read a word from kernel virtual memory? If the attempted access is
not legal, then the fault handler triggers a protection exception, which terminates the process. This
situation is labeled “2” in Figure 10.30.

3. At this point, the kernel knows that the page fault resulted from a legal operation on a legal virtual

516 CHAPTER 10. VIRTUAL MEMORY

vm_area_struct

vm_end

r/o

vm_next

vm_start

vm_end

r/w

vm_next

vm_start

vm_end

r/o

vm_next

vm_start

process virtual memory

text

data

shared libraries

0

normal page fault

segmentation fault:
accessing a non-existing page1

2

3

protection exception:
e.g., violating permissions by

writing to a read-only page

Figure 10.30:Linux page fault handling.

address. It handles the fault by selecting a victim page, swapping out the victim page if it is dirty,
swapping in the new page, and updating the page table. When the page fault handler returns, the CPU
restarts the faulting instruction, which sendsA to the MMU again. This time, the MMU translatesA
normally, without generating a page fault.

10.8 Memory Mapping

Linux (along with other forms of Unix) initializes the contents of a virtual memory area by associating it
with an objecton disk, a process known asmemory mapping. Areas can be mapped to one of two types of
objects:

1. Regular file in the Unix filesystem:An area can be mapped to a contiguous section of a regular disk
file, such as an executable object file. The file section is divided into page-sized pieces, with each
piece containing the initial contents of a virtual page. Because of demand paging, none of these
virtual pages is actually swapped into physical memory until the CPU firsttouchesthe page (i.e.,
issues a virtual address that falls within that page’s region of the address space). If the area is larger
than the file section, then the area is padded with zeros.

2. Anonymous file:An area can also be mapped to an anonymous file, created by the kernel, that contains
all binary zeros. The first time the CPU touches a virtual page in such an area, the kernel finds an
appropriate victim page in physical memory, swaps out the victim page if it is dirty, overwrites the
victim page with binary zeros, and updates the page table to mark the page as resident. Notice that no
data is actually transferred between disk and memory. For this reason, pages in areas that are mapped
to anonymous files are sometimes calleddemand-zero pages.

10.8. MEMORY MAPPING 517

In either case, once a virtual page is initialized, it is swapped back and forth between a specialswap file
maintained by the kernel. The swap file is also known as theswap spaceor theswap area. An important
point to realize is that at any point in time, the swap space bounds the total amount of virtual pages that can
be allocated by the currently running processes.

10.8.1 Shared Objects Revisited

The idea of memory mapping resulted from a clever insight that if the virtual memory system could be
integrated into the conventional file system, then it could provide a simple and efficient way to load programs
and data into memory.

As we have seen, the process abstraction promises to provide each process with its own private virtual
address space that is protected from errant writes or reads by other processes. However, many processes
have identical read-only text areas. For example, each process that runs the Unix shell programtcsh has
the same text area. Further, many programs need to access identical copies of read-only run-time library
code. For example, every C program requires functions from the standard C library such asprintf. It
would be extremely wasteful for each process to keep duplicate copies of these commonly used codes in
physical memory. Fortunately, memory mapping provides us with a clean mechanism for controlling how
objects are shared by multiple processes.

An object can be mapped into an area of virtual memory as either ashared objector a private object. If a
process maps a shared object into an area of its virtual address space, then any writes that the process makes
to that area are visible to any other processes that have also mapped the shared object into their virtual
memory. Further, the changes are also reflected in the original object on disk.

Changes made to an area mapped to a private object, on the other hand, are not visible to other processes,
and any writes that the process makes to the area arenot reflected back to the object on disk. A virtual
memory area that a shared object is mapped into is often called ashared area. Similarly for aprivate area.

Suppose that process 1 maps a shared object into an area of its virtual memory, as shown in Figure 10.31(a).
Now suppose that process 2 maps the same shared object into its address space (not necessarily at the same
virtual address as process 1) as shown in Figure 10.31(b).

Since each object has a unique file name, the kernel can quickly determine that process 1 has already mapped
this object and can point the page table entries in process 2 to the appropriate physical pages. The key point
is that only a single copy of the shared object needs to be stored in physical memory, even though the
object is mapped into multiple shared areas. For convenience, we have shown the physical pages as being
contiguous, but of course this is not true in general.

Private objects are mapped into virtual memory using a clever technique known ascopy-on-write. A private
object begins life in exactly the same way as a shared object, with only one copy of the private object
stored in physical memory. For example, Figure 10.32(a) shows a case where two processes have mapped a
private object into different areas of their virtual memories, but share the same physical copy of the object.
For each process that maps the private object, the page table entries for the corresponding private area are
flagged as read-only, and the area struct is flagged asprivate copy-on-write. So long as neither process
attempts to write to its respective private area, they continue to share a single copy of the object in physical
memory. However, as soon as a process attempts to write to some page in the private area, the write triggers

518 CHAPTER 10. VIRTUAL MEMORY

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

(a)

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

(b)

Figure 10.31:A shared object. (a) After process 1 maps the shared object. (b) After process 2 maps the
same shared object. (Note that the physical pages are not necessarily contiguous.)

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

(a)

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

copy-on-write

write to private
copy-on-write

page

(b)

Figure 10.32:A private copy-on-write object. (a) After both processes have mapped the private copy-on-
write object. (b) After process 2 writes to a page in the private area.

10.8. MEMORY MAPPING 519

a protection fault.

When the fault handler notices that the protection exception was caused by the process trying to write to
a page in a private copy-on-write area, it creates a new copy of the page in physical memory, updates
the page table entry to point to the new copy, and then restores write permissions to the page, as shown
in Figure 10.32(b). When the fault handler returns, the CPU reexecutes the write, which now proceeds
normally on the newly created page.

By deferring the copying of the pages in private objects until the last possible moment, copy-on-write makes
the most efficient use of scarce physical memory.

10.8.2 Thefork Function Revisited

Now that we understand virtual memory and memory mapping, we can get a clear idea of how thefork
function creates a new process with its own independent virtual address space.

When thefork function is called by thecurrent process, the kernel creates various data structures for
the new processand assigns it a unique PID. To create the virtual memory for the new process, it creates
exact copies of the current process’smmstruct, area structs, and page tables. It flags each page in both
processes as read-only, and flags each area struct in both processes as private copy-on-write.

When thefork returns in the new process, the new process now has an exact copy of the virtual memory
as it existed when the fork was called. When either of the processes performs any subsequent writes, the
copy-on-write mechanism creates new pages, thus preserving the abstraction of a private address space for
each process.

10.8.3 Theexecve Function Revisited

Virtual memory and memory mapping also play key roles in the process of loading programs into memory.
Now that we understand these concepts, we can understand how theexecve function really loads and
executes programs. Suppose that the program running in the current process makes the following call to
execve:

Execve("a.out", NULL, NULL);

Theexcecve function loads and runs the program contained in the executable object filea.out within the
current process, effectively replacing the current program with thea.out program. Loading and running
a.out requires the following steps:

� Delete existing user areas.Delete the existing area structs in the user portion of the current process’s
virtual address.

� Map private areas.Create new area structs for the text, data, bss, and stack areas of the new program.
All of these new areas are private copy-on-write The text and data areas are mapped to the text and
data sections of thea.out file. The bss area is demand-zero, mapped to an anonymous file whose
size is contained ina.out. The stack and heap area are also demand-zero, initially of zero-length.
Figure 10.33 summarizes the different mappings of the private areas.

520 CHAPTER 10. VIRTUAL MEMORY

Memory mapped region
for shared libraries

runtime heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

user stack

0

private, demand-zero

libc.so

.data
.text

shared, file-backed

private, demand-zero

private, demand-zero

private, file-backed

a.out

.data
.text

Figure 10.33:How the loader maps the areas of the user address space.

� Map shared areas.If the a.out program was linked with shared objects, such as the standard C
library libc.so, then these objects are dynamically linked into the program, and then mapped into
the shared region of the user’s virtual address space.

� Set the program counter (PC).The last thing thatexecve does is to set the program counter in the
current process’s context to point to the entry point in the text area.

The next time this process is scheduled, it will begin execution from the entry point. Linux will swap in
code and data pages as needed.

10.8.4 User-level Memory Mapping with themmapFunction

Unix processes can use themmapfunction to create new areas of virtual memory and to map objects into
these areas.

#include <unistd.h>
#include <sys/mman.h>

void *mmap(void *start, size t length, int prot, int flags, int fd, off t
offset);

returns: pointer to mapped area if OK, -1 on error

Themmapfunction asks the kernel to create a new virtual memory area, preferably one that starts at address
start, and to map a contiguous chunk of the object specified by file descriptorfd to the new area. The
contiguous object chunk has a size oflength bytes and starts at an offset ofoffset bytes from the be-
ginning of the file. Thestart address is merely a hint, and is usually specified as NULL. For our purposes,
we will always assume a NULL start address. Figure 10.34 depicts the meaning of these arguments.

10.8. MEMORY MAPPING 521

Disk file specified by
file descriptor fd

0

offset
(bytes)

length(bytes)
start

(or address
chosen by the

kernel)

0

Process
virtual memory

length (bytes)

Figure 10.34:Visual interpretation of mmaparguments.

Theprot argument contains bits that describe the access permissions of the newly mapped virtual memory
area (i.e., thevm prot bits in the corresponding area struct).

� PROTEXEC: Pages in the area consist of instructions that may be executed by the CPU.

� PROTREAD: Pages in the area may be read.

� PROTWRITE: Pages in the area may be written.

� PROTNONE: Pages in the area cannot be accessed.

The flags argument consists of bits that describe the type of the mapped object. If the MAPANON flag
bit is set andfd is NULL, then the backing store is an anonymous object and the corresponding virtual pages
are demand-zero. MAPPRIVATE indicates a private copy-on-write object, and MAPSHARED indicates
a shared object. For example,

bufp = Mmap(NULL, size, PROT_READ, MAP_PRIVATE|MAP_ANON, 0, 0);

asks the kernel to create a new read-only, private, demand-zero area of virtual memory containingsize
bytes. If the call is successful, thenbufp contains the address of the new area.

Themunmapfunction deletes regions of virtual memory.

#include <unistd.h>
#include <sys/mman.h>

int munmap(void *start, size t length);
returns: 0 if OK, -1 on error

Themunmapfunction deletes the area starting at virtual addressstart and consisting of the nextlength
bytes. Subsequent references to the deleted region result in segmentation faults.

522 CHAPTER 10. VIRTUAL MEMORY

Practice Problem 10.5:
Write a C programmmapcopy.c that usesmmapto copy an arbitrary-sized disk file to stdout. The
name of the input file should be passed as a command line argument.

10.9 Dynamic Memory Allocation

While it is certainly possible to use the low-levelmmapandmunmapfunctions to create and delete areas
of virtual memory, most C programs use adynamic memory allocatorwhen they need to acquire additional
virtual memory at run time.

A dynamic memory allocator maintains an area of a process’s virtual memory known as theheap(Fig-
ure 10.35). In most Unix systems, the heap is an area of demand-zero memory that begins immediately
after the uninitializedbss area and grows upward (towards higher addresses). For each process, the kernel
maintains a variablebrk (pronounced “break”) that points to the top of the heap.

Memory mapped region
for shared libraries

heap

program text (.text)

initialized data (.data)

uninitialized data (.bss)

user stack

0

top of the heap
(brk ptr)

heap grows
upward

Figure 10.35:The heap.

An allocator maintains the heap as a collection of various sizedblocks. Each block is a contiguous chunk
of virtual memory that is eitherallocatedor free. An allocated block has been explicitly reserved for use
by the application. A free block is available to be allocated. A free block remains free until it is explicitly
allocated by the application. An allocated block remains allocated until it is freed, either explicitly by the
application, or implicitly by the memory allocator itself.

Allocators come in two basic styles. Both styles require the application to explicitly allocate blocks. They
differ about which entity is responsible for freeing allocated blocks.

Explicit allocatorsrequire the application to explicitly free any allocated blocks. For example, the C stan-
dard library provides an explicit allocator called themalloc package. C programs allocate a block by
calling themalloc function and free a block by calling thefree function. Thenew and free calls in
C++ are comparable.

10.9. DYNAMIC MEMORY ALLOCATION 523

Implicit allocators, on the other hand, require the allocator to detect when an allocated block is no longer
being used by the program and then free the block. Implicit allocators are also known asgarbage collectors,
and the process of automatically freeing unused allocated blocks is known asgarbage collection. For
example, higher-level languages such as Lisp, ML and Java rely on garbage collection to free allocated
blocks.

The remainder of this section discusses the design and implementation of explicit allocators. We will discuss
implicit allocators in Section 10.10. For concreteness, our discussion focuses on allocators that manage heap
memory. However, students should be aware that memory allocation is a general idea that arises in a variety
of contexts. For example, applications that do intensive manipulation of graphs will often use the standard
allocator to acquire a large block of virtual memory, and then use an application-specific allocator to manage
the memory within that block as the nodes of the graph are created and destroyed.

10.9.1 Themalloc and free Functions

The C standard library provides an explicit allocator known as themalloc package. Programs allocate
blocks from the heap by calling themalloc function.

#include <stdlib.h>

void *malloc(size t size);
returns: ptr if OK, NULL on error

Themalloc function returns a pointer to a block of memory of at leastsize bytes that is suitably aligned
for any kind of data object that might be contained in the block. On the Unix systems that we are familiar
with, malloc returns a block that is aligned to an 8-byte (double-word) boundary. Thesize t type is
defined as anunsigned int.

Aside: How big is a word?
Recall from our discussion of IA32 machine code in Chapter 3 that Intel refers to 4-byte objects asdouble-words.
However, throughout this section we will assume thatwordsare 4-byte objects and thatdouble-wordsare 8-byte
objects, which is consistent with conventional terminology.End Aside.

If malloc encounters a problem (e.g., the program requests a block of memory that is larger than the
available virtual memory), then it returns NULL and setserrno. Malloc does not initialize the memory
it returns. Applications that want initialized dynamic memory can usecalloc, a thin wrapper around the
malloc function that initializes the allocated memory to zero. Applications that want to change the size of
a previously allocated block can use therealloc function.

Dynamic memory allocators such asmalloc can allocate or deallocate heap memory explicitly by using
themmapandmunmapfunctions, or they can use thesbrk function:

#include <unistd.h>

void *sbrk(int incr);
returns: oldbrk pointer on success, -1 on error

524 CHAPTER 10. VIRTUAL MEMORY

Thesbrk function grows or shrinks the heap by addingincr to the kernel’sbrk pointer. If successful, it
returns the old value ofbrk, otherwise it returns -1 and setserrno to ENOMEM. If incr is zero, then
sbrk returns the current value ofbrk. Calling sbrk with a negativeincr is legal but tricky because the
return value (the old value ofbrk) points to abs(incr) bytes past the new top of the heap.

Programs free allocated heap blocks by calling thefree function.

#include <stdlib.h>

void free(void *ptr);
returns: nothing

Theptr argument must point to the beginning of an allocated block that was obtained frommalloc. If
not, then the behavior offree is undefined. Even worse, since it returns nothing,free gives no indication
to the application that something is wrong. As we shall see in Section 10.11, this can produce some baffling
run-time errors.

Figure 10.36 shows how an implementation ofmalloc and free might manage a (very) small heap of
16 words for a C program. Each box represents a 4-byte word. The heavy-lined rectangles correspond
to allocated blocks (shaded) and free blocks (unshaded). Initially the heap consists of a single 16-word
double-word aligned free block.

� Figure 10.36(a):The program asks for a 4-word block.Malloc responds by carving out a 4-word
block from the front of the free block and returning a pointer to the first word of the block.

� Figure 10.36(b):The program requests a 5-word block.Malloc responds by allocating a 6-word
block from the front of the free block. In this example,malloc pads the block with an extra word in
order to keep the free block aligned on a double-word boundary.

� Figure 10.36(c):The program requests a 6-word block andmalloc responds by carving out a 6-word
block from the free block.

� Figure 10.36(d)The program frees the 6-word block that was allocated in Figure 10.36(b). Notice
that after the call tofree returns, the pointerp2 still points to the freed block. It is the responsibility
of the application not to usep2 again until it is reinitialized by a new call tomalloc.

� Figure 10.36(e):The program requests a 2-word block. In this case,malloc allocates a portion of
the block that was freed in the previous step and returns a pointer to this new block.

10.9.2 Why Dynamic Memory Allocation?

The most important reason that programs use dynamic memory allocation is that often they do not know the
sizes of certain data structures until the program actually runs. For example, suppose we are asked to write
a C program that reads a list ofn ASCII integers, one integer per line, fromstdin into a C array. The
input consists of the integern, followed by then integers to be read and stored into the array. The simplest
approach is to define the array statically with some hard-coded maximum array size:

10.9. DYNAMIC MEMORY ALLOCATION 525

p1

(a) p1 = malloc(4*sizeof(int))

p1 p2

(b) p2 = malloc(5*sizeof(int))

p1 p2 p3

(c) p3 = malloc(6*sizeof(int))

p1 p2 p3

(d) free(p2)

p1 p2 p3p4

(e) p4 = malloc(2*sizeof(int))

Figure 10.36:Allocating and freeing blocks with malloc. Each square corresponds to a word. Each
heavy rectangle corresponds to a block. Allocated blocks are shaded. Free blocks are unshaded. Heap
addresses increase from left to right.

526 CHAPTER 10. VIRTUAL MEMORY

1 #include "csapp.h"
2 #define MAXN 15213
3

4 int array[MAXN];
5

6 int main()
7 {
8 int i, n;
9

10 scanf("%d", &n);
11 if (n > MAXN)
12 app_error("Input file too big");
13 for (i = 0; i < n; i++)
14 scanf("%d", &array[i]);
15 exit(0);
16 }

Allocating arrays with hard-coded sizes like this is often a bad idea. The value of MAXN is arbitrary and
has no relation to the actual amount of available virtual memory on the machine. Further, if the user of
this program wanted to read a file that was larger than MAXN, the only recourse would be to recompile
the program with a larger value of MAXN. While not a problem for this simple example, the presence of
hard-coded array bounds can become a maintenance nightmare for large software products with millions of
lines of code and numerous users.

A better approach is to allocate the array dynamically, at run time, after the value ofn becomes known. With
this approach, the maximum size of the array is limited only by the amount of available virtual memory.

1 #include "csapp.h"
2

3 int main()
4 {
5 int *array, i, n;
6

7 scanf("%d", &n);
8 array = (int *)Malloc(n * sizeof(int));
9 for (i = 0; i < n; i++)

10 scanf("%d", &array[i]);
11 exit(0);
12 }

Dynamic memory allocation is a useful and important programming technique. However, in order to use
allocators correctly and efficiently, programmers need to have an understanding of how they work. We will
discuss some of the gruesome errors that can result from the improper use of allocators in Section 10.11.

10.9.3 Allocator Requirements and Goals

Explicit allocators must operate within some rather stringent constraints.

10.9. DYNAMIC MEMORY ALLOCATION 527

� Handling arbitrary request sequences.An application can make an arbitrary sequence of allocate and
free requests, subject to the constraint that each free request must correspond to a currently allocated
block obtained from a previous allocate request. Thus the allocator cannot make any assumptions
about the ordering of allocate and free requests. For example, the allocator cannot assume that all
allocate requests are accompanied by a matching free, or that matching allocate and free requests are
nested.

� Making immediate responses to requests.The allocator must respond immediately to allocate re-
quests. Thus the allocator is not allowed to reorder or buffer requests in order to improve performance.

� Using only the heap.In order for the allocator to be scalable, any non-scalar data structures used by
the allocator must be stored in the heap itself.

� Aligning blocks (alignment requirement).The allocator must align blocks in such a way that they can
hold any type of data object. On most systems, this means that the block returned by the allocator is
aligned on an eight-byte (double-word) boundary.

� Not modifying allocated blocks.Allocators can only manipulate or change free blocks. In particular,
they are not allowed to modify or move blocks once they are allocated. Thus, techniques such as
compaction of allocated blocks are not permitted.

Working within these constraints, the author of an allocator attempts to meet the often conflicting perfor-
mance goals of maximizing throughput and memory utilization:

� Goal 1: Maximizing throughput.Given some sequence ofn allocate and free requests

R0; R1; : : : ; Rk; : : : ; Rn�1

we would like to maximize an allocator’sthroughput, which is defined as the number of requests that
it completes per unit time. For example, if an allocator completes 500 allocate requests and 500 free
requests in 1 second, then its throughput is 1,000 operations per second. In general we can maximize
throughput by minimizing the average time to satisfy allocate and free requests. As we’ll see, it is not
too difficult to develop allocators with reasonably good performance where the worst-case running
time of an allocate request is linear in the number of free blocks and the running time of a free request
is constant.

� Goal 2: Maximizing memory utilization.Naive programmers often incorrectly assume that virtual
memory is an unlimited resource. In fact, the total amount of virtual memory allocated by all of the
processes in a system is limited by the amount of swap space on disk. Good programmers realize that
virtual memory is a finite resource that must be used efficiently. This is especially true for a dynamic
memory allocator that might be asked to allocate and free large blocks of memory.

There are a number of ways to characterize how efficiently an allocator uses the heap. In our experi-
ence, the most useful metric ispeak utilization. As before, we are given some sequence ofn allocate
and free requests

R0; R1; : : : ; Rk; : : : ; Rn�1

528 CHAPTER 10. VIRTUAL MEMORY

If an application requests a block ofp bytes, then the resulting allocated block has apayloadof p bytes.
After requestRk has completed, let theaggregate payload, denotedPk, be the sum of the payloads
of the currently allocated blocks, and letHk denote the current (monotonically nondecreasing) size
of the heap.

Then thepeak utilizationover the firstk requests, denoted byUk, is given by

Uk =
maxi�k Pi

Hk
:

The objective of the allocator then is to maximize the peak utilizationUn�1 over the entire sequence.
As we will see, there is a tension between maximizing throughput and utilization. In particular, it is
easy to write an allocator that maximizes throughput at the expense of heap utilization. One of the
interesting challenges in any allocator design is finding an appropriate balance between the two goals.

Aside: Relaxing the monotonicity assumption.
We could relax the monotonically nondecreasing assumption in our definition ofUk and allow the heap to grow up
and down by lettingHk be the highwater mark over the firstk requests.End Aside.

10.9.4 Fragmentation

The primary cause of poor heap utilization is a phenomenon known asfragmentation, which occurs when
otherwise unused memory is not available to satisfy allocate requests. There are two forms of fragmentation:
internal fragmentationandexternal fragmentation.

Internal fragmentationoccurs when an allocated block is larger than the payload. This might happen for
a number of reasons. For example, the implementation of an allocator might impose a minimum size on
allocated blocks that is greater than some requested payload. Or, as we saw in Figure 10.36(b), the allocator
might increase the block size in order to satisfy alignment constraints.

Internal fragmentation is straightforward to quantify. It is simply the sum of the differences between the
sizes of the allocated blocks and their payloads. Thus, at any point in time, the amount of internal fragmen-
tation depends only on the pattern of previous requests and the allocator implementation.

External fragmentationoccurs when thereis enough aggregate free memory to satisfy an allocate request,
but no single free block is large enough to handle the request. For example, if the request in Figure 10.36(e)
were for six words rather than two words, then the request could not be satisfied without requesting addi-
tional virtual memory from the kernel, even though there are six free words remaining in the heap. The
problem arises because these six words are spread over two free blocks.

External fragmentation is much more difficult to quantify than internal fragmentation because it depends not
only on the pattern of previous requests and the allocator implementation, but also on the pattern offuture
requests. For example, suppose that afterk requests, all of the free blocks are exactly four words in size.
Does this heap suffer from external fragmentation? The answer depends on the pattern of future requests.
If all of the future allocate requests are for blocks that are smaller than four words, then there is no external
fragmentation. On the other hand, if one or more requests ask for blocks larger than four words, then the
heap does suffer from external fragmentation.

10.9. DYNAMIC MEMORY ALLOCATION 529

Since external fragmentation is difficult to quantify and impossible to predict, allocators typically employ
heuristics that attempt to maintain small numbers of larger free blocks rather than large numbers of smaller
free blocks.

10.9.5 Implementation Issues

The simplest imaginable allocator would organize the heap as a large array of bytes and a pointerp that
initially points to the first byte of the array. To allocatesize bytes,malloc would save the current value
of p on the stack, incrementp by size, and return the old value ofp to the caller.Free would simply
return to the caller without doing anything.

This naive allocator is an extreme point in the design space. Since eachmalloc andfree execute only
a handful of instructions, throughput would be extremely good. However, since the allocator never reuses
any blocks, memory utilization would be extremely bad. A practical allocator that strikes a better balance
between throughput and utilization must consider the following issues:

� Free block organization:How do we keep track of free blocks?

� Placement:How do we choose an appropriate free block in which to place a newly allocated block?

� Splitting: After we place a newly allocated block in some free block, what do we do with the remain-
der of the free block?

� Coalescing:What do we do with a block that has just been freed?

The rest of this section looks at these issues in more detail. Since the basic techniques of placement, splitting,
and coalescing cut across many different free block organizations, we will introduce them in the context of
a simple free block organization known as an implicit free list.

10.9.6 Implicit Free Lists

Any practical allocator needs some data structure that allows it to distinguish block boundaries and to distin-
guish between allocated and free blocks. Most allocators embed this information in the blocks themselves.
One simple approach is shown in Figure 10.37.

In this case, a block consists of a one-wordheader, the payload, and possibly some additionalpadding.
Theheaderencodes the block size (including the header and any padding) as well as whether the block is
allocated or free. If we impose a double-word alignment constraint, then the block size is always a multiple
of eight and the three low-order bits of the block size are always zero. Thus, we need to store only the 29
high-order bits of the block size, freeing the remaining three bits to encode other information. In this case,
we are using the least significant of these bits (theallocated bit) to indicate whether the block is allocated
or free. For example, suppose we have an allocated block with a block size of 24 (0x18) bytes. Then its
header would be

0x00000018 | 0x1 = 0x00000019.

Similarly, a free block with a block size of 40 (0x28) bytes would have a header of

530 CHAPTER 10. VIRTUAL MEMORY

block size

payload
(allocated block only)

a = 1: allocated
a = 0: free

The block size includes
the header, payload, and
any padding.

0 0 a

031 123

malloc returns a
pointer to the beginning

of the payload

padding (optional)

header

Figure 10.37:Format of a simple heap block.

0x00000028 | 0x0 = 0x00000028.

The header is followed by the payload that the application requested when it calledmalloc. The payload is
followed by a chunk of unused padding that can be any size. There are a number of reasons for the padding.
For example, the padding might be part of an allocator’s strategy for combating external fragmentation. Or
it might be needed to satisfy the alignment requirement.

Given the block format in Figure 10.37, we can organize the heap as a sequence of contiguous allocated and
free blocks, as shown in Figure 10.38.

8/0 16/1 16/132/0
start

of
heap

unused

0/1
double-

word
aligned

Figure 10.38:Organizing the heap with an implicit free list. Allocated blocks are shaded. Free blocks
are unshaded. Headers are labeled with (size (bytes)/allocated bit).

We call this organization animplicit free listbecause the free blocks are linked implicitly by the size fields in
the headers. The allocator can indirectly traverse the entire set of free blocks by traversingall of the blocks
in the heap. Notice that we need some kind of specially marked end block, in this example a terminating
header with the allocated bit set and a size of zero. (As we will see in Section 10.9.12, setting the allocated
bit simplifies the coalescing of free blocks.)

The advantage of an implicit free list is simplicity. A significant disadvantage is that the cost of any opera-
tion, such as placing allocated blocks, that requires a search of the free list will be linear in thetotal number
of allocated and free blocks in the heap.

It is important to realize that the system’s alignment requirement and the allocator’s choice of block format
impose aminimum block sizeon the allocator. No allocated or free block may be smaller than this minimum.
For example, if we assume a double-word alignment requirement, then the size of each block must be a
multiple of two words (8 bytes). Thus, the block format in Figure 10.37 induces a minimum block size
of two words: one word for the header, and another to maintain the alignment requirement. Even if the
application were to request a single byte, the allocator would still create a two-word block.

10.9. DYNAMIC MEMORY ALLOCATION 531

Practice Problem 10.6:

Determine the block sizes and header values that would result from the following sequence ofmalloc
requests. Assumptions: (1) The allocator maintains double-word alignment, and uses an implicit free
list with the block format from Figure 10.37. (2) Block sizes are rounded up to the nearest multiple of
eight bytes.

Request Block size (decimal bytes) Block header (hex)

malloc(1)
malloc(5)

malloc(12)
malloc(13)

10.9.7 Placing Allocated Blocks

When an application requests a block ofk bytes, the allocator searches the free list for a free block that
is large enough to hold the requested block. The manner in which the allocator performs this search is
determined by theplacement policy. Some common policies arefirst fit, next fit, andbest fit.

First fit searches the free list from the beginning and chooses the first free block that fits.Next fitis similar
to first fit, but instead of starting each search at the beginning of the list, it starts each search where the
previous search left off.Best fitexamines every free block and chooses the free block with the smallest size
that fits.

An advantage of first fit is that it tends to retain large free blocks at the end of the list. A disadvantage is that
it tends to leave “splinters” of small free blocks towards the beginning of the list, which will increase the
search time for larger blocks. Next fit was first proposed by Knuth as an alternative to first fit, motivated by
the idea that if we found a fit in some free block the last time, there is a good chance that the we will find a
fit the next time in the remainder of the block. Next fit can run significantly faster than first fit, especially if
the front of the list becomes littered with many small splinters. However, some studies suggest that next fit
suffers from worse memory utilization than first fit. Studies have found that best fit generally enjoys better
memory utilization than either first fit or next fit. However, the disadvantage of using best fit with simple
free list organizations such as the implicit free list, is that it requires an exhaustive search of the heap. Later,
we will look at more sophisticated segregated free list organizations that implement a best-fit policy without
an exhaustive search of the heap.

10.9.8 Splitting Free Blocks

Once the allocator has located a free block that fits, it must make another policy decision about how much
of the free block to allocate. One option is to use the entire free block. Although simple and fast, the main
disadvantage is that it introduces internal fragmentation. If the placement policy tends to produce good fits,
then some additional internal fragmentation might be acceptable.

However, if the fit is not good, then the allocator will usually opt tosplit the free block into two parts. The
first part becomes the allocated block, and the remainder becomes a new free block. Figure 10.39 shows

532 CHAPTER 10. VIRTUAL MEMORY

how the allocator might split the eight-word free block in Figure 10.38 to satisfy an application’s request for
three words of heap memory.

8/0 16/1 16/0 16/116/1
start

of
heap

unused

0/1
double
word

aligned

Figure 10.39:Splitting a free block to satisfy a three-word allocation request. Allocated blocks are
shaded. Free blocks are unshaded. Headers are labeled with (size (bytes)/allocated bit).

10.9.9 Getting Additional Heap Memory

What happens if the allocator is unable to find a fit for the requested block? One option is to try to create
some larger free blocks by merging (coalescing) free blocks that are physically adjacent in memory (next
section). However, if this does not yield a sufficiently large block, or if the free blocks are already maximally
coalesced, then the allocator asks the kernel for additional heap memory, either by calling themmapor sbrk
functions. In either case, the allocator transforms the additional memory into one large free block, inserts
the block into the free list, and then places the requested block in this new free block.

10.9.10 Coalescing Free Blocks

When the allocator frees an allocated block, there might be other free blocks that are adjacent to the newly
freed block. Such adjacent free blocks can cause a phenomenon known asfalse fragmentation, where there
is a lot of available free memory chopped up into small, unusable free blocks. For example, Figure 10.40
shows the result of freeing the block that was allocated in Figure 10.39. The result is two adjacent free
blocks with payloads of three words each. As a result, a subsequent request for a payload of four words
would fail, even though the aggregate size of the two free blocks is large enough to satisfy the request.

8/0 16/1 16/0 16/116/0
start

of
heap

unused

0/1
double
word

aligned

Figure 10.40:An example of false fragmentation.Allocated blocks are shaded. Free blocks are unshaded.
Headers are labeled with (size (bytes)/allocated bit).

To combat false fragmentation, any practical allocator must merge adjacent free blocks in a process known
ascoalescing. This raises an important policy decision about when to perform coalescing. The allocator can
opt for immediate coalescingby merging any adjacent blocks each time a block is freed. Or it can opt for
deferred coalescingby waiting to coalesce free blocks at some later time. For example, the allocator might
defer coalescing until some allocation request fails, and then scan the entire heap, coalescing all free blocks.

10.9. DYNAMIC MEMORY ALLOCATION 533

Immediate coalescing is straightforward and can be performed in constant time, but with some request
patterns it can introduce a form of thrashing where a block is repeatedly coalesced and then split soon
thereafter. For example, in Figure 10.40 a repeated pattern of allocating and freeing a three-word block
would introduce a lot of unnecessary splitting and coalescing. In our discussion of allocators, we will
assume immediate coalescing, but you should be aware that fast allocators often opt for some form of
deferred coalescing.

10.9.11 Coalescing with Boundary Tags

How does an allocator implement coalescing? Let us refer to the block we want to free as thecurrent block.
Then coalescing the next free block (in memory) is straightforward and efficient. The header of the current
block points to the header of the next block, which can be checked to determine if the next block is free. If
so, its size is simply added to the size of the current header and the blocks are coalesced in constant time.

But how would we coalesce the previous block? Given an implicit free list of blocks with headers, the only
option would be to search the entire list, remembering the location of the previous block, until we reached
the current block. With an implicit free list, this means that each call tofree would require time linear
in the size of the heap. Even with more sophisticated free list organizations, the search time would not be
constant.

Knuth developed a clever and general technique, known asboundary tags, that allows for constant-time
coalescing of the previous block. The idea, which is shown in Figure 10.41, is to add afooter(the boundary
tag) at the end of each block, where the footer is a replica of the header. If each block includes such a
footer, then the allocator can determine the starting location and status of the previous block by inspecting
its footer, which is always one word away from the start of the current block.

block size

payload
(allocated block only)

a/f

031 123

padding (optional)

block size a/f

header

footer

Figure 10.41:Format of heap block that uses a boundary tag.

Consider all the cases that can exist when the allocator frees the current block:

1. The previous and next blocks are both allocated.

2. The previous block is allocated and the next block is free.

3. The previous block is free and the next block is allocated.

534 CHAPTER 10. VIRTUAL MEMORY

4. The previous and next blocks are both free.

Figure 10.42 shows how we would coalesce each of the four cases.

m1 a

m1 a

n a

n a

m2 a

m2 a

m1 a

m1 a

n f

n f

m2 a

m2 a

Case 1.

m1 a

m1 a

n+m2 f

n+m2 f

m1 a

m1 a

n a

n a

m2 f

m2 f

Case 2.

m1 f

m1 f

n a

n a

m2 a

m2 a

n+m1 f

n+m1 f

m2 a

m2 a

Case 3.

m1 f

m1 f

n a

n a

m2 f

m2 f

n+m1+m2 f

n+m1+m2 f

Case 4.

Figure 10.42:Coalescing with boundary tags.Case 1: prev and next allocated. Case 2: prev allocated,
next free. Case 3: prev free, next allocated. Case 4: next and prev free.

In Case 1, both adjacent blocks are allocated and thus no coalescing is possible. So the status of the current
block is simply changed from allocated to free. In Case 2, the current block is merged with the next block.
The header of the current block and the footer of the next block are updated with the combined sizes of the
current and next blocks. In Case 3, the previous block is merged with the current block. The header of the
previous block and the footer of the current block are updated with the combined sizes of the two blocks. In
Case 4, all three blocks are merged to form a single free block, with the header of the previous block and the
footer of the next block updated with the combined sizes of the three blocks. In each case, the coalescing is
performed in constant time.

The idea of boundary tags is a simple and elegant one that generalizes to many different types of allocators
and free list organizations. However, there is a potential disadvantage. Requiring each block to contain
both a header and a footer can introduce significant memory overhead if an application manipulates many
small blocks. For example, if a graph application dynamically creates and destroys graph nodes by making
repeated calls tomalloc andfree, and each graph node requires only a couple of words of memory, then
the header and the footer will consume half of each allocated block.

Fortunately, there is a clever optimization of boundary tags that eliminates the need for a footer in allocated
blocks. Recall that when we attempt to coalesce the current block with the previous and next blocks in
memory, the size field in the footer of the previous block is only needed if the previous block isfree. If we

10.9. DYNAMIC MEMORY ALLOCATION 535

were to store the allocated/free bit of the previous block in one of the excess low-order bits of the current
block, then allocated blocks would not need footers, and we could use that extra space for payload. Note
however, that free blocks still need footers.

Practice Problem 10.7:

Determine the minimum block size for each of the following combinations of alignment requirements
and block formats. Assumptions: Implicit free list, zero-sized payloads are not allowed, and headers and
footers are stored in four-byte words.

Alignment Allocated block Free block Minimum block size (bytes)

Single-word Header and footer Header and footer
Single-word Header, but no footer Header and footer
Double-word Header and footer Header and footer
Double-word Header, but no footer Header and footer

10.9.12 Putting it Together: Implementing a Simple Allocator

Building an allocator is a challenging task. The design space is large, with numerous alternatives for block
format, free list format, and placement, splitting, and coalescing policies. Another challenge is that you are
often forced to program outside the safe, familiar confines of the type system, relying on the error-prone
pointer casting and pointer arithmetic that is typical of low-level systems programming. While allocators
do not require enormous amounts of code, they are subtle and unforgiving. Students familiar with higher-
level languages such as C++ or Java often hit a conceptual wall when they first encounter this style of
programming. To help you clear this hurdle, we will work through the implementation of a simple allocator
based on an implicit free list with immediate boundary-tag coalescing.

General Allocator Design

Our allocator uses a model of the memory system provided by thememlib.c package shown in Fig-
ure 10.43. The purpose of the model is to allow us to run our allocator without interfering with the existing
system-levelmalloc package. Thememinit function models the virtual memory available to the heap
as a large, double-word aligned array of bytes. The bytes betweenmemstart brk andmembrk repre-
sent allocated virtual memory. The bytes followingmembrk represent unallocated virtual memory. The
allocator requests additional heap memory by calling thememsbrk function, which has the same interface
as the system’ssbrk function, and the same semantics, except that it rejects requests to shrink the heap.

The allocator itself is contained in a source file (malloc.c) that users can compile and link into their
applications. The allocator exports three functions to application programs:

1 int mm_init(void);
2 void *mm_malloc(size_t size);
3 void mm_free(void *bp);

536 CHAPTER 10. VIRTUAL MEMORY

code/vm/memlib.c

1 #include "csapp.h"
2

3 /* private global variables */
4 static void *mem_start_brk; /* points to first byte of the heap */
5 static void *mem_brk; /* points to last byte of the heap */
6 static void *mem_max_addr; /* max virtual address for the heap */
7

8 /*
9 * mem_init - initializes the memory system model

10 */
11 void mem_init(int size)
12 {
13 mem_start_brk = (void *)Malloc(size); /* models available VM */
14 mem_brk = mem_start_brk; /* heap is initially empty */
15 mem_max_addr = mem_start_brk + size; /* max VM address for heap */
16 }
17

18 /*
19 * mem_sbrk - simple model of the the sbrk function. Extends the heap
20 * by incr bytes and returns the start address of the new area. In
21 * this model, the heap cannot be shrunk.
22 */
23 void *mem_sbrk(int incr)
24 {
25 void *old_brk = mem_brk;
26

27 if ((incr < 0) || ((mem_brk + incr) > mem_max_addr)) {
28 errno = ENOMEM;
29 return (void *)-1;
30 }
31 mem_brk += incr;
32 return old_brk;
33 }

code/vm/memlib.c

Figure 10.43:memlib.c: Memory system model.

10.9. DYNAMIC MEMORY ALLOCATION 537

Themminit function initializes the allocator, returning 0 if successful and -1 otherwise. Themmmalloc
andmmfree functions have the same interfaces and semantics as their system counterparts. The allocator
uses the block format shown in Figure 10.41. The minimum block size is 16 bytes. The free list is organized
as an implicit free list, with the invariant form shown in Figure 10.44.

ftrftr hdr8/1 8/1 hdr hdr
start

of
heap

pro logue
block

ftr 0/1
double-

word
aligned

...

regular
block 1

regular
block 2

regular
block n

epilogue
block hdr

static void *heap_listp

Figure 10.44:Invariant form of the implicit free list.

The first word is an unused padding word aligned to a double-word boundary. The padding is followed by
a specialprologue block, which is an eight-byte allocated block consisting of only a header and a footer.
The prologue block is created during initialization and is never freed. Following the prologue block are
zero or more regular blocks that are created by calls tomalloc or free. The heap always ends with a
specialepilogue block, which is a zero-sized allocated block that consists of only a header. The prologue
and epilogue blocks are tricks that eliminate the edge conditions during coalescing. The allocator uses a
single private (static) global variable (heap listp) that always points to the prologue block. (As a
minor optimization, we could make it point to the next block instead of the prologue block.)

Basic Constants and Macros for Manipulating the Free List

Figure 10.45 shows some basic constants that we will use throughout the allocator code. Lines 2–5 define
some basic size constants: the sizes of words (WSIZE) and double-words (DSIZE), the size of the initial
free block and the default size for expanding the heap (CHUNKSIZE), and the number of overhead bytes
consumed by the header and footer (OVERHEAD).

Manipulating the headers and footers in the free list can be troublesome because it demands extensive use
of casting and pointer arithmetic. Thus, we find it helpful to define a small set of macros for accessing and
traversing the free list (lines 10–26). The PACK macro (line 10) combines a size and an allocate bit and
returns a value that can be stored in a header or footer.

The GET macro (line 13) reads and returns the word referenced by argumentp. The casting here is crucial.
The argumentp is typically a (void *) pointer, which cannot be dereferenced directly. Similarly, the PUT
macro (line 14) storesval in the word pointed at by argumentp.

The GETSIZE and GETALLOC macros (lines 17–18) return the size and allocated bit, respectively, from
a header or footer at addressp. The remaining macros operate onblock pointers(denotedbp), that point to
the first payload byte. Given a block pointerbp, the HDRP and FTRP macros (lines 21–22) return pointers
to the block header and footer, respectively. The NEXTBLKP and PREVBLKP macros (lines 25–26)
return the block pointers of the next and previous blocks, respectively.

The macros can be composed in various ways to manipulate the free list. For example, given a pointerbp to
the current block, we could use the following line of code to determine the size of the next block in memory:

538 CHAPTER 10. VIRTUAL MEMORY

code/vm/malloc.c

1 /* Basic constants and macros */
2 #define WSIZE 4 /* word size (bytes) */
3 #define DSIZE 8 /* doubleword size (bytes) */
4 #define CHUNKSIZE (1<<12) /* initial heap size (bytes) */
5 #define OVERHEAD 8 /* overhead of header and footer (bytes) */
6

7 #define MAX(x, y) ((x) > (y)? (x) : (y))
8

9 /* Pack a size and allocated bit into a word */
10 #define PACK(size, alloc) ((size) | (alloc))
11

12 /* Read and write a word at address p */
13 #define GET(p) (*(size_t *)(p))
14 #define PUT(p, val) (*(size_t *)(p) = (val))
15

16 /* Read the size and allocated fields from address p */
17 #define GET_SIZE(p) (GET(p) & ˜0x7)
18 #define GET_ALLOC(p) (GET(p) & 0x1)
19

20 /* Given block ptr bp, compute address of its header and footer */
21 #define HDRP(bp) ((void *)(bp) - WSIZE)
22 #define FTRP(bp) ((void *)(bp) + GET_SIZE(HDRP(bp)) - DSIZE)
23

24 /* Given block ptr bp, compute address of next and previous blocks */
25 #define NEXT_BLKP(bp) ((void *)(bp) + GET_SIZE(((void *)(bp) - WSIZE)))
26 #define PREV_BLKP(bp) ((void *)(bp) - GET_SIZE(((void *)(bp) - DSIZE)))

code/vm/malloc.c

Figure 10.45:Basic constants and macros for manipulating the free list.

10.9. DYNAMIC MEMORY ALLOCATION 539

size t size = GET SIZE(HDRP(NEXT BLKP(bp)));

Creating the Initial Free List

Before callingmmmalloc or mmfree, the application must initialize the heap by calling themminit
function (Figure 10.46). Themminit function gets four words from the memory system and initializes

code/vm/malloc.c

1 int mm_init(void)
2 {
3 /* create the initial empty heap */
4 if ((heap_listp = mem_sbrk(4*WSIZE)) == NULL)
5 return -1;
6 PUT(heap_listp, 0); /* alignment padding */
7 PUT(heap_listp+WSIZE, PACK(OVERHEAD, 1)); /* prologue header */
8 PUT(heap_listp+DSIZE, PACK(OVERHEAD, 1)); /* prologue footer */
9 PUT(heap_listp+WSIZE+DSIZE, PACK(0, 1)); /* epilogue header */

10 heap_listp += DSIZE;
11

12 /* Extend the empty heap with a free block of CHUNKSIZE bytes */
13 if (extend_heap(CHUNKSIZE/WSIZE) == NULL)
14 return -1;
15 return 0;
16 }

code/vm/malloc.c

Figure 10.46:mminit: Creates a heap with an initial free block.

them to create the empty free list (lines 4–10). It then calls theextend heap function (Figure 10.47),
which extends the heap by CHUNKSIZE bytes and creates the initial free block. At this point, the allocator
is initialized and ready to accept allocate and free requests from the application.

Theextend heap function is invoked in two different circumstances: (1) when the heap is initialized, and
(2) whenmmmalloc is unable to find a suitable fit. To maintain alignment,extend heap rounds up the
requested size to the nearest multiple of 2 words (8 bytes), and then requests the additional heap space from
the memory system (lines 7–9).

The remainder of theextend heap function (lines 12–17) is somewhat subtle. The heap begins on a
double-word aligned boundary, and every call toextend heap returns a block whose size is an integral
number of double-words. Thus, every call tomemsbrk returns a double-word aligned chunk of memory
immediately following the header of the epilogue block. This header becomes the header of the new free
block (line 12), and the last word of the chunk becomes the new epilogue block header (line 14). Finally,
in the likely case that the previous heap was terminated by a free block, we call thecoalesce function to
merge the two free blocks and return the block pointer of the merged blocks (line 17).

540 CHAPTER 10. VIRTUAL MEMORY

code/vm/malloc.c

1 static void *extend_heap(size_t words)
2 {
3 char *bp;
4 size_t size;
5

6 /* Allocate an even number of words to maintain alignment */
7 size = (words % 2) ? (words+1) * WSIZE : words * WSIZE;
8 if ((int)(bp = mem_sbrk(size)) < 0)
9 return NULL;

10

11 /* Initialize free block header/footer and the epilogue header */
12 PUT(HDRP(bp), PACK(size, 0)); /* free block header */
13 PUT(FTRP(bp), PACK(size, 0)); /* free block footer */
14 PUT(HDRP(NEXT_BLKP(bp)), PACK(0, 1)); /* new epilogue header */
15

16 /* Coalesce if the previous block was free */
17 return coalesce(bp);
18 }

code/vm/malloc.c

Figure 10.47:extend heap: Extends the heap with a new free block.

Freeing and Coalescing Blocks

An application frees a previously allocated block by calling themmfree function (Figure 10.48), which
frees the requested block (bp), and then merges adjacent free blocks using the boundary-tags coalescing
technique described in Section 10.9.11.

The code in thecoalesce helper function is a straightforward implementation of the four cases outlined in
Figure 10.42. There is one somewhat subtle aspect. The free list format we have chosen — with its prologue
and epilogue blocks that are always marked as allocated — allows us to ignore the potentially troublesome
edge conditions where the requested blockbp is at the beginning or end of the heap. Without these special
blocks, the code would be messier, more error-prone, and slower because we would have to check for these
rare edge conditions on each and every free request.

Allocating Blocks

An application requests a block ofsize bytes of memory by calling themmmalloc function (Fig-
ure 10.49). After checking for spurious requests (lines 8–9), the allocator must adjust the requested block
size to allow room for the header and the footer, and to satisfy the double-word alignment requirement.
Lines 12–13 enforce the minimum block size of 16 bytes: eight (DSIZE) bytes to satisfy the alignment re-
quirement, and eight more (OVERHEAD) for the header and footer. For requests over eight bytes (line 15),
the general rule is to add in the overhead bytes and then round up to the nearest multiple of eight (DSIZE).

Once the allocator has adjusted the requested size, it searches the free list for a suitable free block (line 18).

10.9. DYNAMIC MEMORY ALLOCATION 541

code/vm/malloc.c

1 void mm_free(void *bp)
2 {
3 size_t size = GET_SIZE(HDRP(bp));
4

5 PUT(HDRP(bp), PACK(size, 0));
6 PUT(FTRP(bp), PACK(size, 0));
7 coalesce(bp);
8 }
9

10 static void *coalesce(void *bp)
11 {
12 size_t prev_alloc = GET_ALLOC(FTRP(PREV_BLKP(bp)));
13 size_t next_alloc = GET_ALLOC(HDRP(NEXT_BLKP(bp)));
14 size_t size = GET_SIZE(HDRP(bp));
15

16 if (prev_alloc && next_alloc) { /* Case 1 */
17 return bp;
18 }
19

20 else if (prev_alloc && !next_alloc) { /* Case 2 */
21 size += GET_SIZE(HDRP(NEXT_BLKP(bp)));
22 PUT(HDRP(bp), PACK(size, 0));
23 PUT(FTRP(bp), PACK(size,0));
24 return(bp);
25 }
26

27 else if (!prev_alloc && next_alloc) { /* Case 3 */
28 size += GET_SIZE(HDRP(PREV_BLKP(bp)));
29 PUT(FTRP(bp), PACK(size, 0));
30 PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));
31 return(PREV_BLKP(bp));
32 }
33

34 else { /* Case 4 */
35 size += GET_SIZE(HDRP(PREV_BLKP(bp))) +
36 GET_SIZE(FTRP(NEXT_BLKP(bp)));
37 PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));
38 PUT(FTRP(NEXT_BLKP(bp)), PACK(size, 0));
39 return(PREV_BLKP(bp));
40 }
41 }

code/vm/malloc.c

Figure 10.48:mmfree: Frees a block and uses boundary-tag coalescing to merge it with any adjacent
free blocks in constant time.

542 CHAPTER 10. VIRTUAL MEMORY

code/vm/malloc.c

1 void *mm_malloc(size_t size)
2 {
3 size_t asize; /* adjusted block size */
4 size_t extendsize; /* amount to extend heap if no fit */
5 char *bp;
6

7 /* Ignore spurious requests */
8 if (size <= 0)
9 return NULL;

10

11 /* Adjust block size to include overhead and alignment reqs. */
12 if (size <= DSIZE)
13 asize = DSIZE + OVERHEAD;
14 else
15 asize = DSIZE * ((size + (OVERHEAD) + (DSIZE-1)) / DSIZE);
16

17 /* Search the free list for a fit */
18 if ((bp = find_fit(asize)) != NULL) {
19 place(bp, asize);
20 return bp;
21 }
22

23 /* No fit found. Get more memory and place the block */
24 extendsize = MAX(asize,CHUNKSIZE);
25 if ((bp = extend_heap(extendsize/WSIZE)) == NULL)
26 return NULL;
27 place(bp, asize);
28 return bp;
29 }

code/vm/malloc.c

Figure 10.49:mmmalloc: Allocates a block from the free list.

10.9. DYNAMIC MEMORY ALLOCATION 543

If there is a fit, then the allocator places the requested block and optionally splits the excess (line 19), and
then returns the address of the newly allocated block (line 20).

If the allocator cannot find a fit, then it extends the heap with a new free block (lines 24–26), places the
requested block in the new free block and optionally splitting the block (line 27), and then return a pointer
to the newly allocated block (line 28).

Practice Problem 10.8:

Implement afind fit function for the simple allocator described in Section 10.9.12.

static void *find_fit(size_t asize)

Your solution should perform a first-fit search of the implicit free list.

Practice Problem 10.9:

Implement aplace function for the example allocator.

static void place(void *bp, size_t asize)

Your solution should place the requested block at the beginning of the free block, splitting only if the
size of the remainder would equal or exceed the minimum block size.

10.9.13 Explicit Free Lists

The implicit free list provides us with a simple way to introduce some basic allocator concepts. However,
because block allocation is linear in the total number of heap blocks, the implicit free list is not appropriate
for a general-purpose allocator (although it might be fine for a special-purpose allocator where the number
of heap blocks is known beforehand to be small).

A better approach is to organize the free blocks into some form of explicit data structure. Since by definition
the body of a free block is not needed by the program, the pointers that implement the data structure can
be stored within the bodies of the free blocks. For example, the heap can be organized as a doubly-linked
free list by including apred (predecessor) andsucc (successor) pointer in each free block, as shown in
Figure 10.50.

Using a doubly-linked list instead of an implicit free list reduces the first fit allocation time from linear in
the total number of blocks to linear in the number offreeblocks. However, the time to free a block can be
either linear or constant, depending on the policy we choose for ordering the blocks in the free list.

One approach is to maintain the list inlast-in first-out (LIFO)order by inserting newly freed blocks at the
beginning of the list. With a LIFO ordering and a first fit placement policy, the allocator inspects the most
recently used blocks first. In this case, freeing a block can be performed in constant time. If boundary tags
are used, then coalescing can also be performed in constant time.

Another approach is to maintain the list inaddress order, where the address of each block in the list is less
than the address of its successor. In this case, freeing a block requires a linear-time search to locate the

544 CHAPTER 10. VIRTUAL MEMORY

block size

payload

a/f

031 123

padding (optional)

block size a/f

header

footer

(a) Allocated block

block size a/f

031 123

padding (optional)

block size a/f

header

footer

old payload

pred (predecessor)

succ (successor)

(b) Free block

Figure 10.50:Format of heap blocks that use doubly-linked free lists.

appropriate predecessor. The trade-off is that address-ordered first fit enjoys better memory utilization than
LIFO-ordered first fit, approaching the utilization of best fit.

A disadvantage of explicit lists in general is that free blocks must be large enough to contain all of the
necessary pointers, as well as the header and possibly a footer. This results in a larger minimum block size,
and potentially the degree of internal fragmentation.

10.9.14 Segregated Free Lists

As we have seen, an allocator that uses a single linked list of free blocks requires time linear in the number
of free blocks to allocate a block. A popular approach for reducing the allocation time, known generally as
segregated storage, is to maintain multiple free lists, where each list holds blocks that are roughly the same
size.

The general idea is to partition the set of all possible block sizes into equivalence classes calledsize classes.
There are many ways to define the size classes. For example, we might partition the block sizes by powers
of two:

f1g, f2g, f3, 4g, f5 – 8g, � � �, f1025 – 2048g, f2049 – 4096g, f4097 –1g

Or we might assign small blocks to their own size classes and partition large blocks by powers of two:

f1g, f2g, f3g, � � �, f1023g, f1024g, � � �, f1025 – 2048g, f2049 – 4096g, f4097 –1g

The allocator maintains an array of free lists, with one free list per size class, ordered by increasing size.
When the allocator needs a block of sizen, it searches the appropriate free list. If it cannot find a block that
fits, it searches the next list, and so on.

The dynamic storage allocation literature describes dozens of variants of segregated storage that differ in
how they define size classes, when they perform coalescing, when they request additional heap memory
from the operating system, whether they allow splitting, and so forth. To give you a sense of what is
possible, we will describe two of the basic approaches:simple segregated storageandsegregated fits.

10.9. DYNAMIC MEMORY ALLOCATION 545

Simple Segregated Storage

With simple segregated storage, the free list for each size class contains same-sized blocks, each the size of
the largest element of the size class. For example, if some size class is defined asf17 – 32g, then the free
list for that class consists entirely of blocks of size 32.

To allocate a block of some given size, we check the appropriate free list. If the list is not empty, we simply
allocate the first block in its entirety. Free blocks are never split to satisfy allocation requests. If the list is
empty, the allocator requests a fixed-sized chunk of additional memory from the operating system (typically
a multiple of the page size), divides the chunk into equal-sized blocks, and links the blocks together to form
the new free list. To free a block, the allocator simply inserts the block at the front of the appropriate free
list.

There are a number of advantages to this simple scheme. Allocating and freeing blocks are both fast
constant-time operations. Further, the combination of the same-sized blocks in each chunk, no splitting,
and no coalescing means that there is very little per-block memory overhead. Since each chunk has only
same-sized blocks, the size of an allocated block can be inferred from its address. Since there is no co-
alescing, allocated blocks do not need an allocated/free flag in the header. Thus allocated blocks require
no headers, and since there is no coalescing, they do not require any footers either. Since allocate and free
operations insert and delete blocks at the beginning of the free list, the list need only be singly-linked instead
of doubly-linked. The bottom line is that the only required field in any block is a one-wordsucc pointer in
each free block, and thus the minimum block size is only one word.

A significant disadvantage is that simple segregated storage is susceptible to internal and external fragmenta-
tion. Internal fragmentation is possible because free blocks are never split. Worse, certain reference patterns
can cause extreme external fragmentation because free blocks are never coalesced (Problem 10.10).

Researchers have proposed a crude form of coalescing to combat external fragmentation. The allocator
keeps track of the number of free blocks in each memory chunk returned by the operating system. Whenever
a chunk consists entirely of free blocks, the allocator removes the chunk from its current size class and makes
it available for other size classes.

Practice Problem 10.10:

Describe a reference pattern that results in severe external fragmentation in an allocator based on simple
segregated storage.

Segregated Fits

With this approach, the allocator maintains an array of free lists. Each free list is associated with a size class
and is organized as some kind of explicit or implicit list. Each list contains potentially different-sized blocks
whose sizes are members of the size class. There are many variants of segregated fits allocators. Here we
describe a simple version.

To allocate a block, we determine the size class of the request and do a first-fit search of the appropriate free
list for a block that fits. If we find one, then we (optionally) split it and insert the fragment in the appropriate
free list. If we cannot find a block that fits, then we search the free list for the next larger size class. We

546 CHAPTER 10. VIRTUAL MEMORY

repeat until we find a block that fits. If none of free lists yields a block that fits, then we request additional
heap memory from the operating system, allocate the block out of this new heap memory, and place the
remainder in the largest size class. To free a block, we coalesce and place the result on the appropriate free
list.

The segregated fits approach is a popular choice with production-quality allocators such as the GNUmal-
loc package provided in the C standard library because it is both fast and memory efficient. Search times
are reduced because searches are limited to particular parts of the heap instead of the entire heap. Memory
utilization can improve because of the interesting fact that a simple first-fit search of a segregated free list
approximates a best-fit search of the entire heap.

Buddy Systems

A buddy systemis a special case of segregated fits where each size class is a power of two. The basic idea
is that given a heap of2m words, we maintain a separate free list for each block size2k, where0 � k � m.
Requested block sizes are rounded up to the nearest power of two. Originally, there is one free block of size
2m words.

To allocate a block of size2k, we find the first available block of size2j , such thatk � j � m. If j = k,
then we are done. Otherwise we recursively split the block in half untilj = k. As we perform this splitting,
each remaining half (known as abuddy), is placed on the appropriate free list. To free a block of size2k, we
continue coalescing with the free. When we encounter a allocated buddy, we stop the coalescing.

A key fact about buddy systems is that given the address and size of a block, it is easy to compute the address
of its buddy. For example, a block of size 32 byes with address

xxx...x00000

has its buddy at address

xxx...x10000

In other words, the addresses of a block and its buddy differ in exactly one bit position.

The major advantage of a buddy system allocator is its fast searching and coalescing. The major disadvan-
tage is that the power-of-two requirement on the block size can cause significant internal fragmentation.
For this reason, buddy system allocators are not appropriate for general-purpose workloads. However, for
certain application-specific workloads, where the block sizes are known in advance to be powers of two,
buddy system allocators have a certain appeal.

10.10 Garbage Collection

With an explicit allocator such as the Cmalloc package, an application allocates and frees heap blocks by
making calls tomalloc andfree. It is the application’s responsibility to free any allocated blocks that it
no longer needs.

10.10. GARBAGE COLLECTION 547

Failing to free allocated blocks is a common programming error. For example, consider the following C
function that allocates a block of temporary storage as part of its processing.

1 void garbage()
2 {
3 int *p = (int *)Malloc(15213);
4

5 return; /* array p is garbage at this point */
6 }

Sincep is no longer needed by the program, it should have been freed beforefoo returned. Unfortu-
nately, the programmer has forgotten to free the block. It remains allocated for the lifetime of the program,
needlessly occupying heap space that could be used to satisfy subsequent allocation requests.

A garbage collectoris a dynamic storage allocator that automatically frees allocated blocks that are no
longer needed by the program. Such blocks are known asgarbageand hence the term garbage collector.
The process of automatically reclaiming heap storage is known asgarbage collection. In a system that
supports garbage collection, applications explicitly allocate heap blocks but never explicitly free them. In
the context of a C program, the application callsmalloc, but never calls free. Instead, the garbage
collector periodically identifies the garbage blocks and makes the appropriate calls tofree to place those
blocks back on the free list.

Garbage collection dates back to Lisp systems developed by McCarthy at MIT in the early 1960s. It is
an important part of modern language systems such as Java, ML, Perl, and Mathematica, and it remains
an active and important area of research. The literature describes an amazing number of approaches for
garbage collection. We will limit our discussion to McCarthy’s originalMark&Sweepalgorithm, which is
interesting because it can be built on top of an existingmalloc package to provide garbage collection for
C and C++ programs.

10.10.1 Garbage Collector Basics

A garbage collector views memory as a directedreachability graphof the form shown in Figure 10.51.
The nodes of the graph are partitioned into a set ofroot nodesand a set ofheap nodes. Each heap node
corresponds to an allocated block in the heap. A directed edgep ! q means that some location in blockp
points to some location in blockq. Root nodes correspond to locations not in the heap that contain pointers
into the heap. These locations can be registers, variables on the stack, or global variables in the read-write
data area of virtual memory.

We say that a nodep is reachableif there exists a directed path from any root node top. At any point in
time, the unreachable nodes correspond to garbage that can never be used again by the application. The role
of a garbage collector is to maintain some representation of the reachability graph and periodically reclaim
the unreachable nodes by freeing them and returning them to the free list.

Garbage collectors for languages like ML and Java, which exert tight control over how applications create
and use pointers, can maintain an exact representation of the reachability graph, and thus can reclaim all
garbage. However, collectors for languages like C and C++ cannot in general maintain exact representations

548 CHAPTER 10. VIRTUAL MEMORY

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

Figure 10.51:A garbage collector’s view of memory as a directed graph.

of the reachability graph. Such collectors are known asconservative garbage collectors. They are conser-
vative in the sense that each reachable block is correctly identified as reachable, while some unreachable
nodes might be incorrectly identified as reachable.

Collectors can provide their service on demand, or they can run as separate threads in parallel with the
application, continuously updating the reachability graph and reclaiming garbage. For example, consider
how we might incorporate a conservative collector for C programs into an existingmalloc package, as
shown in Figure 10.52.

C application
program

malloc()
conservative

garbage
collector

free()

dynamic storage allocator

Figure 10.52:Integrating a conservative garbage collector and a Cmalloc package.

The application callsmalloc in the usual manner whenever it needs heap space. Ifmalloc is unable to
find a free block that fits, then it calls the garbage collector in hopes of reclaiming some garbage to the free
list. The collector identifies the garbage blocks and returns them to the heap by calling thefree function.
The key idea is that the collector callsfree instead of the application. When the call to the collector
returns,malloc tries again to find a free block that fits. If that fails, then it can ask the operating system
for additional memory. Eventuallymalloc returns a pointer to the requested block (if successful) or the
NULL pointer (if unsuccessful).

10.10.2 Mark&Sweep Garbage Collectors

A Mark&Sweep garbage collector consists of amark phase, which marks all reachable and allocated descen-
dents of the root nodes, followed by asweep phase, which frees each unmarked allocated block. Typically,
one of the spare low-order bits in the block header is used to indicate whether a block is marked or not.

Our description of Mark&Sweep will assume the following functions, whereptr is defined astypedef
void *ptr.

10.10. GARBAGE COLLECTION 549

� ptr isPtr(ptr p): If p points to some word in an allocated block, returns a pointerb to the
beginning of that block. Returns NULL otherwise.

� int blockMarked(ptr b): Returns true if block b is already marked.

� int blockAllocated(ptr b): Returns true if block b is allocated.

� void markBlock(ptr b): Marks block b.

� int length(b): Returns the length in words (excluding the header) of block b.

� void unmarkBlock(ptr b): Changes the status of block b from marked to unmarked.

� ptr nextBlock(ptr b): Returns the successor of block b in the heap.

The mark phase calls themark function shown in Figure 10.53(a) once for each root node. Themark
function returns immediately ifp does not point to an allocated and unmarked heap block. Otherwise, it
marks the block and calls itself recursively on each word in block. Each call to themark function marks
any unmarked and reachable descendents of some root node. At the end of the mark phase, any allocated
block that is not marked is guaranteed to be unreachable, and hence garbage that can be reclaimed in the
sweep phase.

void mark(ptr p) f
if ((b = isPtr(p)) == NULL)

return;
if (blockMarked(b))

return;
markBlock(b);
len = length(b);
for (i=0; i < len; i++)

mark(b[i]);
return;

g

void sweep(ptr b, ptr end) f
while (b < end) f

if (blockMarked(b))
unmarkBlock(b);

else if (blockAllocated(b))
free(b);

b = nextBlock(b);
g
return;

g

Figure 10.53:Pseudo-code for themark and sweep functions.

The sweep phase is a single call to thesweep function shown in Figure 10.53(b). Thesweep function
iterates over each block in the heap, freeing any unmarked allocated blocks (i.e., garbage) that it encounters.

Figure 10.54 shows a graphical interpretation of Mark&Sweep for a small heap. Block boundaries are
indicated by heavy lines. Each square corresponds to a word of memory. Each block has a one-word header,
which is either marked or unmarked.

Initially, the heap in Figure 10.53 consists of six allocated blocks, each of which is unmarked. Block 3
contains a pointer to block 1. Block 4 contains pointers to blocks 3 and 6. The root points to block 4. After
the mark phase, blocks 1,3, 4, and 6 are marked because they are reachable from the root. Blocks 2 and 5 are
unmarked because they are unreachable. After the sweep phase, the two unreachable blocks are reclaimed
to the free list.

550 CHAPTER 10. VIRTUAL MEMORY

freefree

After mark:

Before mark:

root

marked block
 header

After sweep:

unmarked block
header

1 2 3 4 5 6

Figure 10.54:Mark and sweep example.Note that the arrows in this example denote memory references,
and not free list pointers.

10.10.3 Conservative Mark&Sweep for C Programs

Mark&Sweep is an appropriate approach for garbage collecting C programs because it works in place with-
out moving any blocks. However, the C language poses some interesting challenges for the implementation
of the isPtr function.

First, C does not tag memory locations with any type information. Thus, there is no obvious way forisPtr
to determine if its input parameterp is a pointer or not. Second, even if we were to know thatp was a pointer,
there would be no obvious way forisPtr to determine whetherp points to some location in the payload
of an allocated block.

One solution to the latter problem is to maintain the set of allocated blocks as a balanced binary tree that
maintains the invariant that all blocks in the left subtree are located at smaller addresses and all blocks in the
right subtree are located in larger addresses. As shown in Figure 10.55, this requires two additional fields
(left andright) in the header of each allocated block. Each field points to the header of some allocated
block.

size remainder of blockleft right

allocated block header

<= >

Figure 10.55:Left and right pointers in a balanced tree of allocated blocks.

The isPtr(ptr p) function uses the tree to perform a binary search of the allocated blocks. At each
step, it relies on the size field in the block header to determine ifp falls within the extent of the block.

The balanced tree approach is correct in the sense that it is guaranteed to mark all of the nodes that are
reachable from the roots. This is a necessary guarantee, as application users would certainly not appreciate
having their allocated blocks prematurely returned to the free list. However, it is conservative in the sense
that it may incorrectly mark blocks that are actually unreachable, and thus it may fail to free some garbage.

10.11. COMMON MEMORY-RELATED BUGS IN C PROGRAMS 551

While this does not affect the correctness of application programs, it can result in unnecessary external
fragmentation.

The fundamental reason that Mark&Sweep collectors for C programs must be conservative is that the C
language does not tag memory locations with type information. Thus, scalars likeints or floats can
masquerade as pointers. For example, suppose that some reachable allocated block contains anint in its
payload whose value happens to correspond to an address in the payload of some other allocated blockb.
There is no way for the collector to infer that the data is really anint and not a pointer. Thus the allocator
must conservatively mark blockb as reachable, when in fact it might not be.

10.11 Common Memory-related Bugs in C Programs

Managing and using virtual memory can be a difficult and error-prone task for the C programmers. Memory-
related bugs are among the most frightening because they often manifest themselves at a distance, in both
time and space, from the source of the bug. Write the wrong data to the wrong location, and your program
can run for hours before it finally fails in some distant part of the program. We conclude our discussion of
virtual memory with a discussion of some of the common memory-related bugs.

10.11.1 Dereferencing Bad Pointers

As we learned in Section 10.7.2, there are large holes in the virtual address space of a process that are not
mapped to any meaningful data. If we attempt to dereference a pointer into one of these holes, the operating
system will terminate our program with a segmentation exception. Also, some areas of virtual memory are
read-only. Attempting to write to one of these areas terminates the program with a protection exception.

A common example of dereferencing a bad pointer is the classicscanf bug. Suppose we want to use
scanf to read an integer fromstdin into a variable. The correct way to do this is to passscanf a format
string and theaddressof the variable:

scanf("%d", &val)

However, it is easy for new C programmers (and experienced ones too!) to pass thecontentsof val instead
of its address:

scanf("%d", val)

In this case,scanf will interpret the contents ofval as an address and attempt to write a word to that
location. In the best case, the program terminates immediately with an exception. In the worst case, the
contents ofval correspond to some valid read/write area of virtual memory, and we overwrite memory,
usually with disastrous and baffling consequences much later.

10.11.2 Reading Uninitialized Memory

While .bss memory locations (such as uninitialized global C variables) are always initialized to zeros by
the loader, this is not true for heap memory. A common error is to assume that heap memory is initialized
to zero:

552 CHAPTER 10. VIRTUAL MEMORY

1 /* return y = Ax */
2 int *matvec(int **A, int *x, int n)
3 {
4 int i, j;
5

6 int *y = (int *)Malloc(n * sizeof(int));
7

8 for (i = 0; i < n; i++)
9 for (j = 0; j < n; j++)

10 y[i] += A[i][j] * x[j];
11 return y;
12 }

In this example, the programmer has incorrectly assumed that vectory has been initialized to zero. A correct
implementation would zeroy[i] between lines 8 and 9, or usecalloc.

10.11.3 Allowing Stack Buffer Overflows

As we saw in Section 3.13, a program has abuffer overflow bugif it writes to a target buffer on the stack
without the size of the input string. For example, the following function has a buffer overflow bug because
thegets function copies an arbitrary length string to the buffer. To fix this, we would need to the use the
fgets function, which limits the size of the input string.

1 void bufoverflow()
2 {
3 char buf[64];
4

5 gets(buf); /* here is the stack buffer overflow bug */
6 return;
7 }

10.11.4 Assuming that Pointers and the Objects they Point to Are the Same Size

One common mistake is to assume that pointers to objects are the same size as the objects they point to:

1 /* Create an nxm array */
2 int **makeArray1(int n, int m)
3 {
4 int i;
5 int **A = (int **)Malloc(n * sizeof(int));
6

7 for (i = 0; i < n; i++)
8 A[i] = (int *)Malloc(m * sizeof(int));
9 return A;

10 }

The intent here is to create an array ofn pointers, each of which points to an array ofm ints. However,
because the programmer has writtensizeof(int) instead ofsizeof(int *) in line 5, the code

10.11. COMMON MEMORY-RELATED BUGS IN C PROGRAMS 553

actually creates an array ofints. This code will run fine on machines whereints and pointers toints
are the same size.

But if we run this code on a machine like the Alpha, where a pointer is larger than anint, then the loop in
lines 7 and 8 will write past the end of theA array. Since one of these words will likely be the boundary tag
footer of the allocated block, we may not discover the error until we free the block much later in the program,
at which point the coalescing code in the allocator will fail dramatically and for no apparent reason. This is
an insidious example of the kind of “action at a distance” that is so typical of memory-related programming
bugs.

10.11.5 Making Off-by-one Errors

Off-by-one errors are another common source of overwriting bugs:

1 /* Create an nxm array */
2 int **makeArray2(int n, int m)
3 {
4 int i;
5 int **A = (int **)Malloc(n * sizeof(int));
6

7 for (i = 0; i <= n; i++)
8 A[i] = (int *)Malloc(m * sizeof(int));
9 return A;

10 }

This is another version of the program in the previous section. Here we have created ann-element array of
pointers in line 5, but then tried to initializen+1 of its elements in lines 7 and 8, in the process overwriting
some memory that follows theA array.

10.11.6 Referencing a Pointer Instead of the Object it Points to

If we are not careful about the precedence and associativity of C operators, then we incorrectly manipulate
a pointer instead of the object it points to. For example, consider the following function, whose purpose is
to remove the first item in a binary heap of*size items, and then reheapify the remaining*size - 1
items.

1 int *binheapDelete(int **binheap, int *size)
2 {
3 int *packet = binheap[0];
4

5 binheap[0] = binheap[*size - 1];
6 *size--; /* this should be (*size)-- */
7 heapify(binheap, *size, 0);
8 return(packet);
9 }

554 CHAPTER 10. VIRTUAL MEMORY

In line 3, the intent is to decrement the integer value pointed to by thesize pointer (e.g.,(*size)--).
However, because the unary-- and* operators have the same precedence and associate from right to left,
the code in line 6 actually decrements the pointer itself instead of the integer value that it points to. If we
are lucky, the program will crash immediately; but more likely we will be left scratching our heads when
the program produces an incorrect answer much later in its execution. The moral here is to use parentheses
whenever in doubt about precedence and associativity. For example, in line 6 we could have clearly stated
our intent by using the expression(*size)--.

10.11.7 Misunderstanding Pointer Arithmetic

Another common mistake is to forget that arithmetic operations on pointers are performed in units that are
the size of the objects they point to, which are not necessarily bytes. For example, the intent of the following
function is to scan an array ofints and return a pointer to the first occurrence ofval.

1 int *search(int *p, int val)
2 {
3 while (*p && *p != val)
4 p += sizeof(int); /* should be p++ */
5 return p;
6 }

However, because line 4 increments the pointer by four (the number of bytes in an integer) each time through
the loop, the function incorrectly scans every fourth integer in the array.

10.11.8 Referencing Non-existent Variables

Naive C programmers who do not understand the stack discipline will sometimes reference local variables
that are no longer valid, as in the following example:

1 int *stackref ()
2 {
3 int val;
4

5 return &val;
6 }

This function returns a pointer (sayp) to a local variable on the stack and then pops its stack frame. Although
p still points to a valid memory address, it no longer points to a valid variable. When other functions are
called later in the program, the memory will be reused for their stack frames. Later, if the program assigns
some value to*p, then it might actually be modifying an entry in another function’s stack frame, with
potentially disastrous and baffling consequences.

10.11. COMMON MEMORY-RELATED BUGS IN C PROGRAMS 555

10.11.9 Referencing Data in Free Heap Blocks

A similar error is to reference data in heap blocks that have already been freed. For example, consider the
following example, which allocates an integer arrayx in line 6, prematurely frees blockx in line 12, and
then later references it in line 14.

1 int *heapref(int n, int m)
2 {
3 int i;
4 int *x, *y;
5

6 x = (int *)Malloc(n * sizeof(int));
7

8 /* ... */ /* other calls to malloc and free go here */
9

10 free(x);
11

12 y = (int *)Malloc(m * sizeof(int));
13 for (i = 0; i < m; i++)
14 y[i] = x[i]++; /* oops! x[i] is a word in a free block */
15

16 return y;
17 }

Depending on the pattern ofmalloc andfree calls that occur between lines 6 and 10, when the program
referencesx[i] in line 14, the arrayx might be part of some other allocated heap block and have been
overwritten. As with many memory-related bugs, the error will only become evident later in the program
when we notice that the values iny are corrupted.

10.11.10 Introducing Memory Leaks

Memory leaks are slow, silent killers that occur when programmers inadvertently create garbage in the heap
by forgetting to free allocated blocks. For example, the following function allocates a heap blockx and then
returns without freeing it.

1 void leak(int n)
2 {
3 int *x = (int *)Malloc(n * sizeof(int));
4

5 return; /* x is garbage at this point */
6 }

If foo is called frequently, then the heap will gradually fill up with garbage, in the worst case consuming
the entire virtual address space. Memory leaks are particularly serious for programs such as daemons and
servers, which by definition never terminate.

556 CHAPTER 10. VIRTUAL MEMORY

10.12 Summary

In this chapter, we have looked at how virtual memory works, how it is used by the system for functions
such as loading programs, mapping shared libraries, and providing processes with private protected address
spaces. We have also looked at a myriad of ways that virtual memory can be used and misused by application
programs.

A key lesson is that even though virtual memory is provided automatically by the system, it is a finite
memory resource that must be managed wisely by the application. As we learned from our study of dynamic
storage allocators, managing virtual memory resources can involve subtle time and space trade-offs. Another
key lesson is that it is easy to make memory-related errors from C programs. Bad pointer values, freeing
already free blocks, improper casting and pointer arithmetic, and overwriting heap structures are just a few
of the many ways we can get in trouble. In fact, the nastiness of memory-related errors was an important
motivation for Java, which tightly controls access to the virtual memory by eliminating the ability to take
addresses of variables, and by taking complete control of the dynamic storage allocator.

Bibliographic Notes

Kilburn and his colleagues published the first description of virtual memory [39]. Architecture texts con-
tain additional details about the hardware’s role in virtual memory [31]. Operating systems texts contain
additional information about the operating system’s role [66, 79, 71].

Knuth wrote the classic work on storage allocation in 1968 [40]. Since that time there has been a tremen-
dous amount of work in the area. Wilson, Johnstone, Neely, and Boles have written a beautiful survey and
performance evaluation of explicit allocators [84]. The general comments in the text about the throughput
and utilization of different allocator strategies are taken from this survey. Jones and Lins provide a compre-
hensive survey of garbage collection [34]. Kernighan and Ritchie [37] show the complete code for a simple
allocator based on an explicit free list with a block size and successor pointer in each free block. The code
is interesting in that it uses unions to eliminate a lot of the complicated pointer arithmetic, but at the expense
of a linear-time (rather than constant-time) free operation.

Ben Zorn’sDynamic Storage Allocation Repositoryat www.cs.colorado.edu/˜zorn/DSA.html
is a handy resource. It includes sections on debugging tools for detecting memory-related errors and imple-
mentations ofmalloc/ free and garbage collectors.

Homework Problems

Homework Problem 10.11[Category 1]:

In the following series of problems, you are to show how the example memory system in Section 10.6.4
translates a virtual address into a physical address and accesses the cache. For the given virtual address,
indicate the TLB entry accessed, the physical address, and the cache byte value returned. Indicate whether
the TLB misses, whether a page fault occurs, and whether a cache miss occurs. If there is a cache miss,
enter “–” for “Cache Byte returned”. If there is a page fault, enter “–” for “PPN” and leave parts C and D

10.12. SUMMARY 557

blank.

Virtual address: 0x027c

A. Virtual address format
13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN
TLB Index
TLB Tag
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN

C. Physical address format
11 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference

Parameter Value

Byte offset
Cache Index
Cache Tag
Cache Hit? (Y/N)
Cache Byte returned

Homework Problem 10.12[Category 1]:

Repeat Problem 10.11 for the following address:

Virtual address: 0x03a9

A. Virtual address format
13 12 11 10 9 8 7 6 5 4 3 2 1 0

558 CHAPTER 10. VIRTUAL MEMORY

B. Address translation

Parameter Value

VPN
TLB Index
TLB Tag
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN

C. Physical address format
11 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference

Parameter Value

Byte offset
Cache Index
Cache Tag
Cache Hit? (Y/N)
Cache Byte returned

Homework Problem 10.13[Category 1]:

Repeat Problem 10.11 for the following address:

Virtual address: 0x0040

A. Virtual address format
13 12 11 10 9 8 7 6 5 4 3 2 1 0

B. Address translation

Parameter Value

VPN
TLB Index
TLB Tag
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN

10.12. SUMMARY 559

C. Physical address format
11 10 9 8 7 6 5 4 3 2 1 0

D. Physical memory reference

Parameter Value

Byte offset
Cache Index
Cache Tag
Cache Hit? (Y/N)
Cache Byte returned

Homework Problem 10.14[Category 2]:

Given an input filehello.txt that consists of the string"Hello, world!\n", write a C program that
usesmmapto change the contents ofhello.txt to "Jello, world!\n".

Homework Problem 10.15[Category 1]:

Determine the block sizes and header values that would result from the following sequence ofmalloc
requests. Assumptions: (1) The allocator maintains double-word alignment, and uses an implicit free list
with the block format from Figure 10.37. (2) Block sizes are rounded up to the nearest multiple of eight
bytes.

Request Block size (decimal bytes) Block header (hex)

malloc(3)
malloc(11)
malloc(20)
malloc(21)

Homework Problem 10.16[Category 1]:

Determine the minimum block size for each of the following combinations of alignment requirements and
block formats. Assumptions: Explicit free list, four-bytepred and succ pointers in each free block,
zero-sized payloads are not allowed, and headers and footers are stored in a four-byte words.

Alignment Allocated block Free block Minimum block size (bytes)

Single-word Header and footer Header and footer
Single-word Header, but no footer Header and footer
Double-word Header and footer Header and footer
Double-word Header, but no footer Header and footer

Homework Problem 10.17[Category 3]:

560 CHAPTER 10. VIRTUAL MEMORY

Develop a version of the allocator in Section 10.9.12 that performs a next-fit search instead of a first-fit
search.

Homework Problem 10.18[Category 3]:

The allocator in Section 10.9.12 requires both a header and a footer for each block in order to perform
constant-time coalescing. Modify the allocator so that free blocks require a header and footer, but allocated
blocks require only a header.

Homework Problem 10.19[Category 1]:

You are given three groups of statements relating to memory management and garbage collection below. In
each group, only one statement is true. Your task is to indicate the statement that is true.

1. (a) In a buddy system, up to 50% of the space can be wasted due to internal fragmentation.

(b) The first-fit memory allocation algorithm is slower than the best-fit algorithm (on average).

(c) Deallocation using boundary tags is fast only when the list of free blocks is ordered according
to increasing memory addresses.

(d) The buddy system suffers from internal fragmentation, but not from external fragmentation.

2. (a) Using the first-fit algorithm on a free list that is ordered according to decreasing block sizes
results in low performance for allocations, but avoids external fragmentation.

(b) For the best-fit method, the list of free blocks should be ordered according to increasing memory
addresses.

(c) The best-fit method chooses the largest free block into which the requested segment fits.

(d) Using the first-fit algorithm on a free list that is ordered according to increasing block sizes is
equivalent to using the best-fit algorithm.

3. Mark-and-sweep garbage collectors are called conservative if

(a) they coalesce freed memory only when a memory request cannot be satisfied,

(b) they treat everything that looks like a pointer as a pointer,

(c) they perform garbage collection only when they run out of memory,

(d) they do not free memory blocks forming a cyclic list.

Homework Problem 10.20[Category 4]:

Write your own version ofmalloc and free and compare its running time and space utilization to the
version ofmalloc provided in the standard C library.

Part III

Interaction and Communication Between
Programs

561

Chapter 11

Concurrent Programming with Threads

A thread is a unit of execution, associated with a process, with its own thread ID, stack, stack pointer,
program counter, condition codes, and general-purpose registers. Multiple threads associated with a process
run concurrently in the context of that process, sharing its code, data, heap, shared libraries, signal handlers,
and open files.

Programming with threads instead of conventional processes is increasingly popular because threads are less
expensive (in terms of overhead) than processes and because they provide a trivial mechanism for sharing
global data. For example, a high-performance Web server might assign a separate thread for each open
connection to a Web browser, with each thread sharing a single in-memory cache of frequently requested
Web pages.

Another important factor in the popularity of threads is the adoption of the standardPthreads(Posix threads)
interface for manipulating threads from C programs. The benefit of threads has been known for some time,
but their use was hindered because each computer vendor developed its own incompatible threads package.
As a result, threaded programs written for one platform would not run on other platforms. The adoption of
Pthreads in 1995 has improved this situation immensely. Posix threads are available on most Unix systems.

Unfortunately, the ease with which threads share global data also makes them vulnerable to subtle and baf-
fling errors. Bugs in threaded programs are especially scary because they are usually not easily repeatable.
In this chapter, we will show you the basics of threaded programs, discuss some of the tricky ways that they
can fail if you are not careful, and give you tips for avoiding these errors.

11.1 Basic Thread Concepts

To this point, we have worked with the traditional view of a process shown in Figure 11.1. In this view,
a process consists of the code and data in the user’s virtual memory, along with some state maintained
by the kernel known as theprocess context. The code and data includes the program’s text, data, runtime
heap, shared libraries, and the stack. The process context can be partitioned into two different kinds of
state: program contextand kernel context. The program context resides in the processor, and includes
the contents of the general-purpose registers, various condition codes registers, the stack pointer, and the
program counter. The kernel context resides in kernel data structures, and consists of items such as the

563

564 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

process ID, the data structures that characterize the organization of the virtual memory, and information
about open files, installed signal handlers, and the extent of the heap.

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)
Kernel context:
 Process ID (PID)
 VM structures
 Open files
 Signal handlers
 brk pointer

Code, data, and stack

shared libraries

run-time heap

0

read/write data

read-only code/data

stack
SP

PC

brk

Process context

Figure 11.1:Traditional view of a process.

If we rearrange the items in Figure 11.1, then we get the alternative view of a process shown in Figure 11.2.
Here, a process consists of a thread, which consists of a stack and the program context (which we will call
the thread context), plus the kernel context and the program code and data (minus the stack, of course).

shared libraries

run-time heap

0

read/write data

Thread context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

 Code and Data

read-only code/data

stack
SP

PC

brk
Thread

Kernel context:
 VM structures
 Open files
 Signal handlers
 brk pointer
 Process ID (PID)

Figure 11.2:Alternative view of a process.

The interesting point about Figure 11.2 is that it treats the process as an execution unit with a very small
amount of state that runs in the context of a much larger amount of state. Given this view, we can now
extend our notion of process to include multiple threads that share the same code, data, and kernel context,
as shown in Figure 11.3. Each thread associated with a process has its own stack, registers, condition codes,
stack pointer, and program counter. Since there are now multiple threads, we will also add an integerthread
ID (TID) to each thread context.

The execution model for multiple threads is similar in some ways to the execution model for multiple
processes. Consider the example in Figure 11.4. Each process begins life as a single thread called themain
thread. At some point, the main thread creates apeer threadand from this point in time the two threads
run concurrently (i.e., their logical flows overlap in time). Eventually, control passes to the peer thread via a

11.1. BASIC THREAD CONCEPTS 565

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1
 TID1

stack 1

Thread 1

shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context:
 VM structures
 Open files
 Signal handlers
 brk pointer
 PID

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2
 TID2

stack 2

Thread 2

Figure 11.3:Associating multiple threads with a process.

context switch, because the main thread executes a slow system call such asread or sleep, or because it
is interrupted by the system’s interval timer. The peer thread executes for awhile before control passes back
to the main thread, and so on.

Time

Thread 1
(main thread)

Thread 2
(peer thread)

Thread context switch

Thread context switch

Thread context switch

Figure 11.4:Concurrent thread execution.

Thread execution differs from processes in some important ways. Because a thread context is much smaller
than a process context, a thread context switch is faster than a process context switch. Another difference
is that threads, unlike processes, are not organized in a rigid parent-child hierarchy. The threads associated
with a process form a pool of peers, independent of which threads were created by which other threads. The
main thread is distinguished from other threads only in the sense that it is always the first thread to run in
the process. The main impact of this notion of a pool of peers is that a thread can kill any of its peers, or
wait for any of its peers to terminate. Further, each peer can read and write the same shared data.

566 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

11.2 Thread Control

Pthreads defines about 60 functions that allow C programs to create, kill, and reap threads, to share data
safely with peer threads, and to notify peers about changes in the system state. However, most threaded
programs use only a small subset of the functions defined in the interface.

Figure 11.5 shows a simple Pthreads program calledhello.c. In this program, the main thread creates a
peer thread and then waits for it to terminate. The peer thread prints “hello, world!\n” and terminates.
When the main thread detects that the peer thread has terminated, it terminates itself (and the entire process)
by callingexit.

code/threads/hello.c

1 #include "csapp.h"
2

3 void *thread(void *vargp);
4

5 int main()
6 {
7 pthread_t tid;
8

9 Pthread_create(&tid, NULL, thread, NULL);
10 Pthread_join(tid, NULL);
11 exit(0);
12 }
13

14 /* thread routine */
15 void *thread(void *vargp)
16 {
17 printf("Hello, world!\n");
18 return NULL;
19 }

code/threads/hello.c

Figure 11.5:hello.c: The Pthreads “hello, world” program.

This is the first threaded program we have seen, so let’s dissect it carefully. Line 3 is the prototype for the
thread routinethread. The Pthreads interface mandates that each thread routine has a single(void *)
input argument and returns a single(void *) output value. If you want to pass multiple arguments to a
thread routine, then you can put the arguments into a structure and pass a pointer to the structure. Similarly,
if you want the thread routine to return multiple arguments, you can return a pointer to a structure.

Line 5 marks the beginning of themain routine, which runs in the context of the main thread. In line 7,
the main routine declares a single local variabletid, which will be used to store the thread ID of the peer
thread. In line 9, the main thread creates a new peer thread by calling thepthread create function.1

When the call topthread create returns, the main thread and the newly created thread are running
1We are actually calling an error-handling wrapper, which were introduced in Section 8.3 and described in detail in Appendix A.

11.2. THREAD CONTROL 567

concurrently, andtid contains the ID of the new thread. In line 10, the main thread waits for the newly
created thread to terminate. Finally, in line 11, the main thread terminates itself and the entire process by
calling exit.

Lines 15–19 define the thread routine, which in this case simply prints a string then terminates by executing
thereturn statement in line 18.

11.2.1 Creating Threads

Threads create other threads by calling thepthread create function.

#include <pthread.h>
typedef void *(func)(void *);

int pthread create(pthread t *tid, pthread attr t *attr, func *f, void *arg);
returns: 0 if OK, non-zero on error

Thepthread create function creates a new thread and runs thethread routinef in the context of the
new thread and with an input argument ofarg. The attr argument can be used to change the default
attributes of the newly created thread. However, changing these attributes is beyond our scope, and in our
examples, we will always callpthread create with a NULL attr argument.

Whenpthread create returns, argumenttid contains the ID of the newly created thread. The new
thread can determine its own thread ID by calling thepthread self function.

#include <pthread.h>

pthread t pthread self(void);
returns: thread ID of caller

11.2.2 Terminating Threads

A thread terminates in one of the following ways:

� The thread terminatesimplicitly when its top-level thread routine returns.

� The thread terminatesexplicitly by calling thepthread exit function, which returns a pointer to
the return valuethread return. If the main thread calls pthread exit, it waits for all other
peer threads to terminate, and then terminates the main thread and the entire process with a return
value ofthread return.

568 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

#include <pthread.h>

int pthread exit(void *thread return);
returns: 0 if OK, non-zero on error

� Some peer thread calls the Unixexit function, which terminates the process and all threads associ-
ated with the process.

� Another peer thread terminates the current thread by calling thepthread cancel function with
the ID of the current thread.

#include <pthread.h>

int pthread cancel(pthread t tid);
returns: 0 if OK, non-zero on error

11.2.3 Reaping Terminated Threads

Threads wait for other threads to terminate by calling thepthread join function.

#include <pthread.h>

int pthread join(pthread t tid, void **thread return);
returns: 0 if OK, non-zero on error

Thepthread join function blocks until threadtid terminates, assigns the(void *) pointer returned
by the thread routine to the location pointed to bythread return, and then reapsany memory resources
held by the terminated thread.

Notice that, unlike the Unixwait function, thepthread join function can only wait for a specific thread
to terminate. There is no way to instructpthread wait to wait for an arbitrary thread to terminate. This
can complicate our code by forcing us to use other less intuitive mechanisms to detect process termination.
Indeed some have argued convincingly that this represents a bug in the specification [77].

11.2.4 Detaching Threads

At any point in time, a thread isjoinable or detached. A joinable thread can be reaped and killed by other
threads. Its memory resources (such as the stack) are not freed until it is reaped by another thread. In
contrast, a detached thread cannot be reaped or killed by other threads. Its memory resources are freed
automatically by the system when it terminates.

By default, threads are created joinable. In order to avoid memory leaks, each joinable thread should either
be explicitly reaped by another thread, or detached by a call to thepthread detach function.

11.2. THREAD CONTROL 569

#include <pthread.h>

int pthread detach(pthread t tid);
returns: 0 if OK, non-zero on error

The pthread detach function detaches the joinable threadtid. Threads can detach themselves by
calling pthread detach with an argument ofpthread self().

Even though some of our examples will use joinable threads, there are good reasons to use detached threads
in real programs. For example, a high-performance Web server might create a new peer thread each time
it receives a connection request from a Web browser. Since each connection is handled independently by a
separate thread, it is unnecessary and indeed undesirable for the server to explicitly wait for each peer thread
to terminate. In this case, each peer thread should detach itself before it begins processing the request so
that its memory resources can be reclaimed after it terminates.

Practice Problem 11.1:

A. The program in Figure 11.6 has a bug. The thread is supposed to sleep for one second and then
print a string. However, when we run it, nothing prints. Why?

B. You can fix this bug by replacing theexit function in line 9 with one of two different Pthreads
function calls. Which ones?

code/threads/hellobug.c

1 #include "csapp.h"
2 void *thread(void *vargp);
3

4 int main()
5 {
6 pthread_t tid;
7

8 Pthread_create(&tid, NULL, thread, NULL);
9 exit(0);

10 }
11

12 /* thread routine */
13 void *thread(void *vargp)
14 {
15 Sleep(1);
16 printf("Hello, world!\n");
17 return NULL;
18 }

code/threads/hellobug.c

Figure 11.6:Buggy program for Problem 11.1.

570 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

11.3 Shared Variables in Threaded Programs

From a programmer’s perspective, one of the attractive aspects of threads is the ease with which multiple
threads can share the same program variables. However, in order to use threads correctly, we must have a
clear understanding of what we mean by sharing and how it works.

There are some basic questions to work through in order to understand whether a variable in a C program
is shared or not: (1) What is the underlying memory model for threads? (2) Given this model, how are
instances of the variable mapped to memory? (3) And finally, how many threads reference each of these
instances? The variable issharedif and only if multiple threads reference some instance of the variable.

To keep our discussion of sharing concrete, we will use the program in Figure 11.7 as a running example.
Although somewhat contrived, it is nonetheless useful to study because it illustrates a number of subtle
points about sharing. The example program consists of a main thread that creates two peer threads. The
main thread passes a unique ID to each peer thread, which uses the id to print a personalized message, along
with a count of the total number of times that the thread routine has been invoked. Here is the output when
we run it on our system:

unix> ./sharing
[0]: Hello from foo (cnt=1)
[1]: Hello from bar (cnt=2)

11.3.1 Threads Memory Model

A pool of concurrent threads runs in the context of a process. Each thread has its own separate thread
context, which includes a thread ID, stack, stack pointer, program counter, condition codes, and general-
purpose register values. Each thread shares the rest of the process context with the other threads. This
includes the entire user virtual address space, which consists of read-only text (code), read/write data, the
heap, and any shared library code and data areas. The threads also share the same set of open files and the
same set of installed signal handlers.

In an operational sense, it is impossible for one thread to read or write the register values of another thread.
On the other hand, any thread can access any location in the shared virtual memory. If some thread modifies
a memory location, then every other thread will eventually see the change if it reads that location. Thus,
registers are never shared, while virtual memory is always shared.

The memory model for the separate thread stacks is not as clean. These stacks are contained in the stack
area of the virtual address space, and areusuallyaccessed independently by their respective threads. We
sayusuallyrather thanalways, because different thread stacks are not protected from other threads. So if a
thread somehow manages to acquire a pointer to another thread’s stack, then it can read and write any part
of that stack. Our example program shows an example of this in line 29, where the peer threads reference
the contents of the main thread’s stack indirectly through the globalptr variable.

11.3.2 Mapping Variables to Memory

C variables in threaded programs are mapped to virtual memory according to their storage classes.

11.3. SHARED VARIABLES IN THREADED PROGRAMS 571

code/threads/sharing.c

1 #include "csapp.h"
2 #define N 2
3

4 char **ptr; /* global variable */
5

6 void *thread(void *vargp);
7

8 int main()
9 {

10 int i;
11 pthread_t tid;
12 char *msgs[N] = {
13 "Hello from foo",
14 "Hello from bar"
15 };
16

17 ptr = msgs;
18

19 for (i = 0; i < N; i++)
20 Pthread_create(&tid, NULL, thread, (void *)i);
21 Pthread_exit(NULL);
22 }
23

24 void *thread(void *vargp)
25 {
26 int myid = (int)vargp;
27 static int cnt = 0;
28

29 printf("[%d]: %s (cnt=%d)\n", myid, ptr[myid], ++cnt);
30 }

code/threads/sharing.c

Figure 11.7:Example program that illustrates different aspects of sharing.

572 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

� Global variables.A global variableis any variable declared outside of a function. At run-time, the
read/write area of virtual memory contains exactly one instance of each global variable that can be
referenced by any thread.

For example, the globalptr variable in line 4 has one run-time instance in the read/write area of
virtual memory. When there is only one instance of a variable, we will denote the instance by simply
using the variable name, in this caseptr.

� Local automatic variables.A local automatic variableis one that is declared inside a function with-
out thestatic attribute. At run-time, each thread’s stack contains its own instances of any local
automatic variables. This is true even if multiple threads execute the same thread routine.

For example, there is one instance of the local variabletid, and it resides on the stack of the main
thread. We will denote this instance astid.m. As another example, there are two instances of the
local variablemyid, one instance on the stack of peer thread 0, and the other on the stack of peer
thread 1. We will denote these instances asmyid.p0 andmyid.p1 respectively.

� Local static variables. A local static variableis one that is declared inside a function with the
static attribute. As with global variables, the read/write area of virtual memory contains exactly
one instance of each local static variable declared in a program.

For example, even though each peer thread in our example program declarescnt in line 27, at run-
time there is only one instance ofcnt residing in the read/write area of virtual memory. Each peer
thread reads and writes this instance.

11.3.3 Shared Variables

A variablev is shared if and only if one of its instances is referenced by more than one thread. For example,
variablecnt in our example program is shared because it has only one run-time instance, and this instance
is referenced by both peer threads. On the other hand,myid is not shared because each of its two instances
is referenced by exactly one thread. However, it is important to realize that local automatic variables such
asmsgs can also be shared.

Practice Problem 11.2:

A. Using the analysis from Section 11.3, fill each entry in the following table with “Yes” or “No”
for the example program in Figure 11.7. In the first column, the notationv:t denotes an instance
of variablev residing on the local stack for threadt, wheret is eitherm(main thread),p0 (peer
thread 0), orp1 (peer thread 1).

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0 ? peer thread 1?

ptr
cnt
i.m
msgs.m
myid.p0
myid.p1

11.4. SYNCHRONIZING THREADS WITH SEMAPHORES 573

B. Given the analysis in Part A, which of the variablesptr , cnt , i, msgs, andmyid are shared?

11.4 Synchronizing Threads with Semaphores

Shared variables can be convenient, but they introduce the possibility of a new class ofsynchronization
errors that we have not encountered yet. Consider thebadcnt.c program in Figure 11.8 that creates two
threads, each of which increments a shared counter variable calledcnt.

Since each thread increments the counter NITERS times, we might expect its final value to be2�NITERS.
However, when we runbadcnt.c on our system, we not only get wrong answers, we get different answers
each time!

unix> ./badcnt
BOOM! ctr=198841183

unix> ./badcnt
BOOM! ctr=198261801

unix> ./badcnt
BOOM! ctr=198269672

So what went wrong? To understand the problem clearly, we need to study the assembly code for the counter
loop, as shown in Figure 11.9. We will find it helpful to partition the loop code for threadi into five parts:

� Hi: The block of instructions at the head of the loop.

� Li: The instruction that loads the shared variablecnt into register%eaxi, where%eaxi denotes the
value of register%eax in threadi.

� Ui: The instruction that updates (increments)%eaxi.

� Si: The instruction that stores the updated value of%eaxi back to the shared variablecnt.

� Ti: The block of instructions at the tail of the loop.

Notice that the head and tail manipulate only local stack variables, whileLi, Ui, andSi manipulate the
contents of the shared counter variable.

11.4.1 Sequential Consistency

When the two peer threads inbadcnt.c run concurrently on a single CPU, the instructions are completed
one after the other in some order. Thus, each concurrent execution defines some total ordering (or interleav-
ing) of the instructions in the two threads. When we reason about concurrent execution, theonlyassumption
we can make about the total ordering of instructions is that it issequentially consistent. That is, instructions

574 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

code/threads/badcnt.c

1 #include "csapp.h"
2

3 #define NITERS 100000000
4

5 void *count(void *arg);
6

7 /* shared variable */
8 unsigned int cnt = 0;
9

10 int main()
11 {
12 pthread_t tid1, tid2;
13

14 Pthread_create(&tid1, NULL, count, NULL);
15 Pthread_create(&tid2, NULL, count, NULL);
16

17 Pthread_join(tid1, NULL);
18 Pthread_join(tid2, NULL);
19

20 if (cnt != (unsigned)NITERS*2)
21 printf("BOOM! cnt=%d\n", cnt);
22 else
23 printf("OK cnt=%d\n", cnt);
24 exit(0);
25 }
26

27 /* thread routine */
28 void *count(void *arg)
29 {
30 int i;
31

32 for (i=0; i<NITERS; i++)
33 cnt++;
34 return NULL;
35 }

code/threads/badcnt.c

Figure 11.8:badcnt.c: An improperly synchronized counter program.

11.4. SYNCHRONIZING THREADS WITH SEMAPHORES 575

.L9:
 movl -4(%ebp),%eax
 cmpl $99999999,%eax
 jle .L12
 jmp .L10
.L12:
 movl ctr,%eax
 leal 1(%eax),%edx
 movl %edx,ctr
.L11:
 movl -4(%ebp),%eax
 leal 1(%eax),%edx
 movl %edx,-4(%ebp)
 jmp .L9
.L10:

Hi : Head

Ti : Tail

Li : Load ctr
Ui : Update ctr
Si : Store ctr

for (i=0; i<NITERS; i++)
 ctr++;

C code for thread i

Asm code for thread i

Figure 11.9:IA32 assembly code for the counter loop inbadcnt.c.

can be interleaved in any order, so long as the instructions for each thread execute in program order. For
example, the ordering

H1;H2; L1; L2; U1; U2; S1; S2; T1; T2

is sequentially consistent, while the ordering

H1;H2; U1; L2; L1; U2; S1; S2; T1; T2

is not sequentially consistent becauseU1 executes beforeL1. Unfortunately not all sequentially consistent
orderings are created equal. Some will produce correct results, but others will not, and there is no way for
us to predict whether the operating system will choose a correct ordering for our threads. For example,
Figure 11.10(a) shows the step-by-step operation of a correct instruction ordering. After each thread has
updated the shared variablecnt, its value in memory is 2, which is the expected result.

Step Thread Instr %eax1 %eax2 cnt

1 1 H1 – – 0
2 1 L1 0 – 0
3 1 U1 1 – 0
4 1 S1 1 – 1
5 2 H2 – – 1
6 2 L2 – 1 1
7 2 U2 – 2 1
8 2 S2 – 2 2
9 2 T2 – 2 2
10 1 T1 1 – 2

(a) Correct ordering

Step Thread Instr %eax1 %eax2 cnt

1 1 H1 – – 0
2 1 L1 0 – 0
3 1 U1 1 – 0
4 2 H2 – – 0
5 2 L2 – 0 0
6 1 S1 1 – 1
7 1 T1 1 – 1
8 2 U2 – 1 1
9 2 S2 – 1 1
10 2 T2 – 1 1

(b) Incorrect ordering

Figure 11.10:Sequentially-consistent orderings for the first loop iteration inbadcnt.c.

576 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

On the other hand, the ordering in Figure 11.10(b) produces an incorrect value forcnt. The problem occurs
because thread 2 loadscnt in step 5, after thread 1 loadscnt in step 2, but before thread 1 stores its updated
value in step 6. Thus each thread ends up storing an updated counter value of 1.

We can clarify this idea of correct and incorrect instruction orderings with the help of a formalism known
as aprogress graph, which we introduce in the next section.

Practice Problem 11.3:

Which of the following instruction orderings forbadcnt.c are sequentially consistent?

A. H1; H2; L1; L2; U1; U2; S2; S1; T2; T1.

B. H1; H2; L2; U2; S2; U1; T2; L1; S1; T1.

C. H2; L2; H1; L1; U1; S1; U2; S2; T2; T1.

D. H2; H1; L2; L1; S2; U1; U2; S1; T2; T1.

Practice Problem 11.4:

Complete the table for the following sequentially consistent ordering ofbadcnt.c .

Step Thread Instr %eax1 %eax2 cnt

1 1 H1 – – 0
2 1 L1

3 2 H2

4 2 L2

5 2 U2

6 2 S2
7 1 U1

8 1 S1
9 1 T1
10 2 T2

Does this ordering result in a correct value forcnt ?

11.4.2 Progress Graphs

A progress graphmodels the execution ofn concurrent threads as a trajectory through ann-dimensional
Cartesian space. Each axisk corresponds to the progress of threadk. Each point(I1; I2; : : : ; In) represents
the state where threadk, (k = 1; : : : ; n) has completed instructionIk. The origin of the graph corresponds
to theinitial statewhere none of the threads has yet completed an instruction.

Figure 11.11 shows the 2-dimensional progress graph for the first loop iteration of thebadcnt.c program.
The horizontal axis corresponds to thread 1, the vertical axis to thread 2. Point(L1; S2) corresponds to the
state where thread 1 has completedL1 and thread 2 has completedS2.

A progress graph models instruction execution as atransition from one state to another. A transition is
represented as a directed edge from one point to an adjacent point. Figure 11.12 shows the legal transitions

11.4. SYNCHRONIZING THREADS WITH SEMAPHORES 577

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)

Figure 11.11:Progress graph for the first loop iteration of badcnt.c.

in a 2-dimensional progress graph. For the single-processor systems that we are concerned about, where
instructions complete one at a time in sequentially-consistent order, legal transitions move to the right (an in-
struction in thread 1 completes) or up (an instruction in thread 2 completes). Programs never run backwards,
so transitions that move down or to the left are not legal.

(a) vertical (b) horizontal

Figure 11.12:Legal transitions in a progress graph.

The execution history of a program is modeled as atrajectory, or sequence of transitions, through the state
space. Figure 11.13 shows the trajectory that corresponds to the instruction ordering

H1; L1; U1;H2; L2; S1; T1; U2; S2; T2:

For threadi, the instructions(Li; Ui; Si) that manipulate the contents of the shared variablecnt constitute a
critical section(with respect to shared variablecnt) that should not be interleaved with the critical section
of the other thread. The intersection of the two critical sections defines a region of the state space known as
an unsafe region. Figure 11.14 shows the unsafe region for the variablecnt. Notice that the unsafe region
abuts, but does not include, the states along its perimeter. For example, states(H1;H2) and(S1; U2) abut
the unsafe region, but are not a part of it.

A trajectory that skirts the unsafe region is known as asafe trajectory. Conversely, a trajectory that touches
any part of the unsafe region is anunsafe trajectory. Figure 11.15 shows examples of safe and unsafe
trajectories through the state space of our examplebadcnt.c program. The upper trajectory skirts the
unsafe region along its left and top sides, and thus is safe. The lower trajectory crosses the unsafe region
with one of its diagonal transitions, and thus is unsafe.

578 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Figure 11.13:An example trajectory.

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Unsafe region

critical section wrt cnt

critical
section
wrt cnt

Figure 11.14:Critical sections and unsafe regions.

11.4. SYNCHRONIZING THREADS WITH SEMAPHORES 579

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Unsafe region Unsafe
trajectory

Safe trajectory

critical section wrt cnt

critical
section
wrt cnt

Figure 11.15:Safe and unsafe trajectories.

Any safe trajectory will correctly update the shared counter. Conversely, any unsafe trajectory will produce
either a predictably wrong result or a result that cannot be predicted. The latter case arises when the tra-
jectory crosses the lower right-hand corner of the region with a diagonal transition from state(U1;H2) to
(S1; L2). If thread 1 stores its updated value of the counter variable before thread 2 loads it, then the result
will be correct, otherwise it will be incorrect. Since we cannot predict the ordering of load and store opera-
tions, we consider this case, as well as the symmetric case where the trajectory crosses the upper left-hand
corner of the unsafe region, to be incorrect.

The bottom line is that in order to guarantee correct execution of our example threaded program — and in-
deed any concurrent program that shares global data structures – we must somehowsynchronizethe threads
so that they always have a safe trajectory. Dijkstra proposed a solution to this problem in a classic paper that
introduced the fundamental idea of asemaphore.

11.4.3 Protecting Shared Variables with Semaphores

A semaphore, s, is a global variable with a nonnegative integer value that can only be manipulated by two
special operations, calledP andV :

� P (s): while (s <= 0); s--;

� V (s): s++;

The namesP and V come from the DutchProberen(to test) andVerhogen(to increment). TheP operation
waits for the semaphores to become nonzero, and then decrements it. TheV operation incrementss. The
test and decrement operations inP occur indivisibly, in the sense that once the predicates <= 0 becomes
false, the decrement occurs without interruption. The increment operation inV also occurs indivisibly, in
that it loads, increments, and stores the semaphore without interruption.

580 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

The definitions ofP andV ensure that a running program can never enter a state where a properly initialized
semaphore has a negative value. This property, known as thesemaphore invariant, provides a powerful tool
for controlling the trajectories of concurrent programs so that they avoid unsafe regions.

The basic idea is to associate a semaphores, initially 1, with each shared variable (or related set of shared
variables) and then surround the corresponding critical section withP (s) andV (s) operations.2

For example, the progress graph in Figure 11.16 shows how we would use semaphores to properly synchro-
nize our example counter program. In the figure, each state is labeled with the value of semaphores in that
state. The crucial idea is that this combination ofP andV operations creates a collection of states, called a
forbidden region, wheres < 0. Because of the semaphore invariant, no feasible trajectory can include one
of the states in the forbidden region. And since the forbidden region completely encloses the unsafe region,
no feasible trajectory can touch any part of the unsafe region. Thus, every feasible trajectory is safe, and
regardless of the ordering of the instructions at runtime, the program correctly increments the counter.

H1 P(s) V(s) T1

Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

Unsafe region

Forbidden region

1 1 1 1 1 1 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0
-1 -1 -1 -1

0 0

0 0

-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

Figure 11.16:Safe sharing with semaphores.The states wheres < 0 define aforbidden regionthat
surrounds the unsafe region.

11.4.4 Posix Semaphores

The Posix standard defines a number of functions for manipulating semaphores. This section describes the
three basic functions,sem init, sem wait (P), andsem post (V).

A program initializes a semaphore by calling thesem init function.

2A semaphore that is used in this way to protect shared variables is called abinary semaphorebecause its value is always0 or
1.

11.4. SYNCHRONIZING THREADS WITH SEMAPHORES 581

#include <semaphore.h>

int sem init(sem t *sem, int pshared, unsigned int value);
returns: 0 if OK, -1 on error

Thesem init function initializes semaphoresem to value. Each semaphore must be initialized before
it can be used. Ifsem is being used to synchronize concurrent threads associated with the same process,
thenpshared is zero. Ifsem is being used to synchronize concurrent processes (not discussed here), then
pshared is nonzero. We use Posix semaphores only in the context of concurrent threads, sopshared is
0 in all of our examples.

Programs performP andV operations on semaphoresem by calling thesem wait andsem post func-
tions, respectively.

#include <semaphore.h>

int sem wait(sem t *sem);
int sem post(sem t *sem);

returns: 0 if OK, -1 on error

Figure 11.17 shows a version of the threaded counter program from Figure 11.8, calledgoodcnt.c, that
uses semaphore operations to properly synchronize access to the shared counter variable. The code follows
directly from Figure 11.16, so there are just a few aspects of it to point out:

� First, in a convention dating back to Dijkstra’s original semaphore paper, a binary semaphore used for
safe sharing is often called amutexbecause it provides each thread withmutually exclusive accessto
the shared data. We have followed this convention in our code.

� Second, theSeminit, P, andV functions are Unix-style error-handling wrappers for thesem init,
sem wait, and sem post functions, respectively.

11.4.5 Signaling With Semaphores

We saw in the previous section how semaphores can be used for sharing. But semaphores can also be used
for signaling. In this scenario, a thread uses a semaphore operation to notify another thread when some
condition in the program state becomes true. A classic example is theproducer-consumer interaction
shown in Figure 11.18. A producer thread and a consumer thread share a buffer withn slots. The producer
thread repeatedly produces new items and inserts them in the buffer. The consumer thread repeatedly re-
moves items from the buffer and then consumes them. Other variants allow different combinations of single
and multiple producers and consumers.

Producer-consumer interactions are common in real systems. For example, in a multimedia system, the
producer might encode video frames while the consumer decodes and renders them on the screen. The
purpose of the buffer is to reduce jitter in the video stream caused by data-dependent differences in the

582 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

code/threads/goodcnt.c

1 #include "csapp.h"
2

3 #define NITERS 10000000
4

5 void *count(void *arg);
6

7 /* shared variables */
8 unsigned int cnt; /* counter */
9 sem_t sem; /* semaphore */

10

11 int main()
12 {
13 pthread_t tid1, tid2;
14

15 Sem_init(&sem, 0, 1);
16

17 Pthread_create(&tid1, NULL, count, NULL);
18 Pthread_create(&tid2, NULL, count, NULL);
19

20 Pthread_join(tid1, NULL);
21 Pthread_join(tid2, NULL);
22

23 if (cnt != (unsigned)NITERS*2)
24 printf("BOOM! cnt=%d\n", cnt);
25 else
26 printf("OK cnt=%d\n", cnt);
27 exit(0);
28 }
29

30 /* thread routine */
31 void *count(void *arg)
32 {
33 int i;
34

35 for (i=0; i<NITERS; i++) {
36 P(&sem);
37 cnt++;
38 V(&sem);
39 }
40 return NULL;
41 }

code/threads/goodcnt.c

Figure 11.17:goodcnt.c: A properly synchronized version ofbadcnt.c.

11.5. SYNCHRONIZING THREADS WITH MUTEX AND CONDITION VARIABLES 583

producer
thread

shared
buffer

consumer
thread

Figure 11.18:Producer-consumer model.

encoding and decoding times for individual frames. The buffer provides a reservoir of slots to the producer
and a reservoir of encoded frames to the consumer. Another common example is the design of graphical user
interfaces. The producer detects mouse and keyboard events and inserts them in the buffer. The consumer
removes the events from the buffer in some priority-based manner and paints the screen.

Figure 11.19 outlines how we would use Posix semaphores to synchronize the producer and consumer
threads in a simple producer-consumer program where the buffer can hold at most one item.

We use two semaphores,empty andfull to characterize the state of the buffer. Theempty semaphore
indicates that the buffer contains no valid items. It is initialized to the initial number of available empty
buffer slots (1). Thefull semaphore indicates that the buffer contains a valid item. It is initialized to the
initial number of valid items (0).

The producer thread produces an item (in this case a simple integer), then waits for the buffer to be empty
with a P operation on semaphoreempty. After the producer writes the item to the buffer, it informs the
consumer that there is now a valid item with aV operation onfull. Conversely, the consumer thread waits
for a valid item with aP operation onfull. After reading the item, it signals that the buffer is empty with
aV operation onempty.

The impact at run-time is that the producer and consumer ping-pong back and forth, as shown in Fig-
ure 11.21.

11.5 Synchronizing Threads with Mutex and Condition Variables

As an alternative toP andV operations on semaphores, Pthreads provides a family of synchronization oper-
ations onmutexandcondition variables. In general, we prefer semaphores over their Pthreads counterparts
because they are more elegant and simpler to reason about. However, there are some useful synchronization
patterns, such as timeout waiting, that are impossible to implement with semaphores. Thus, it is worthwhile
to have some facility with the Pthreads operations.

In the previous section, we learned that semaphores can be used for both sharingandsignaling. Pthreads, on
the other hand, provides one set of functions (based on mutex variables) for sharing, and another set (based
on condition variables) for signaling.

11.5.1 Mutex Variables

A mutexis synchronization variable that is used like a binary semaphore to protect the access to shared
variables. There are three basic operations defined on a mutex.

584 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

code/threads/prodcons.c

1 #include "csapp.h"
2

3 #define NITERS 5
4

5 void *producer(void *arg), *consumer(void *arg);
6

7 struct {
8 int buf; /* shared variable */
9 sem_t full, empty; /* semaphores */

10 } shared;
11

12

13 int main()
14 {
15 pthread_t tid_producer, tid_consumer;
16

17 /* initialize the semaphores */
18 Sem_init(&shared.empty, 0, 1);
19 Sem_init(&shared.full, 0, 0);
20

21 /* create threads and wait for them to finish */
22 Pthread_create(&tid_producer, NULL, producer, NULL);
23 Pthread_create(&tid_consumer, NULL, consumer, NULL);
24 Pthread_join(tid_producer, NULL);
25 Pthread_join(tid_consumer, NULL);
26

27 exit(0);
28 }

code/threads/prodcons.c

Figure 11.19:Producer-consumer program: Main routine. One producer thread and one consumer
thread manipulate a 1-item buffer. Initially,empty == 1 andfull == 0.

11.5. SYNCHRONIZING THREADS WITH MUTEX AND CONDITION VARIABLES 585

code/threads/prodcons.c

1 /* producer thread */
2 void *producer(void *arg)
3 {
4 int i, item;
5

6 for (i=0; i<NITERS; i++) {
7 /* produce item */
8 item = i;
9 printf("produced %d\n", item);

10

11 /* write item to buf */
12 P(&shared.empty);
13 shared.buf = item;
14 V(&shared.full);
15 }
16 return NULL;
17 }
18

19 /* consumer thread */
20 void *consumer(void *arg)
21 {
22 int i, item;
23

24 for (i=0; i<NITERS; i++) {
25 /* read item from buf */
26 P(&shared.full);
27 item = shared.buf;
28 V(&shared.empty);
29

30 /* consume item */
31 printf("consumed %d\n", item);
32 }
33 return NULL;
34 }

code/threads/prodcons.c

Figure 11.20:Producer-consumer program: Producer and consumer threads.

586 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

P(e)

P(f)

Consumer

V(f) P(e) V(f) P(e) V(f)

V(e)

P(f)

V(e)

P(f)

V(e)

Producer

...

...
Initially
e = 1
f = 0

Figure 11.21:Progress graph forprodcons.c.

#include <pthread.h>

int pthread mutex init(pthread mutex t *mutex, pthread mutexattr t *attr);
int pthread mutex lock(pthread mutex t *mutex);
int pthread mutex unlock(pthread mutex t *mutex);

return: 0 if OK, nonzero on error

A mutex must be initialized before it can be used, either at run-time by calling thepthread init function,
or at compile-time:

1 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

For our purposes, theattr argument inpthread init will always be NULL and can be safely ignored.

Thepthread mutex lock function performs aP operation and thepthread mutex unlock func-
tion performs aV operation. Completing the call topthread mutex lock is referred to asacquiring
the mutex, and completing the call topthread mutex unlock is referred to asreleasing the mutex. At
any point in time, at most one thread can hold the mutex.

11.5.2 Condition Variables

Condition variables are synchronization variables that are used for signaling. Pthreads defines three basic
operations on condition variables.

#include <pthread.h>

int pthread cond init(pthread cond t *cond, pthread condattr t *attr);
int pthread cond wait(pthread cond t *cond, pthread mutex t *mutex);
int pthread cond signal(pthread cond t *cond);

return: 0 if OK, nonzero on error

11.5. SYNCHRONIZING THREADS WITH MUTEX AND CONDITION VARIABLES 587

A condition variablecond must be initialized before it is used, either by callingpthread cond init or
at compile-time:

1 pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

For our purposes theattr argument will always be NULL and can be safely ignored.

A thread waits for some program condition associated with the condition variablecond to become true
by calling pthread cond wait. In order to guarantee that the call topthread cond wait is indi-
visible with respect to other instances ofpthread cond wait andpthread cond signal, Pthreads
requires that a mutex variablemutex be associated with the condition variablecond, and that a call to
pthread mutex wait must always be protected by that mutex:

1 Pthread_mutex_lock(&mutex);
2 Pthread_cond_wait(&cond, &mutex);
3 Pthread_mutex_unlock(&mutex);

The call topthread cond wait releases the mutex and suspends the current thread untilcond becomes
true. At this point, we say that the current thread iswaiting on condition variablecond.

Later, someother thread indicates that the condition associated withcond has become true by making a call
to thepthread cond signal function:

1 Pthread_cond_signal(&cond);

If there are any threads waiting on conditioncond, then the call topthread cond signal sends a
signal that wakes up exactly one of them.

The thread that wakes up as a result of the signal reacquires the mutex and then returns from its call to
pthread cond wait.

If no threads are currently waiting on conditioncond, then nothing happens. Thus, like Unix signals, and
unlike Posix semaphores,Pthreads signals are not queued, which makes them much harder to reason about
than semaphore operations.

Aside: Pthreads signals vs. Unix signals
Pthreads signals are totally unrelated to the Unix signals that we learned about in Sectionsec:ecf:signals. Unix
signals have been around since the early days of Unix. Pthreads is a more modern development dating from the mid
1990s. It is unfortunate that the Pthreads standards group decided to use the same term, but the terminology is fixed
and we must accept it. In this chapter, we are only dealing with Pthreads signals.End Aside.

11.5.3 Barrier Synchronization

In general, we find that synchronizing with mutex and condition variables is more difficult and cumbersome
than with semaphores. However, a barrier is an example of a synchronization pattern that can be expressed
quite elegantly with operations on mutex and condition variables.

588 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

A barrier is a function,void barrier(void), that returns to the caller only when every other thread
has also calledbarrier. Barriers are essential in concurrent programs whose threads must progress at
roughly the same rate. For example, we use threads in our research to implement parallel simulations of
earthquakes. The duration of the earthquake (say 60 seconds) is broken up into thousands of tiny timesteps.
Each thread runs on a separate processor and models the propagation of seismic waves through some chunk
of the earth, first for timestep 1, then for timestep 2, and so on. In order to get consistent results, each thread
must finish simulating timestepk before the others can begin simulating timestepk + 1. We guarantee this
by placing a barrier between the execution of each timestep.

Our barrier implementation uses a signaling variant calledpthread cond broadcast that wakes up
everythread currently waiting on condition variablecond.

#include <pthread.h>

int pthread cond broadcast(pthread cond t *cond);
returns: 0 if OK, nonzero on error

Figure 11.22 shows the code for a simple barrier package based on mutex and condition variables.

The barrier package uses 4 global variables that are defined in lines 2–7. The variables are declared with
thestatic attribute so that they are not visible to other object modules.Cond is a condition variable and
mutex is its associated mutex variable.Nthreads records the number of threads involved in the barrier,
andbarriercnt keeps track of the number of threads that have called thebarrier function.

Thebarrier init function in lines 9–14 is called once by the main thread, before it creates any other
threads.

The mutex that surrounds the body of thebarrier function guarantees that it is executed indivisibly and
in some total order by each thread. Thus, once the current thread has acquired the mutex in line 18, there
are only two possibilities.

1. If the current thread is the last to enter the barrier, then it clears the barrier count for the next time
(line 20), and wakes up all of the other threads (line 21). We know that all of the other threads are
asleep, waiting on a signal, because the current thread is the last to enter the barrier.

2. If the current thread is not the last thread, then it goes to sleep and releases the mutex (line 24) so that
other threads can enter the barrier.

11.5.4 Timeout Waiting

Sometimes when we write a concurrent program, we are only willing to wait a finite amount of time for a
particular condition to become true. Since aP operation can block indefinitely, this kind oftimeout waiting
is not possible to implement with semaphore operations. However, Pthreads provides this capability, in the
form of thepthread cond timedwait function.

11.5. SYNCHRONIZING THREADS WITH MUTEX AND CONDITION VARIABLES 589

code/threads/barrier.c

1 #include "csapp.h"
2

3 static pthread_mutex_t mutex;
4 static pthread_cond_t cond;
5

6 static int nthreads;
7 static int barriercnt = 0;
8

9 void barrier_init(int n)
10 {
11 nthreads = n;
12 Pthread_mutex_init(&mutex, NULL);
13 Pthread_cond_init(&cond, NULL);
14 }
15

16 void barrier()
17 {
18 Pthread_mutex_lock(&mutex);
19 if (++barriercnt == nthreads) {
20 barriercnt = 0;
21 Pthread_cond_broadcast(&cond);
22 }
23 else
24 Pthread_cond_wait(&cond, &mutex);
25 Pthread_mutex_unlock(&mutex);
26 }

code/threads/barrier.c

Figure 11.22:barrier.c: A simple barrier synchronization package.

590 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

#include <pthread.h>

int pthread cond timedwait(pthread cond t *cond, pthread mutex t *mutex,
struct timespec *abstime);

returns: 0 if OK, ETIMEDOUT if timeout

Thepthread cond timedwait function behaves like thepthread cond wait function, except that
it returns with an error code of ETIMEDOUT once the value of the system clock exceeds the absolute time
value in abstime. Figure 11.23 shows a handy routine that a thread can use to build theabstime
argument each time it callspthread cond timedwait:

code/threads/maketimeout.c

1 #include "csapp.h"
2

3 struct timespec *maketimeout(struct timespec *tp, int secs)
4 {
5 struct timeval now;
6

7 gettimeofday(&now, NULL);
8 tp->tv_sec = now.tv_sec + secs;
9 tp->tv_nsec = now.tv_usec * 1000;

10 return tp;
11 }

code/threads/maketimeout.c

Figure 11.23:maketimeout: Builds a timeout structure for pthread cond timedwait.

For a simple example of timeout waiting in a threaded program, suppose we want to write abeeping
timebombthat waits at most 5 seconds for the user to hit the return key, printing out “BEEP” every sec-
ond. If the user doesn’t hit the return key in time, then the program explodes by printing “BOOM!”.
Otherwise, it prints “Whew!” and exits. Figure 11.24 shows a threaded timebomb that is based on the
pthread cond timedwait function.

The main timebomb thread locks the mutex and then creates a peer thread that callsgetchar, which blocks
the thread until the user hits the return key. Whengetchar returns, the peer thread signals the main thread
that the user has hit the return key, and then terminates. Notice that since the main thread locked the mutex
before creating the peer thread, the peer thread cannot acquire the mutex and signal the main thread until
the main thread releases the mutex by callingpthread cond timedwait.

Meanwhile, after the main thread creates the peer thread, it waits up to one second for the peer thread to
terminate. Ifpthread cond timedwait does not time out, then the main thread knows that the peer
thread has terminated, so it prints “Whew!” and exits. Otherwise, it beeps and waits for another second.
This continues until it has waited a total of 5 seconds, at which point the loop terminates, the main thread
explodes by printing “Boom!”, and then exits.

11.5. SYNCHRONIZING THREADS WITH MUTEX AND CONDITION VARIABLES 591

code/threads/timebomb.c

1 #include "csapp.h"
2

3 #define TIMEOUT 5
4

5 void *thread(void *vargp);
6 struct timespec *maketimeout(struct timespec *tp, int secs);
7

8 pthread_cond_t cond;
9 pthread_mutex_t mutex;

10 pthread_t tid;
11

12 int main()
13 {
14 int i, rc;
15 struct timespec timeout;
16

17 Pthread_cond_init(&cond, NULL);
18 Pthread_mutex_init(&mutex, NULL);
19

20 Pthread_mutex_lock(&mutex);
21 Pthread_create(&tid, NULL, thread, NULL);
22 for (i=0; i<TIMEOUT; i++) {
23 printf("BEEP\n");
24 rc = pthread_cond_timedwait(&cond, &mutex,
25 maketimeout(&timeout, 1));
26 if (rc != ETIMEDOUT) {
27 printf("WHEW!\n");
28 exit(0);
29 }
30 }
31 printf("BOOM!\n");
32 exit(0);
33 }
34

35 /* thread routine */
36 void *thread(void *vargp)
37 {
38 getchar();
39 Pthread_mutex_lock(&mutex);
40 Pthread_cond_signal(&cond);
41 Pthread_mutex_unlock(&mutex);
42 return NULL;
43 }

code/threads/timebomb.c

Figure 11.24:timebomb.c: A beeping timebomb that explodes unless the user hits a key within 5
seconds.

592 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

11.6 Thread-safe and Reentrant Functions

When we program with threads, we must be careful to write functions that are thread-safe. A function is
thread-safeif and only if it will always produce correct results when called repeatedly within multiple

concurrent threads. If a function is not thread-safe, then it is said to bethread-unsafe. We can identify four
(non-disjoint) classes of thread-unsafe functions:

1. Failing to protect shared variables.We have already encountered this problem with thecount
function in Figure 11.8 that increments an unprotected global counter variable.

This class of thread-unsafe function is relatively easy to make thread-safe: protect the shared vari-
ables with the appropriate synchronization operations (e.g.,P andV functions or Pthreads lock and
unlock functions). An advantage is that it does not require any changes in the calling program. A
disadvantage is that the synchronization operations will slow down the function.

2. Relying on state across multiple function invocations.A pseudo-random number generator is a good
example of this class of thread-unsafe function. Consider therand package from [37]:

code/threads/rand.c

1 unsigned int next = 1;
2

3 /* rand - return pseudo-random integer on 0..32767 */
4 int rand(void)
5 {
6 next = next*1103515245 + 12345;
7 return (unsigned int)(next/65536) % 32768;
8 }
9

10 /* srand - set seed for rand() */
11 void srand(unsigned int seed)
12 {
13 next = seed;
14 }

code/threads/rand.c

The rand function is thread-unsafe because the result of the current invocation depends on an in-
termediate result from the previous iteration. When we callrand repeatedly from a single thread
after seeding it with a call tosrand, we can expect a repeatable sequence of numbers. However, this
assumption no longer holds if multiple threads are callingrand.

The only way to make a function such asrand thread-safe is to rewrite it so that it does not use any
static data, relying instead on the caller to pass the state information in arguments. The disadvantage
is that the programmer is now forced to change the code in the calling routine as well. In a large
program where there are potentially hundreds of different call sites, making such modifications could
be non-trivial and error-prone.

11.6. THREAD-SAFE AND REENTRANT FUNCTIONS 593

3. Returning a pointer to a static variable.Some functions, such asgethostbyname, compute a
result in astatic structure and then return a pointer to that structure. If we call such functions from
concurrent threads, then disaster is likely as results being used by one thread are suddenly overwritten
by another thread.

There are two ways to deal with this class of thread-unsafe function. One option is to rewrite the
function so that the caller passes the address of the structure to store the results in. This eliminates all
shared data, but it requires the programmer to change the code in the caller as well.

If the thread-unsafe function is difficult or impossible to modify (e.g., it is linked from a library), then
another option is to use what we call thelock-and-copyapproach. The idea is to associate a mutex
with the thread-unsafe function. At each call site, lock the mutex, call the thread-unsafe function,
dynamically allocate memory for the result, copy the result returned by the function to this memory,
and then unlock the mutex. An attractive variant is to define a thread-safe wrapper function that
performs the lock-and-copy, and then replace all calls to the thread-unsafe function with calls to the
wrapper.

4. Calling thread-unsafe functions.If a functionf calls a thread-unsafe function, thenf is thread-unsafe,
too.

Thread-safety can be a confusing issue because there is no simple comprehensive rule for distinguishing
thread-safe functions from thread-unsafe ones. Although every thread-unsafe function references shared
variables (or calls other functions that are thread-unsafe), not every function that references shared data is
thread-unsafe. As we have seen, it all depends on how the function uses the shared variables.

11.6.1 Reentrant Functions

There is an important class of thread-safe functions, known asreentrant functions, that are characterized by
the property that they do not reference any shared data when they are called by multiple threads. Although
the termsthread-safeandreentrantare sometimes incorrectly used as synonyms, there is a clear technical
distinction that is worth preserving. Reentrant functions are typically more efficient than non-reentrant
thread-safe functions because they require no synchronization operations. Furthermore, as we have seen,
sometimes the only way to convert a thread-unsafe function into a thread-safe one is to rewrite it so that it
is reentrant.

Figure 11.25 shows the set relationships between reentrant, thread-safe, and thread-unsafe functions. The
set of all functions is partitioned into the disjoint sets of thread-safe and thread-unsafe functions. The set of
reentrant functions is a proper subset of the thread-safe functions.

Is it possible to inspect the code of some function and declarea priori that it is reentrant? Unfortunately, it
depends. If all function arguments are passed by value (i.e., no pointers) and all data references are to local
automatic stack variables (i.e., no references to static or global variables), then the function isexplicitly
reentrant, in the sense that we can assert its reentrancy regardless of how it is called.

However, if we loosen our assumptions a bit and allow some parameters in our otherwise explicitly reentrant
function to be passed by reference (that is, we allow them to pass pointers) then we have animplicitly
reentrantfunction, in the sense that it is only reentrant if the calling threads are careful to pass pointers to

594 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

reentrant
functions

thread-safe
functions

non-thread-safe
functions

All functions

Figure 11.25:Relationships between the sets of reentrant, thread-safe, and non-thread-safe functions.

non-shared data. In the rest of the book, we will use the termreentrantto include both explicit and implicit
reentrant functions, but it is important to realize that reentrancy is sometimes a property of both the caller
and the callee.

To understand the distinctions between thread-unsafe, thread-safe, and reentrant functions more clearly,
let’s consider different versions of ourmaketimeout function from Figure 11.23. We will start with the
function in Figure 11.26, a thread-unsafe function that returns a pointer to a static variable.

code/threads/maketimeoutu.c

1 #include "csapp.h"
2

3 struct timespec *maketimeout_u(int secs)
4 {
5 static struct timespec timespec;
6 struct timeval now;
7

8 gettimeofday(&now, NULL);
9 timespec.tv_sec = now.tv_sec + secs;

10 timespec.tv_nsec = now.tv_usec * 1000;
11 return ×pec;
12 }

code/threads/maketimeoutu.c

Figure 11.26:maketimeout u: A version of maketimeout that is not thread-safe.

Figure 11.27 shows how we might use the lock-and-copy approach to create a thread-safe (but not reentrant)
wrapper that the calling program can invoke instead of the original thread-unsafe function.

Finally, we can go all out and rewrite the unsafe function so that it is reentrant, as shown in Figure 11.28.
Notice that the calling thread now has the responsibility of passing an address that points to unshared data.

11.6. THREAD-SAFE AND REENTRANT FUNCTIONS 595

code/threads/maketimeoutt.c

1 #include "csapp.h"
2 struct timespec *maketimeout_u(int secs);
3

4 static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
5

6 struct timespec *maketimeout_t(int secs)
7 {
8 struct timespec *sp; /* shared */
9 struct timespec *up = Malloc(sizeof(struct timespec)); /* unshared */

10

11 Pthread_mutex_lock(&mutex);
12 sp = maketimeout_u(secs);
13 *up = *sp; /* copy the shared struct to the unshared one */
14 Pthread_mutex_unlock(&mutex);
15 return up;
16 }

code/threads/maketimeoutt.c

Figure 11.27:maketimeout t: A version of maketimeout that is thread-safe but not reentrant.

code/threads/maketimeoutr.c

1 #include "csapp.h"
2

3 struct timespec *maketimeout_r(struct timespec *tp, int secs)
4 {
5 struct timeval now;
6

7 gettimeofday(&now, NULL);
8 tp->tv_sec = now.tv_sec + secs;
9 tp->tv_nsec = now.tv_usec * 1000;

10 return tp;
11 }

code/threads/maketimeoutr.c

Figure 11.28:maketimeout r: A version of maketimeout that is reentrant and thread-safe.

596 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

11.6.2 Thread-safe Library Functions

Most Unix functions and the functions defined in the standard C library (such asmalloc, free, real-
loc, printf, and scanf) are thread-safe, with only a few exceptions. Figure 11.29 lists the common
exceptions. (See [77] for a complete list.)

Thread-unsafe function Thread-unsafe classUnix thread-safe version

asctime 3 asctime r
ctime 3 ctime r
gethostbyaddr 3 gethostbyaddr r
gethostbyname 3 gethostbyname r
inet ntoa 3 (none)
localtime 3 localtime r
rand 2 rand r

Figure 11.29:Common thread-unsafe library functions.

Theasctime, ctime, and localtime functions are commonly used functions for converting back and
forth between different time and data formats. Thegethostbyname, gethostbyaddr, and inet nota
functions are commonly used network programming functions that we will encounter in the next chapter.

With the exception ofrand, all of these thread-unsafe functions are of the class-3 variety that return a
pointer to a static variable. If we need to call one of these functions in a threaded program, the simplest
approach is to lock-and-copy as in Figure 11.27.

The disadvantage is that the additional synchronization will slow down the program. Further, this approach
will not work for a class-2 thread-unsafe function such asrand that relies on static state across calls. There-
fore, Unix systems provide reentrant versions of most thread-unsafe functions that end with the “r ” suffix.
Unfortunately, these functions are poorly documented and the interfaces differ from system to system. Thus,
the “ r ” interface should not be used unless absolutely necessary.

11.7 Other Synchronization Errors

Even if we have managed to make our functions thread-safe, our programs can still suffer from subtle
synchronization errors such as races and deadlocks.

11.7.1 Races

A raceoccurs when the correctness of a program depends on one thread reaching pointx in its control flow
before another thread reaches pointy. Races usually occur because programmers assume that threads will
take some particular trajectory through the execution state space, forgetting the golden rule that threaded
programs must work correctly for any feasible trajectory.

An example is the easiest way to understand the nature of races. Consider the simple program in Fig-
ure 11.30. The main thread creates four peer threads and passes a pointer to a unique integer ID to each one.

11.7. OTHER SYNCHRONIZATION ERRORS 597

Each peer thread copies the ID passed in its argument to a local variable (line 22), and then prints a message
containing the ID.

code/threads/race.c

1 #include "csapp.h"
2

3 #define N 4
4

5 void *thread(void *vargp);
6

7 int main()
8 {
9 pthread_t tid[N];

10 int i;
11

12 for (i = 0; i < N; i++)
13 Pthread_create(&tid[i], NULL, thread, &i);
14 for (i = 0; i < N; i++)
15 Pthread_join(tid[i], NULL);
16 exit(0);
17 }
18

19 /* thread routine */
20 void *thread(void *vargp)
21 {
22 int myid = *((int *)vargp);
23

24 printf("Hello from thread %d\n", myid);
25 return NULL;
26 }

code/threads/race.c

Figure 11.30:A program with a race.

It looks simple enough, but when we run this program on our system, we get the following incorrect result:

unix> ./race
Hello from thread 1
Hello from thread 3
Hello from thread 2
Hello from thread 3

The problem is caused by a race between each peer thread and the main thread. Can you spot the race?

Here is what happens. When the main thread creates a peer thread in line 13, it passes a pointer to the local
stack variablei. At this point the race is on between the next call topthread create in line 13 and the
dereferencing and assignment of the argument in line 22. If the peer thread executes line 22 before the main
thread executes line 13, then themyid variable gets the correct ID. Otherwise it will contain the ID of some

598 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

other thread. The scary thing is that whether we get the correct answer depends on how the kernel schedules
the execution of the threads. On our system it fails, but on other systems it might work correctly, leaving
the programmer blissfully unaware of a serious bug.

To eliminate the race, we can dynamically allocate a separate block for each integer ID, and pass the thread
routine a pointer to this block, as shown in Figure 11.31 (lines 13-15). Notice that the thread routine must
free the block in order to avoid a memory leak.

code/threads/norace.c

1 #include "csapp.h"
2

3 #define N 4
4

5 void *thread(void *vargp);
6

7 int main()
8 {
9 pthread_t tid[N];

10 int i, *ptr;
11

12 for (i = 0; i < N; i++) {
13 ptr = Malloc(sizeof(int));
14 *ptr = i;
15 Pthread_create(&tid[i], NULL, thread, ptr);
16 }
17 for (i = 0; i < N; i++)
18 Pthread_join(tid[i], NULL);
19 exit(0);
20 }
21

22 /* thread routine */
23 void *thread(void *vargp)
24 {
25 int myid = *((int *)vargp);
26

27 Free(vargp);
28 printf("Hello from thread %d\n", myid);
29 return NULL;
30 }

code/threads/norace.c

Figure 11.31:A correct version the program in Figure 11.30 without a race.

When we run this program on our system, we now get the correct result:

unix> ./norace
Hello from thread 0
Hello from thread 1

11.7. OTHER SYNCHRONIZATION ERRORS 599

Hello from thread 2
Hello from thread 3

We will use a similar technique in Chapter 12 when we discuss the design of threaded network servers.

Practice Problem 11.5:

In Figure 11.31, we might be tempted to free the allocated memory block immediately after line 15 in
the main thread, instead of freeing it in the peer thread. But this would be a bad idea. Why?

Practice Problem 11.6:

A. In Figure 11.31, we eliminated the race by allocating a separate block for each integer ID. Outline
a different approach that does not call themalloc or free functions.

B. What are the advantages and disadvantages of this approach?

11.7.2 Deadlocks

Semaphores introduce the potential for a nasty kind of runtime error, calleddeadlock, where a collection of
threads are blocked, waiting for a condition that will never be true. The progress graph is an invaluable tool
for understanding deadlock. For example, Figure 11.32 shows the progress graph for a pair of threads that
use two semaphores for sharing. From this graph, we can glean some important insights about deadlock:

P(s) P(t)

P(t)

P(s)

Thread 1

Thread 2

V(s) V(t)

V(t)

V(s)

Forbidden
region
for s

......

...

...

...

...

Forbidden
region
for t

Deadlock
region

Initially
s = 1
t = 1

deadlock
state

A trajectory that deadlocks

...A trajectory that does not deadlock

d

Figure 11.32:Progress graph for a program that can deadlock.

600 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

� The programmer has incorrectly ordered theP andV operations such that the forbidden regions for
the two semaphores overlap. If some execution trajectory happens to reach thedeadlock state
d, then no further progress is possible because the overlapping forbidden regions block progress in
every legal direction. In other words, the program is deadlocked because each thread is waiting for
the other to do aV operation that will never occur.

� The overlapping forbidden regions induce a set of states, called thedeadlock region. If a trajectory
happens to touch a state in the deadlock region, then deadlock is inevitable. Trajectories can enter
deadlock regions, but they can never leave.

� Deadlock is an especially difficult problem, because it is not always predictable. Some lucky execu-
tion trajectories will skirt the deadlock region, while others will be trapped by it. Figure 11.32 shows
an example of each. The implications for a programmer are somewhat scary. You might run the same
program 1000 times without any problem, but then the next time it deadlocks. Or the program might
work fine on one machine but deadlock on another. Worst of all, the error is often not repeatable
because different executions have different trajectories.

Practice Problem 11.7:

Consider the following program, which uses a pair of semaphores for sharing.

Initially: s = 1, t = 0.

Thread 1: Thread 2:
P(s); P(s);
V(s); V(s);
P(t); P(t);
V(t); V(t);

A. Does the program always deadlock?

B. What simple change to the initial semaphore values will fix the deadlock?

11.8 Summary

Threads are a popular and useful tool for introducing concurrency in programs. Threads are typically more
efficient than processes, and it is much easier to share data between threads than between processes. How-
ever, the ease of sharing introduces the possibility of synchronization errors that are difficult to diagnose.

Programmers writing threaded programs must be careful to protect shared data with the appropriate syn-
chronization mechanisms. Functions called by threads must be thread-safe. Races and deadlocks must be
avoided. In sum, the wise programmer approaches the design of threaded programs with great care and not
a little trepidation.

11.8. SUMMARY 601

Bibliographic Notes

Semaphore operations were proposed by Dijkstra [22]. The progress graph concept was introduced by
Coffman [15] and later formalized by Carson and Reynolds [9]. The book by Butenhof [8] contains a good
description of the Posix threads interface. The paper by Andrew Birrell [4] is an excellent introduction to
the general principles of threads programming and its pitfalls.

Homework Problems

Homework Problem 11.8[Category 2]:

Write a version ofhello.c (Figure 11.5) that reads a command line argumentn, and then creates and
reapsn joinable peer threads.

Homework Problem 11.9[Category 3]:

Generalize the producer-consumer program in Figure 11.19 to manipulate a circular buffer with a capacity
of BUFSIZE integer items. The producer generates NITEMS integer items:0; 1; : : : ;NITEMS�1. For each
item, it works for a while (i.e.,Sleep(rand()%MAXRAND)), produces the item by printing a message,
and then inserts the item at the rear of the buffer. The consumer repeatedly removes an item from the front
of the buffer, works for a while, and then consumes the item by printing a message. For example:

unix> ./prodconsn
produced 0
produced 1
consumed 0
produced 2
consumed 1
consumed 2
produced 3
produced 4
consumed 3
consumed 4

Homework Problem 11.10[Category 3]:

Write a barrier synchronization package, with the same interface as the package in Figure 11.22, that uses
semaphores instead of Pthreads mutex and condition variables. Write a driver programbarriermain.c
that tests your barrier routine. The driver accepts a command line argumentn, calls thebarrier init
function, and then createsn threads that repeatedly synchronize by printing a message and calling the
barrier. For example,

unix> ./barrier 2
1026: hello from barrier 0
2051: hello from barrier 0
1026: hello from barrier 1
2051: hello from barrier 1

602 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

1026: hello from barrier 2
2051: hello from barrier 2
1026: hello from barrier 3
2051: hello from barrier 3
1026: hello from barrier 4
2051: hello from barrier 4

Homework Problem 11.11[Category 3]:

Implement a threaded version of the Cfgets function, calledtfgets, that times out and returns a NULL
pointer if it does not receive an input line on stdin within 5 seconds.

� Your function should be implemented in a package calledtfgets-thread.c.

� Your solution may use any Pthreads function.

� Your solution may not use the Unixsleep or alarm functions.

� Test your solution using the following driver program:

code/threads/tfgets-main.c

1 #include "csapp.h"
2

3 char *tfgets(char *s, int size, FILE *stream);
4

5 int main()
6 {
7 char buf[MAXLINE];
8

9 if (tfgets(buf, MAXLINE, stdin) == NULL)
10 printf("BOOM!\n");
11 else
12 printf("%s", buf);
13

14 exit(0);
15 }

code/threads/tfgets-main.c

Homework Problem 11.12[Category 3]:

For an interesting contrast in concurrency models, implementtfgets using processes, signals, and nonlo-
cal jumps instead of threads.

� Your function should be implemented in a package calledtfgets-proc.c.

� Your solution may not use the Unixalarm function.

11.8. SUMMARY 603

� Test your solution using the driver program from Problem 11.11.

604 CHAPTER 11. CONCURRENT PROGRAMMING WITH THREADS

Chapter 12

Network Programming

Network applications are everywhere. Any time you browse the Web, send an email message, or pop up
an X window, you are using a network application. Interestingly, all network applications are based on the
same basic programming model, have similar overall logical structures, and rely on the same programming
interface.

Network applications rely on many of the concepts that we have already learned in our study of systems.
For example, processes, signals, threads, reentrancy, byte ordering, memory mapping, and dynamic storage
allocation all play important roles. There are new concepts to master as well. We will need to understand the
basic client-server programming model and how to write client-server programs that use the services pro-
vided by the Internet. Since Unix models network devices as files, we will also need a deeper understanding
of Unix file I/O. At the end, we will tie all of these ideas together by developing a small but functional Web
server that can serve both static and dynamic content with text and graphics to real Web browsers.

12.1 Client-Server Programming Model

Every network application is based on theclient-server model. With this model, an application consists of
a serverprocess and one or moreclient processes. A server manages someresource, and it provides some
servicefor its clients by manipulating that resource.

For example, a Web server manages a set of disk files that it retrieves for clients. An FTP server manages a
set of disk files that it stores and retrieves for clients. An X server manages a bit-mapped display, which is
paints for clients, and a keyboard and mouse, which it reads for clients. The X server is interesting because
it is always close to the user while the client can be far away. Thus proximity plays no role in the definitions
of clients and servers, even though we often think of servers as being remote and clients being local.

The fundamental operation in the client-server model is thetransactiondepicted in Figure 12.1.

A transaction consists of four steps:

1. When a client needs service, it initiates a transaction by sending arequestto the server. For example,
when a Web browser needs a file, it sends a request to a Web server.

605

606 CHAPTER 12. NETWORK PROGRAMMING

client server

1. client sends request

2. server
processes

request

3. server sends response4. client
processes
response

resource

Figure 12.1:A client-server transaction.

2. The server receives the request, interprets it, and manipulates its resource in the appropriate way. For
example, when a Web server receives a request from a browser, it reads a disk file.

3. The server sends aresponseto the client, and then waits for the next request. For example, a Web
server sends the file back to a client.

4. The client receives the response and manipulates it. For example, after a Web browser receives a page
from the server, it displays it on the screen.

Aside: Client-server transactions vs database transactions.
Client-server transactions arenot database transactions and do not share any of their properties. In this context, a
transaction simply connotes a sequence of steps by a client and server.End Aside.

It is important to realize that clients and servers are processes, and not machines, orhostsas they are often
called in this context. A single host can run many different clients and servers concurrently, and a client and
server transaction can be on the same or different hosts. The client-server model is the same, regardless of
the mapping of clients and servers to hosts.

12.2 Networks

Clients and servers often run on separate hosts and communicate using the hardware and software resources
of a computer network. Networks are sophisticated systems and we can only hope to scratch the surface
here. Our aim is to give you a a workable mental model from a progammer’s perspective.

To a host, a network is just another I/O device that serves as a source and sink for data, as shown in
Figure 12.2. An adapter plugged into an expansion slot on the I/O bus provides the physical interface to the
network. Data received from the network is copied from the adapter across the I/O and memory buses into
memory, typically by a DMA transfer. Similarly, data can also be copied from memory to the network.

Physically, a network is a hierarchical system that is organized by geographical proximity. At the lowest
level is a LAN (Local Area Network) that spans a building or a campus. The most popular LAN technology
by far is ethernet, which was developed in the mid-1970’s at Xerox PARC. Ethernet has proven to be
remarkably resilient, evolving from 3 Mb/s transfer rates, to 10 Mb/s, to 100 Mb/s, and more recently to 1
Gb/s.

An ethernet segmentconsists of some wires (usually twisted pairs of wires) and a small box called ahub, as
shown in Figure 12.3. Ethernet segments typically span small areas, such as a room or a floor in a building.
Each wire has the same maximum bit bandwidth, typically 100 Mb/s or 1 Gb/s. One end is attached to an

12.2. NETWORKS 607

main
memory

I/O
bridge

MI

ALU

register file

CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor

disk

I/O bus

Expansion slots

network
adapter

network

Figure 12.2:Hardware organization of a network host.

host host host

hub
100 Mb/s100 Mb/s

Figure 12.3:Ethernet segment.

608 CHAPTER 12. NETWORK PROGRAMMING

adapter on a host, and the other end is attached to aport on the hub. A hub slavishly copies every bit that it
receives on each port to every other port. Thus every host sees every bit.

Each ethernet adapter has a globally unique 48-bit address that is stored in a persistent memory on the
adapter. A host can send a chunk of bits called aframe to any other host on the segment. Each frame
includes some fixed number ofheaderbits that identify the source and destination of the frame and the
frame length, followed by apayloadof data bits. Every host adapter sees the frame, but only the destination
host actually reads it.

Multiple ethernet segments can be connected into larger LANs, calledbridged ethernets, using a set of
wires and small boxes calledbridges, as shown in Figure 12.4. Bridged ethernets can span entire buildings
or campuses. In a bridged ethernet, some wires connect bridges to bridges, and others connect bridges to

host host host host host

hub hubbridge
100 Mb/s 100 Mb/s

host host

hub 100 Mb/s 100 Mb/s

1 Gb/s

host host host

bridge

hosthost

hub

A B

C

X

Y

Figure 12.4:Bridged ethernet segments.

hubs. The bandwidths of the wires can be different. In our example, the bridge-bridge wire has a 1 Gb/s
bandwidth, while the four hub-bridge wires have bandwidths of 100 Mb/s.

Bridges make better use of the available wire bandwidth than hubs. Using a clever distributed algorithm,
they automatically learn over time which hosts are reachable from which ports, and then selectively copy
frames from one port to another only when it is necessary. For example, if host A sends a frame to host
B, which is on the segment, then bridge X will throw away the frame when it arrives at its input port, thus
saving bandwidth on the other segments. However, if host A sends a frame to host C on a different segment,
then bridge X will copy the frame only to the port connected to bridge Y, which will copy the frame only to
the port connected to bridge C’s segment.

To simplify our pictures of LANs, we will draw the hubs and bridges and the wires that connect them as a
single horizontal line, as shown in Figure 12.5.

host host host...

Figure 12.5:Conceptual view of a LAN.

At a higher level in the hierarchy, multiple incompatible LANs can be connected by specialized computers
calledroutersto form aninternet(interconnected network).

12.2. NETWORKS 609

Aside: Internet vs. internet.
We will always use lower-caseinternetto denote the general concept, and upper-caseInternetto denote a specific
implementation, namely the global IP Internet.End Aside.

Each router has an adapter (port) for each network that it is connected to. Routers can also connect high-
speed point-to-point phone connections, which are examples of networks known as WANs (Wide-Area
Networks), so called because they span larger geographical areas than LANs. In general, routers can be
used to build internets from arbitrary collections of LANs and WANs. For example, Figure 12.6 shows an
example internet with a pair of LANs and WANs connected by three routers.

host host host

LAN

... host host host

LAN

...

router router router
WAN WAN

Figure 12.6:A small internet. Two LANs and two WANs are connected by three routers.

The crucial property of an internet is that it can consist of different LANs and WANs with radically different
and incompatible technologies. Each host is physically connected to every other host, but how is it possible
for somesource hostto send data bits to anotherdestination hostacross all of these incompatible networks?

The solution is a layer ofprotocol softwarerunning on each host and router that smooths out the differences
between the different networks. This software implements aprotocol that governs how hosts and routers
cooperate in order to transfer data. The protocol must provide two basic capabilities:

� Naming scheme.Different LAN technologies have different and incompatible ways of assigning
addresses to hosts. The internet protocol smooths these differences by defining a uniform format
for host addresses. Each host is then assigned at least one of theseinternet addressesthat uniquely
identifies it.

� Delivery mechanism.Different networking technologies have different and incompatible ways of
encoding bits on wires and of packaging these bits into frames. The internet protocol smoothes these
differences by defining a uniform way to bundle up data bits into discrete chunks calledpackets. A
packet consists of aheader, which contains the packet size and addresses of the source and destination
hosts, and apayload, which contains data bits sent from the source host.

Figure 12.7 shows an example of how hosts and routers use the internet protocol to transfer data across
incompatible LANs.

The example internet consists of two LANs connected by a router. A client running on host A, which is
attached to LAN1, sends a sequence of data bytes to a server running on host B, which is attached to LAN2.
There are eight basic steps:

1. The client on host A invokes a system call that copies the data from the client’s virtual address space
into a kernel buffer.

610 CHAPTER 12. NETWORK PROGRAMMING

protocol
software

client

LAN1
adapter

Host A

data

data PH FH1

data PH

data PH FH2

LAN1 LAN2

data

data PH

FH1

data PH FH2

(1)

(2)

(3)

(4) (5)

(6)

(7)

(8)

internet packet

LAN2 frame

protocol
software

LAN1
adapter

LAN2
adapter

Router

FH1

LAN1 frame

data PH FH2

protocol
software

server

LAN2
adapter

Host B

Figure 12.7:How data travels from one host to another on an internet.Key: PH: internet packet header,
FH1: frame header for LAN1, FH2: frame header for LAN2.

2. The protocol software on host A creates a LAN1 frame by appending an internet header and a LAN1
frame header to the data. The internet header is addressed to internet host B. The LAN1 frame header
is addressed to the router. It then passes the frame to the adapter. Notice that the payload of the LAN1
frame is an internet packet, whose payload is the actual user data. This kind ofencapsulationis one
of the fundamental insights of internetworking.

3. The LAN1 adapter copies the frame to the network.

4. When the frame reaches the router, the router’s LAN1 adapter reads it from the wire and passes it to
the protocol software.

5. The router fetches the destination internet address from the internet packet header and uses this as an
index into a routing table to determine where to forward the packet, which in this case is LAN2. The
router then strips off the old LAN1 frame header, prepends a new LAN2 frame header addressed to
host B, and passes the resulting frame to the adapter.

6. The router’s LAN2 adapter copies the frame to the network.

7. When the frame reaches host B, its adapter reads the frame from the wire and passes it to the protocol
software.

8. Finally, the protocol software on host B strips off the packet header and frame header. The protocol
software will eventually copy the resulting data into the server’s virtual address space when the server
invokes a system call that reads the data.

Of course, we are glossing over many difficult issues here. What if different networks have different maxi-
mum frame sizes? How do routers know where to forward frames? How are routers informed when the the

12.3. THE GLOBAL IP INTERNET 611

network topology changes? What if packet gets lost? Nonetheless, our example captures the essence of the
internet idea, and encapsulation is key.

12.3 The Global IP Internet

The global IP Internet is the most famous and successful implementation of an internet. It has existed in one
form or another since 1970. While the internal architecture of the Internet is complex and constantly chang-
ing, the organization of client-server applications has remained remarkably stable since the early 1980s.
Figure 12.8 shows the basic hardware and software organization of an Internet client-server application.

TCP/IP

client

network
adapter

Global IP Internet

TCP/IP

server

network
adapter

Internet client host Internet server host

sockets interface
(system calls)

hardware interface
(interrupts)

user code

kernel code

hardware

Figure 12.8:Hardware and software organization of an Internet application.

Each Internet host runs software that implements theTCP/IPprotocol (Transmission Control Protocol/Internet
Protocol), which is supported by almost every modern computer system. Internet clients and servers com-
municate using a mix ofsockets interfacefunctions and Unix file I/O functions. (We will describe Unix file
I/O in Section 12.4 and the sockets interface in Section 12.5.) The sockets functions are typically imple-
mented as system calls that trap into the kernel and call various kernel-mode functions in TCP/IP.

Aside: Berkeley sockets.
The sockets interface was developed by researchers at University of California at Berkeley in the early 1980s. For
this reason, it is still often referred to asBerkeley sockets. The Berkeley researchers developed the sockets interface
to work with any underlying protocol. The first implementation was for TCP/IP, which they included in the Unix
4.2BSD kernel and distributed to numerous universities and labs. This was one of the most important events in
the history of the Internet. Almost overnight, thousands of people had access to TCP/IP and its source codes. It
generated tremendous excitement and sparked a flurry of new research in networking and internetworking.End
Aside.

TCP/IP is actually of family of protocols, each of which contributes different capabilities. For example, the
IP protocol provides the basic naming scheme and a delivery mechanism that can send packets known as

datagramsfrom one Internet host to any another host. The IP mechanism is unreliable in the sense that it
makes no effort to recover if datagrams are lost or duplicated in the network. UDP (Unreliable Datagram
Protocol) extends IP slightly so that packets can be transfered from process to process, rather than host to

612 CHAPTER 12. NETWORK PROGRAMMING

host. TCP is a complex protocol that builds on IP to provide reliable full-duplex connections between
processes. To simplify our discussion, we will treat TCP/IP as a single monolithic protocol. We will not
discuss its inner workings, and we will only discuss some of the basic capabilities that TCP and IP provide
to application programs. We will not discuss UDP.

From a programmer’s perspective, we can think of the Internet as a worldwide collection of hosts with the
following properties:

� Hosts are mapped to a set of 32-bitIP addresses.

� The set of IP addresses is mapped to a set of identifiers calledInternet domain names.

� A process on one host communicates with a process on another host over aconnection.

The next three sections discuss these fundamental ideas in more detail.

12.3.1 IP Addresses

An IP address is an unsigned 32-bit integer. Network programs store IP addresses in theIP address structure
shown in Figure 12.9.

netinet/in.h

/* Internet address structure */
struct in_addr {

unsigned int s_addr; /* network byte order (big-endian) */
};

netinet/in.h

Figure 12.9:IP address structure.

Aside: Why store the scalar IP address in a structure?
Storing a scalar address in a structure is an unfortunate historical artifact from the early Berkeley 4.xBSD imple-
mentations of the sockets interface. It would make more sense to define a scalar type for IP addresses, but it is too
late to change now because of the enormous installed base of applications.End Aside.

Because Internet hosts can have different host byte orders, TCP/IP defines a uniformnetwork byte order
(which is a big-endian byte order) for any integer data item, such as an IP address, that is carried across
the network in a packet header. Addresses in IP address structures are always stored in big-endian network
byte order, even if the host byte order is little-endian. Unix provides the following functions for converting
between network and host byte order.

12.3. THE GLOBAL IP INTERNET 613

#include <netinet/in.h>

unsigned long int htonl(unsigned long int hostlong);
unsigned short int htons(unsigned short int hostshort);

both return: value in network byte order

unsigned long int ntohl(unsigned long int netlong);
unsigned short int ntohs(unsigned short int netshort);

both return: value in host byte order

Thehotnl function converts a 32-bit integer from host byte to network byte order. Thentohl function
converts a 32-bit integer from network byte order to host byte order. Thehtons andntohs functions
perform corresponding conversions for 16-bit integers.

IP addresses are typically presented to humans in a form known asdotted-decimal notation, where each
byte is represented by its decimal value and separated from the other bytes by a period. For example,
128.2.194.242 is the dotted-decimal representation of the address0x8002c2f2. You can use the
Linux HOSTNAME command to determine the dotted-decimal address of your own host:

linux> hostname -i
128.2.194.242

Internet programs convert back and forth between IP addresses and dotted-decimal strings using theinet aton
andinet ntoa functions:

#include <arpa/inet.h>

int inet aton(const char *cp, struct in addr *inp);
returns: 1 if OK, 0 on error

char *inet ntoa(struct in addr in);
returns: pointer to a dotted-decimal string

The inet aton function converts a dotted-decimal string (cp) to an IP address in network byte order
(inp). Similarly, the inet ntoa function converts an IP address in network byte order to its corresponding
dotted-decimal string. Notice that a call toinet aton passes a pointer to a structure, while a call to
inet ntoa passes the structure itself.

Aside: What do ntoa and aton mean?
The"n" denotesnetworkrepresentation. The"a" denotesapplicationrepresentation.End Aside.

Practice Problem 12.1:

Complete the following table.

614 CHAPTER 12. NETWORK PROGRAMMING

Hex address Dotted-decimal address

0x0
0xffffffff
0xef000001

205.188.160.121
64.12.149.13

205.188.146.23

Practice Problem 12.2:

Write a programhex2dd.c that converts its hex argument to a dotted-decimal string and prints the
result. For example,

unix> ./hex2dd 0x8002c2f2
128.2.194.242

Practice Problem 12.3:

Write a programdd2hex.c that converts its dotted-decimal argument to a hex number and prints the
result. For example,

unix> ./dd2hex 128.2.194.242
0x8002c2f2

12.3.2 Internet Domain Names

Internet clients and servers use IP addresses when they communicate with each other. However, large
integers are difficult for people to remember, so the Internet also defines a separate set of more human-
friendly domain namesas well as a mechanism that maps the set of domain names to the set of IP addresses.
A domain name is a sequence of words (letters, numbers, and dashes) separated by periods. For example,

kittyhawk.cmcl.cs.cmu.edu

The set of domain names forms a hierarchy and each domain name encodes its position in the hierarchy. An
example is the easiest way to understand this. Figure 12.10 shows a portion of the domain name hierarchy.
The hierarchy is represented as a tree. The nodes of the tree represent domain names that are formed
by the path back to the root. Sub-trees are referred to assubdomains. The first level in the hierarchy is
an unnamed root node. The next level is a collection offirst-level domain namesthat are defined by a
non-profit organization called ICANN (Internet Corporation for Assigned Names and Numbers). Common
first-level domains includecom,edu, gov, org, and net.

At the next level aresecond-leveldomain names such ascmu.edu, which are assigned on a first-come
first-serve basis by various authorized agents of ICANN. Once an organization has received a second-level
domain name, then it is free to create any other new domain name within its subdomain.

12.3. THE GLOBAL IP INTERNET 615

mil edu gov com

cmu berkeleymit

cs ece

kittyhawk
128.2.194.242

cmcl

unnamed root

pdl

imperial
128.2.189.40

amazon

www
208.216.181.15

first-level domain names

second-level domain names

third-level domain names

Figure 12.10:Subset of the Internet domain name hierarchy.

The Internet defines a mapping between the set of domain names and the set of IP addresses. Until 1988,
this mapping was maintained manually in a single text file calledhosts.txt. Since then, the mapping
has been maintained in a distributed world-wide database known asDNS(Domain Naming System). The
DNS database consists of millions of thehost entry structuresshown in Figure 12.11, each of which defines
the mapping between a set of domain names (an official name and a list of aliases) and a set of IP addresses.
In a mathematical sense, we can think of each host entry as an equivalence class of domain names and IP
addresses.

netdb.h

/* DNS host entry structure */
struct hostent {

char *h_name; /* official domain name of host */
char **h_aliases; /* null-terminated array of domain names */
int h_addrtype; /* host address type (AF_INET) */
int h_length; /* length of an address, in bytes */
char **h_addr_list; /* null-terminated array of in_addr structs */

};

netdb.h

Figure 12.11:DNS host entry structure.

Internet applications retrieve arbitrary host entries from the DNS database by calling thegethostbyname
andgethostbyaddr functions.

616 CHAPTER 12. NETWORK PROGRAMMING

#include <netdb.h>

struct hostent *gethostbyname(const char *name);
returns: non-NULL pointer if OK, NULL pointer on error withh errno set

struct hostent *gethostbyaddr(const char *addr, int len, 0);
returns: non-NULL pointer if OK, NULL pointer on error withh errno set

The gethostbyname returns the host entry associated with the domain namename. Thegethost-
byaddr function returns the host entry associated with the IP addressaddr. The second argument gives
the length in bytes of an IP address, which for the current Internet is always four bytes. For our purposes,
the third argument is always zero.

We can explore some of the properties of the DNS mapping with thehostinfo program in Figure 12.12,
which reads a domain name or dotted-decimal address from the command line and displays the correspond-
ing host entry. (We are actually calling error handling wrappers, which were introduced in Section 8.3 and
described in detail in Appendix A.)

Each Internet host has the locally-defined domain namelocalhost, which always maps to the loopback
address127.0.0.1:

unix> ./hostinfo localhost
official hostname: localhost
alias: localhost.localdomain
address: 127.0.0.1

The localhost name provides a convenient and portable way to reference clients and servers that are
running on the same machine, which can be especially useful for debugging. We can useHOSTNAME to
determine the real domain name of our local host:

unix> hostname
kittyhawk.cmcl.cs.cmu.edu

In the simplest case there is a one-to-one mapping between a domain name and an IP address:

unix> ./hostinfo kittyhawk.cmcl.cs.cmu.edu
official hostname: kittyhawk.cmcl.cs.cmu.edu
address: 128.2.194.242

However, in some cases, multiple domain names are mapped to the same IP address:

unix> ./hostinfo cs.mit.edu
official hostname: EECS.MIT.EDU
alias: cs.mit.edu
address: 18.62.1.6

In the most general case, multiple domain names can be mapped to multiple IP addresses:

unix> ./hostinfo www.aol.com

12.3. THE GLOBAL IP INTERNET 617

code/net/hostinfo.c

1 #include "csapp.h"
2

3 int main(int argc, char **argv)
4 {
5 char **pp;
6 struct in_addr addr;
7 struct hostent *hostp;
8

9 if (argc != 2) {
10 fprintf(stderr, "usage: %s <domain name or dotted-decimal>\n",
11 argv[0]);
12 exit(0);
13 }
14

15 if (inet_aton(argv[1], &addr) != 0)
16 hostp = Gethostbyaddr((const char *)&addr, sizeof(addr), AF_INET);
17 else
18 hostp = Gethostbyname(argv[1]);
19

20 printf("official hostname: %s\n", hostp->h_name);
21

22 for (pp = hostp->h_aliases; *pp != NULL; pp++)
23 printf("alias: %s\n", *pp);
24

25 for (pp = hostp->h_addr_list; *pp != NULL; pp++) {
26 addr.s_addr = *((unsigned int *)*pp);
27 printf("address: %s\n", inet_ntoa(addr));
28 }
29 exit(0);
30 }

code/net/hostinfo.c

Figure 12.12:HOSTINFO: Retrieves and prints a DNS host entry.

618 CHAPTER 12. NETWORK PROGRAMMING

official hostname: aol.com
alias: www.aol.com
address: 205.188.160.121
address: 64.12.149.13
address: 205.188.146.23

Finally, we notice that some valid domain names are not mapped to any IP address:

unix> ./hostinfo edu
Gethostbyname error: No address associated with name
unix> ./hostinfo cmcl.cs.cmu.edu
Gethostbyname error: No address associated with name

Practice Problem 12.4:

Compile theHOSTINFOprogram from Figure 12.12. Then runhostinfo aol.com three times in a
row on your system.

A. What do you notice about the ordering of the IP addresses in the three host entries?

B. How might this ordering be useful?

12.3.3 Internet Connections

Internet clients and servers communicate by sending and receiving streams of bytes overconnections. A
connection ispoint-to-pointin the sense that it connects a pair of processes. It isfull-duplex in the sense
that data can flow in both directions at the same time. And it isreliable in the sense that — barring some
catastrophic failure such as a cable cut by a careless backhoe operator — the stream of bytes sent by the
source process is eventually received by the destination process in the same order it was sent.

A socketis an endpoint of a connection. Each socket has a correspondingsocket addressthat consists of
an Internet address and an 16-bit integerport, and is denoted byaddress:port. The port in the client’s
socket address is assigned automatically by the kernel when the client makes a connection request, and is
known as anephemeral port. However, the port in the server’s socket address is typically somewell-known
port that is associated with the service. For example, Web servers typically use port 80, and email servers
use port 25. On Unix machines, the file/etc/services contains a comprehensive list of the services
provided on that machine, along with their well-known ports.

A connection is uniquely identified by the socket addresses of its two endpoints. This pair of socket ad-
dresses is known as asocket pairand is denoted by the tuple

(cliaddr:cliport, servaddr:servport)

wherecliaddr is the client’s IP address,cliport is the client’s port,servaddr is the server’s IP
address, andservport is the server’s port. For example, Figure 12.13 shows a connection between a Web
client and a Web server.

In this example, the Web client’s socket address is

12.4. UNIX FILE I/O 619

connection socket pair
(128.2.194.242 :51213, 208.216.181.15:80)

server
(port 80)

client

client socket address
128.2.194.242:51213

server socket address
208.216.181.15:80

client host address
128.2.194.242

server host address
208.216.181.15

Figure 12.13:Anatomy of an Internet connection

128.2.194.242:51213

where port51213 is an ephemeral port assigned by the kernel. The Web server’s socket address is

208.216.181.15:80

where port80 is the well-known port associated with Web services. Given these client and server socket
addresses, the connection between the client and server is uniquely identified by the socket pair

(128.2.194.242:51213, 1208.216.181.15:80).

In Section 12.5 we will learn how C programs use the sockets interface to establish connections between
clients and servers. But since sockets are modeled in Unix as files, we must first develop an understanding
of Unix file I/O, which is the topic of the next section.

12.4 Unix file I/O

A Unix file is a sequence ofn bytes

B0; B1; : : : ; Bk; : : : ; Bn�1:

All I/O devices, such as networks, disks, and terminals, are modeled as files, and all input and output is
performed by reading and writing the appropriate files. This elegant mapping of devices to files allows Unix
to export a simple, low-level application interface, known asUnix I/O, that enables all input and output to
be performed in a uniform and consistent way.

Aside: Standard I/O and Unix I/O.
The familiar, higher-level I/O routines in the C standard library, such asprintf andscanf , are all implemented
using the lower-level Unix I/O functions.End Aside.

An application announces its intention to access an I/O device by asking the kernel toopenthe correspond-
ing file. The kernel returns a small non-negative integer, called adescriptor, that identifies the file in
all subsequent operations on the file. The kernel keeps track of all information about the open file; the
application keeps keep track of only the descriptor.

620 CHAPTER 12. NETWORK PROGRAMMING

The kernel maintains afile positionk, initially 0, for each open file. An application can set the current file
positionk explicitly by performing aseekoperation.

A read operation copiesm > 0 bytes from the file to memory, starting at the current file positionk, and
then incrementingk by m. A read operation withk � n triggers a condition known asend-of-file(EOF),
which can be detected by the application. Notice that there is no explicit ”EOF character” at the end of a file.
Similarly, awrite operation copiesm > 0 bytes from memory to a file, starting at the current file position
k, and then updatingk.

When an application is finished reading and writing the file, it informs the kernel by asking it toclosethe
file. The kernel frees the structures it created when the file was opened and restores the descriptor to a
pool of available descriptors. The next file that is opened is guaranteed to receive the smallest available
descriptor in the pool. When a process terminates for any reason, the kernel closes all open files, and frees
their memory resources.

By convention, each process created by a Unix shell begins life with three open files:standard input
(descriptor 0),standard output(descriptor 1), andstandard error(descriptor 2). The system header file
unistd.h defines the following constants,

#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2

which for clarity can be used instead of explicit descriptor values.

12.4.1 Theread and write Functions

Applications perform input and output by calling theread andwrite functions, respectively.

#include <unistd.h>

ssize t read(int fd, void *buf, size t count);
returns: number of bytes read if OK, 0 on EOF, -1 on error

ssize t write(int fd, const void *buf, size t count);
returns: number of bytes written if OK, -1 on error

The read function copies at mostcount bytes from the current file position of descriptorfd to memory
locationbuf. A return value of�1 indicates an error, and a return value of0 indicates EOF. Otherwise, the
return value indicates the number of bytes that were actually transferred.

Thewrite function copies at mostcount bytes from memory locationbuf to the current file position of
descriptorfd. Figure 12.14 shows a program that usesread andwrite calls to copy the standard input
to the standard output, one byte at a time.

12.4. UNIX FILE I/O 621

code/net/cpstdin.c

1 #include "csapp.h"
2

3 int main(void)
4 {
5 char c;
6

7 /* copy stdin to stdout, one byte at a time */
8 while(Read(STDIN_FILENO, &c, 1) != 0)
9 Write(STDOUT_FILENO, &c, 1);

10 exit(0);
11 }

code/net/cpstdin.c

Figure 12.14:Copies standard input to standard output.

12.4.2 Robust File I/O With thereadn and writen Functions.

In some situations,read andwrite transfer fewer bytes than the application requests. Suchshort counts
do not indicate an error, and can occur for a number of reasons:

� Encountering end-of-file on reads.If the file contains only 20 more bytes and we are reading in 50-
byte chunks, then the currentread will return a short count of 20. The nextread will signal EOF
(end-of-file) by returning a short count of zero.

� Reading text lines from a terminal.If the open file is associated with a terminal (i.e., a keyboard and
display), then theread function will transfer the next text line.

� Reading and writing network sockets.If the open file corresponds to a network socket, then internal
buffering constraints and long network delays can causeread andwrite to return short counts.

Robust applications in general, and network applications in particular, must anticipate and deal with short
counts. In Figure 12.14 we skirted this issue by transferring one byte at a time. While technically correct,
this approach is grossly inefficient because it requires2n system calls. Instead, you should use thereadn
andwriten functions from W. Richard Stevens’s classic network programming text [77].

#include "csapp.h"

ssize t readn(int fd, void *buf, size t count);
ssize t writen(int fd, void *buf, size t count);

both return: number of bytes read (0 if EOF) or written, -1 on error

The code for these functions is shown in Figure 12.15. Thereadn function returns a short count only when
the input operation extends past the end of file. Other short counts are handled by repeatedly invokingread
until count bytes have been transferred. Thewriten function never returns a short count.

622 CHAPTER 12. NETWORK PROGRAMMING

code/src/csapp.c

1 ssize_t readn(int fd, void *buf, size_t count)
2 {
3 size_t nleft = count;
4 ssize_t nread;
5 char *ptr = buf;
6

7 while (nleft > 0) {
8 if ((nread = read(fd, ptr, nleft)) < 0) {
9 if (errno == EINTR)

10 nread = 0; /* and call read() again */
11 else
12 return -1; /* errno set by read() */
13 }
14 else if (nread == 0)
15 break; /* EOF */
16 nleft -= nread;
17 ptr += nread;
18 }
19 return (count - nleft); /* return >= 0 */
20 }

code/src/csapp.c

code/src/csapp.c

1 ssize_t writen(int fd, const void *buf, size_t count)
2 {
3 size_t nleft = count;
4 ssize_t nwritten;
5 const char *ptr = buf;
6

7 while (nleft > 0) {
8 if ((nwritten = write(fd, ptr, nleft)) <= 0) {
9 if (errno == EINTR)

10 nwritten = 0; /* and call write() again */
11 else
12 return -1; /* errorno set by write() */
13 }
14 nleft -= nwritten;
15 ptr += nwritten;
16 }
17 return count;
18 }

code/src/csapp.c

Figure 12.15:readn and writen: Robust versions of read and write Adapted from [77].

12.4. UNIX FILE I/O 623

Notice that the routines manually restartread or write if they are interrupted by the return from an appli-
cation signal handler (lines 9-10). Manual restarts are unnecessary on Unix systems, which automatically
restart interruptedread andwrite calls. However, other systems such as Solaris do not restart interrupted
system calls, and on these systems we must manually restart them.

12.4.3 Robust Input of Text Lines Using thereadline Function

A text lineis a sequence of ASCII characters terminated by a newline character. (The newline character is the
same as the ASCII line feed character (LF) and has a numeric value of0x0a.) Many network applications,
such as Web clients and servers, communicate using sequences of text lines. For these programs you should
use thereadline function [77] whenever you input a text line.

#include "csapp.h"

ssize t readline(int fd, void *buf, size t maxlen);
returns: number of bytes read (0 if EOF), -1 on error

The readline function has the same semantics as thefgets function in the C Standard I/O library. It
reads the next text line from filefd (including the terminating newline character), copies it to memory
location buf, and terminates the text line with the null character.Readline reads at mostmaxlen-
1 bytes, leaving room for the terminating zero. If the text line is longer thanmaxlen-1 bytes, then
readline simply returns the firstmaxlen-1 bytes of the line. Figure 12.16 shows the code for the
readline package. It is somewhat subtle and needs to be studied carefully.

The my read function copies the next character in the file to locationptr. It returns �1 on error (with
errno) set appropriately, 0 on EOF, and 1 otherwise. Notice thatmy read is a static function, and
thus is not visible to applications.

To improve efficiency,my read maintains astatic buffer that it refreshes in MAXLINE-sized blocks.
Variableread ptr points to the buffer byte to return to the caller, and variableread cnt is the number
of bytes in the buffer that have yet to be returned to the caller. The function initiates a new block-read
operation each timeread cnt drops to zero (line 6).

The readline function callsmy read at mostmaxlen-1 times, terminating either when it encounters
a newline character (line 30), whenmy read returns EOF (line 35), or whenmy read indicates an error
(line 40).

12.4.4 Thestat Function

An application retrieves information about disk files by calling thestat function.

624 CHAPTER 12. NETWORK PROGRAMMING

code/src/csapp.c

1 static ssize_t my_read(int fd, char *ptr)
2 {
3 static int read_cnt = 0;
4 static char *read_ptr, read_buf[MAXLINE];
5

6 if (read_cnt <= 0) {
7 again:
8 if ((read_cnt = read(fd, read_buf, sizeof(read_buf))) < 0) {
9 if (errno == EINTR)

10 goto again;
11 return -1;
12 }
13 else if (read_cnt == 0)
14 return 0;
15 read_ptr = read_buf;
16 }
17 read_cnt--;
18 *ptr = *read_ptr++;
19 return 1;
20 }
21

22 ssize_t readline(int fd, void *buf, size_t maxlen)
23 {
24 int n, rc;
25 char c, *ptr = buf;
26

27 for (n = 1; n < maxlen; n++) { /* notice that loop starts at 1 */
28 if ((rc = my_read(fd, &c)) == 1) {
29 *ptr++ = c;
30 if (c == ’\n’)
31 break; /* newline is stored, like fgets() */
32 }
33 else if (rc == 0) {
34 if (n == 1)
35 return 0; /* EOF, no data read */
36 else
37 break; /* EOF, some data was read */
38 }
39 else
40 return -1; /* error, errno set by read() */
41 }
42 *ptr = 0; /* null terminate like fgets() */
43 return n;
44 }

code/src/csapp.c

Figure 12.16:readline package: Reads a text line from a descriptor.Adapted from [77].

12.4. UNIX FILE I/O 625

#include <unistd.h>
#include <sys/stat.h>

int stat(const char *filename, struct stat *buf);
returns: 0 if OK, -1 on error

Thestat function takes as input a filename, such as/usr/dict/words , and fills in the members of a
stat structure shown in Figure 12.17. We will need thest mode andst size members of thestat
structure when we discuss Web servers in Section 12.7. Thest mode member encodes both the file type
and the file protection bits. Thest size member contains the file size in bytes. The meaning of the other
members is beyond our scope.

statbuf.h (included by sys/stat.h)

/* file info returned by the stat function */
struct stat f

dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection and file type */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */
unsigned long st_blksize; /* blocksize for filesystem I/O */
unsigned long st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */

g;

statbuf.h (included by sys/stat.h)

Figure 12.17:The stat structure.

A Unix system recognizes a number of different file types. For example, aregular filecontains some sort
of binary or text data. To the kernel there is no difference between text files and binary files. Adirectory
file contains information about other files. And asocketis a file that is used to communicate with another
process across a network. Unix provides macro predicates for determining the file type. Figure 12.18 shows
a subset. Each file type macro takes anst modemember as its argument.

Macro Description

S ISREG() Is this a regular file?
S ISDIR() Is this a directory file?

Figure 12.18:Some macros for determining the type of file.Defined insys/stat.h

626 CHAPTER 12. NETWORK PROGRAMMING

The protection bits inst modecan be tested using the bit masks in Figure 12.19. For example, the follow-

st mode mask Description
S IRUSR User (owner) can read this file
S IWUSR User (owner) can write this file
S IXUSR User (owner) can execute this file
S IRGRP Group members can read this file
S IWGRP Group members can write this file
S IXGRP Group members can execute this file
S IROTH Others (anyone) can read this file
S IWOTH Others (anyone) can write this file
S IXOTH Others (anyone) can execute this file

Figure 12.19:Masks for checking protection bits. Defined insys/stat.h

ing code fragment checks if the current process has permission to read a file:

1 if (S_ISREG(stat.st_mode) && (stat.st_mode & S_IRUSR))
2 printf("This is a regular file that I can read\n");

12.4.5 Thedup2 Function

The Unix shell provides an I/O redirection operator that allows users to redirect the standard output to a disk
file. For example,

unix> ls >foo

writes the standard output of thels program to the filefoo. As we shall see in Section 12.7, a Web server
performs a similar kind of redirection when it runs a CGI program on behalf of the client. One way to
accomplish I/O redirection is to use thedup2 function.

#include <unistd.h>

int dup2(int oldfd, int newfd);
returns: nonnegative descriptor if OK, -1 on error

The dup2 function duplicates descriptoroldfd, assigns it to descriptor newfd, and returnsnewfd. If
newfd was already open, thendup2 closesnewfd before it duplicatesoldfd.

For each process, the kernel maintains adescriptor tablethat is indexed by the process’s open descriptors.
The entry for an open descriptor points to afile table entrythat consists of, among other things, the current
file position and areference countof the number of descriptor entries that currently point to it. The file table
entry in turn points to ani-nodetable entry that characterizes the physical location of the file on disk, and
contains most of the information in thestat structure, including thest modeandst size members.

12.4. UNIX FILE I/O 627

Typically there is a one-to-one mapping between descriptors and files. For example, suppose we have the
situation in Figure 12.20 where descriptor 1 (stdout) corresponds to fileA (say a terminal), while descriptor
4 corresponds to fileB (say a disk). The reference counts for theA andB are both equal to 1.

0
1
2
3
4
5
6
7

per process
descriptor table

open file
table entries

i-node
table entries

file pos

refcnt = 1

...

...

st_mode

st_size

...

st_mode

st_size

file pos

refcnt = 1

...

file A

file B

file A

file B

Figure 12.20:Kernel data structures beforedup2(4,1)

The dup2 function allows multiple descriptors to be associated with the same file. For example, Fig-
ure 12.21 shows the situation after callingdup2(4,1). Both descriptors now correspond to fileB, file A
has been closed, and the reference count for fileB has been incremented. From this point on, any data that
is written to standard output is redirected to fileB.

0
1
2
3
4
5
6
7

per process
descriptor table open file

table entries i-node
table entries

...

st_mode

st_size

file pos

refcnt = 2

...

file B

file B

Figure 12.21:Kernel data structures after dup2(4,1)

12.4.6 Theclose Function

A process informs the kernel that is finished reading and writing a file by calling theclose function.

#include <unistd.h>

int close(int fd);
returns: zero if OK, -1 on error

The kernel does not delete the associated file table entry unless the reference count is zero. For example,

628 CHAPTER 12. NETWORK PROGRAMMING

suppose we have the situation in Figure 12.21, where descriptors 1 and 4 both point to the same file table
entry. If we were to close descriptor 1, then we could still perform input and output on descriptor 4.

Closing a closed descriptor is an error, but unfortunately programmers rarely check for this error. In Sec-
tion 12.6.2 we will see that threaded programs that close already closed descriptors can suffer from a subtle
race condition that sometimes causes a thread to catastrophically close another thread’s open descriptor. The
bottom line: always check return codes, even for seemingly innocuous functions such asclose.

12.4.7 Other Unix I/O Functions

Unix provides two additional I/O functions,open and lseek. The open function creates new files and
opens existing files. In each case, it returns a descriptor that can be used by other Unix file I/O routines. We
will not describeopen in any more depth because a clear understanding requires numerous details about
Unix file systems that are not relevant to network programming.

The lseek function modifies the current file position. Since it is illegal to change the current file position
of a socket, we will not discuss this function either.

12.4.8 Unix I/O vs. Standard I/O

The ANSII C standard defines a set of input and output functions, known as thestandard I/O library, that
provide a higher-level and more convenient alternative to the underlying Unix I/O functions. Functions
such asfopen, fclose, fseek, fread, fwrite, fgetc, fputc, fgets, fputs, fscanf, and
fprintf are commonly used standard I/O functions.

The standard I/O functions are the method of choice for input and output on disk and terminal devices. And
in fact, most C programmers use these functions exclusively, never bothering with the the lower-level Unix
I/O functions. Unfortunately, standard I/O poses some tricky problems when we attempt to use it for input
and output on network sockets.

The standard I/O models a file as astream, which is a higher-level abstraction of a file descriptor. Like
descriptors, streams can be full-duplex, so a program can perform input and output on the same stream.
However, there are restrictions on full-duplex streams that interact badly with restrictions on sockets:

� Restriction 1: An input function cannot follow an output function without an intervening call to
fflush, fseek, fsetpos, or rewind. For efficiency reasons, standard I/O streams are buffered.
Each stream has its own buffer. The first call to a standard I/O input function reads a large block
of data from the disk, and stores it in a buffer in main memory. Subsequent requests to read from
the stream are served from the buffer rather than disk. Thefflush function empties the buffer
associated with a stream. The latter three functions use the Unix I/Olseek function to reset the
current file position.

� Restriction 2: An output function cannot follow an input function without an intervening call to
fseek, fsetpos, or rewind, unless the input function encounters an end-of-file.

These restrictions pose a problem for network applications because it is illegal to use thelseek function
on a network socket. The first restriction on stream I/O can be worked around by a discipline of flushing

12.5. THE SOCKETS INTERFACE 629

the buffer before every input operation. The only way to work around the second restriction is to open two
streams on the same open socket descriptor, one for reading and one for writing.

1 FILE *fpin, *fpout;
2

3 fpin = fdopen(sockfd, "r");
4 fpout = fdopen(sockfd, "w");

However, this approach has problems as well, because it requires the application to callfclose on both
streams in order to free the memory resources associated with each stream and avoid a memory leak:

1 fclose(fpin);
2 fclose(fpout);

Each of these operations attempts to close the same underlying socket descriptor, so the secondclose
operation will fail. While this is not necessarily a fatal error in a sequential program, closing the same
descriptor twice in a threaded program is a recipe for disaster. Thus, we recommend avoiding the standard
I/O functions for input and output on network sockets. Use the robustreadn, writen, and readline
functions instead.

12.5 The Sockets Interface

The sockets interfaceis a set of functions that are used in conjunction with the Unix file I/O functions to
build network applications. It has been implemented on most modern systems, including Linux and the other
Unix variants, Windows, and Macintosh systems. Figure 12.22 gives an overview of the sockets interface in
the context of a typical client-server transaction. You should use this picture as road map when we discuss
the individual functions.

12.5.1 Socket Address Structures

From the perspective of the Unix kernel, a socket is an endpoint for communication. From the perspective
of a Unix program, a socket is an open file with a corresponding descriptor.

Internet socket addresses are stored in 16-byte structures of the typesockaddr in shown in Figure 12.23.
For Internet applications, thesin family member is AFINET, thesin port member is a 16-bit port
number, and thesin addr member is a 32-bit IP address. The IP address and port number are always
stored in network (big-endian) byte order.

Aside: What does the in suffix mean?
The in suffix is short forinternet, not input. End Aside.

Aside: Why do we need thatsockaddr structure?
The genericsockaddr structure in Figure 12.23 is an unfortunate historical artifact that confuses many program-
mers. The sockets interface was designed in the early 1980’s to work with any type of underlying network protocol,

630 CHAPTER 12. NETWORK PROGRAMMING

Client Server

socket socket

bind

listen

accept

readline

readline

writen

close

readline

connect

writen

close

connection
request

EOF

Await connection
request from
next client

open_listenfd

open_clientfd

Figure 12.22:Overview of the sockets interface.

sockaddr: socketbits.h (included by socket.h). sockaddrin: netinit/in.h

/* Generic socket address structure (for connect, bind, and accept) */
struct sockaddr {

unsigned short sa_family; /* protocol family */
char sa_data[14]; /* address data. */

};

/* Internet-style socket address structure */
struct sockaddr_in {

unsigned short sin_family; /* address family (always AF_INET) */
unsigned short sin_port; /* port number in network byte order */
struct in_addr sin_addr; /* IP address in network byte order */
unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */

};

sockaddr: socketbits.h (included by socket.h). sockaddrin: netinit/in.h

Figure 12.23:Socket address structures.The in addr struct is shown in Figure 12.9.

12.5. THE SOCKETS INTERFACE 631

each of which was expected to define its own 16-byte protocol-specificsockaddr xx socket address structure.
No one at the time had any inkling that TCP/IP would become so dominant.End Aside.

Theconnect, bind, and accept functions require a pointer to protocol-specific socket address struc-
ture. The problem faced by the designers of the sockets interface was how to define these functions to
accept any kind of socket address structure. Today we would use the genericvoid * pointer, which did
not exist in C at that time. The solution was to define sockets functions to expect a pointer to a generic
sockaddr structure, and then require applications to cast pointers to protocol-specific structures to this
generic structure.

To simplify our code examples, we will follow Stevens’s lead and define the following type

1 typedef struct sockaddr SA;

that we use whenever we need to cast a protocol-specific structure to a generic one.

12.5.2 Thesocket Function

Clients and servers use thesocket function to create asocket descriptor.

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);
returns: nonnegative descriptor if OK, -1 on error

In our codes, we will always call thesocket function with the following arguments:

1 sockfd = Socket(AF_INET, SOCK_STREAM, 0);

where AFINET indicates that we are using the Internet, and SOCKSTREAM indicates that the socket will
be an endpoint for an Internet connection. Thesockfd descriptor returned bysocket is only partially
opened and cannot yet be used for reading and writing. How we finish opening the socket depends on
whether we are a client or a server.

12.5.3 Theconnect Function

A client establishes a connection with a server by calling theconnect function.

#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *serv addr, int addrlen);
returns: 0 if OK, -1 on error

632 CHAPTER 12. NETWORK PROGRAMMING

The connect function attempts to establish an Internet connection with the server at socket address
serv addr, where addrlen is sizeof(sockaddr in). The connect function blocks until ei-
ther the connection is successfully established, or an error occurs. If successful, thesockfd descriptor is
now ready for reading and writing, and the resulting connection is characterized by the socket pair

(x:y, serv_addr.sin_addr:serv_addr.sin_port)

wherex is the client’s IP address andy is the ephemeral port that uniquely identifies the client process on
the client host.

Figure 12.24 shows ouropen clientfd helper function that a client uses to establish a connection with
a server running on hosthostname and listening for connection requests on the well-known portport. It
returns a file descriptor that is ready for input and output using Unix file I/O.

code/src/csapp.c

1 int open_clientfd(char *hostname, int port)
2 {
3 int clientfd;
4 struct hostent *hp;
5 struct sockaddr_in serveraddr;
6

7 clientfd = Socket(AF_INET, SOCK_STREAM, 0);
8

9 /* fill in the server’s IP address and port */
10 hp = Gethostbyname(hostname);
11 bzero((char *) &serveraddr, sizeof(serveraddr));
12 serveraddr.sin_family = AF_INET;
13 bcopy((char *)hp->h_addr,
14 (char *)&serveraddr.sin_addr.s_addr, hp->h_length);
15 serveraddr.sin_port = htons(port);
16

17 /* establish a connection with the server */
18 Connect(clientfd, (SA *) &serveraddr, sizeof(serveraddr));
19

20 return clientfd;
21 }

code/src/csapp.c

Figure 12.24:open clientfd: helper function that establishes a connection with a server.

After creating the socket descriptor (line 11), we retrieve the DNS host entry for the server (line 14) and
copy the first IP address in the host entry (which is already in network byte order) to the server’s socket
address structure (lines 17-18). After initializing the socket address structure with the server’s well-known
port number in network byte order (line 19), we initiate the connect request to the server (line 22). When
connect returns, we return the socket descriptor to the client, which can immediately begin using Unix
I/O operations to communicate with the server.

12.5. THE SOCKETS INTERFACE 633

12.5.4 Thebind Function

The remaining functions —bind, listen, and accept — are used by servers to establish connections
with clients.

#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my addr, int addrlen);
returns: 0 if OK, -1 on error

The bind function tells the kernel to associate the server’s socket address inmy addr with the socket
descriptorsockfd. The addrlen argument issizeof(sockaddr in).

12.5.5 Thelisten Function

Clients are active entities that initiate connection requests. Servers are passive entities that wait for connec-
tion requests from clients. By default, the kernel assumes that a descriptor created by thesocket function
corresponds to anactive socketthat will live on the client end of a connection. A server calls thelisten
function to tell the kernel that the descriptor will be used by a server instead of a client.

#include <sys/socket.h>

int listen(int sockfd, int backlog);
returns: 0 if OK, -1 on error

The listen function convertssockfd from an active socket to alistening socketthat can accept connec-
tion requests from clients. Thebacklog argument is a hint about the number of outstanding connection
requests that the kernel should queue up before it starts to refuse requests. The exact meaning of theback-
log argument requires an understanding of TCP/IP that is beyond our scope. We will typically set it to a
large value, such as 1024.

Figure 12.25 shows ouropen listenfd helper function that opens and returns a listening socket ready
to receive client connection requests on the well-known portport. After we create the listenfd socket
descriptor (line 11), we use thesetsockopt function (not described here) to configure the server so
that it can be terminated and restarted immediately (lines 14-15). By default, a restarted server will deny
connection requests from clients for approximately 30 seconds, which seriously hinders debugging.

In lines 20-23, we initialize the server’s socket address structure in preparation for calling thebind function.
In this case, we have used the INADDRANY wild card address to tell the kernel that this server will accept
requests to any of the IP addresses for this host (line 22), and to well-known portport (line 23). Notice
that we use thehtonl andhtons functions to convert the IP address and port number from host byte order
to network byte order. Finally, we convertlistenfd to a listening descriptor (line 27) and return it to the
caller.

634 CHAPTER 12. NETWORK PROGRAMMING

code/src/csapp.c

1 int open_listenfd(int port)
2 {
3 int listenfd;
4 int optval;
5 struct sockaddr_in serveraddr;
6

7 /* create a socket descriptor */
8 listenfd = Socket(AF_INET, SOCK_STREAM, 0);
9

10 /* eliminates "Address already in use" error from bind. */
11 optval = 1;
12 Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
13 (const void *)&optval , sizeof(int));
14

15 /* listenfd will be an endpoint for all requests to port
16 on any IP address for this host */
17 bzero((char *) &serveraddr, sizeof(serveraddr));
18 serveraddr.sin_family = AF_INET;
19 serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
20 serveraddr.sin_port = htons((unsigned short)port);
21 Bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr));
22

23 /* make it a listening socket ready to accept connection requests */
24 Listen(listenfd, LISTENQ);
25

26 return listenfd;
27 }

code/src/csapp.c

Figure 12.25:open listenfd: helper function that opens and returns a listening socket.

12.5. THE SOCKETS INTERFACE 635

12.5.6 Theaccept Function

Servers wait for connection requests from clients by calling theaccept function.

#include <sys/socket.h>

int accept(int listenfd, struct sockaddr *addr, int *addrlen);
returns: nonnegative connected descriptor if OK, -1 on error

The accept function waits for a connection request from a client to arrive on the listening descriptor
listenfd, then fills in the client’s socket address in addr, and returns aconnected descriptorthat can be
used to communicate with the client using Unix I/O functions.

The distinction between a listening descriptor and a connected descriptor can be confusing when we first
encounter theaccept function. The listening descriptor serves as an endpoint for client connection re-
quests. It is typically created once and exists for the lifetime of the server. The connected descriptor is the
endpoint of the connection that is established between the client and the server. It is created each time the
server accepts a connection request and exists only as long as it takes the server to service a client.

Figure 12.26 outlines the roles of the listening and connected descriptors. In Step 1, the server callsac-
cept, which waits for a connection request to arrive on the listening descriptor, which for concreteness we
will assume is descriptor 3 (recall that descriptors 0–2 are reserved for the standard files).

listenfd(3)

client

1. Server blocks in accept,
waiting for connection request on
listening descriptor listenfd.

clientfd

server

listenfd(3)

client

clientfd

server 2. Client makes connection request by
calling and blocking in connect.

listenfd(3)

client

clientfd

server

3. Server returns connfd from accept.
Client returns from connect. Connection
is now established between clientfd
and connfd.

connection
request

connfd(4)

Figure 12.26:The roles of the listening and connected descriptors.

In Step 2, the client calls theconnect function, which sends a connection request tolistenfd. In Step
3, theaccept function opens a new connected descriptorconnfd (which we will assume is descriptor 4),
establishes the connection betweenclientfd andconnfd, and then returnsconnfd to the application.
The client also returns from theconnect, and from this point, the client and server can pass data back and
forth by reading and writingclientfd andconnfd respectively.

636 CHAPTER 12. NETWORK PROGRAMMING

12.5.7 Example Echo Client and Server

The best way to learn the sockets interface is to study example code. Figure 12.27 shows the code for an
echo client. After establishing a connection with the server (line 15), the client enters a loop that repeatedly
reads a text from standard input (line 17), sends the text line to the server (line 18), reads the echo line from
the server (line 19), and prints the result to standard output (line 20). The loop terminates whenfgets
encounters end-of-file on standard input, either because the user typedctrl-d at the keyboard, or because
it has exhausted the text lines in a redirected input file.

code/net/echoclient.c

1 #include "csapp.h"
2

3 int main(int argc, char **argv)
4 {
5 int clientfd, port;
6 char *host, buf[MAXLINE];
7

8 if (argc != 3) {
9 fprintf(stderr, "usage: %s <host> <port>\n", argv[0]);

10 exit(0);
11 }
12 host = argv[1];
13 port = atoi(argv[2]);
14

15 clientfd = open_clientfd(host, port);
16

17 while (Fgets(buf, MAXLINE, stdin) != NULL) {
18 Writen(clientfd, buf, strlen(buf));
19 Readline(clientfd, buf, MAXLINE);
20 Fputs(buf, stdout);
21 }
22

23 Close(clientfd);
24 exit(0);
25 }

code/net/echoclient.c

Figure 12.27:Echo client main routine.

After the loop terminates, the client closes the descriptor (line 23). This result in an end-of-file notification
being sent to the server, which it detects when it receives a return code of zero from itsreadline function.
After closing its descriptor, the client terminates (line 24). Since the client’s kernel automatically closes all
open descriptors when a process terminates, theclose in line 23 is not necessary. However, it is good
programming practice to explicitly close any descriptors we have opened.

Figure 12.28 shows the main routine for the echo server. After opening the listening descriptor (line 18),
it enters an infinite loop. Each iteration waits for a connection request from a client (line 21), prints the

12.5. THE SOCKETS INTERFACE 637

domain name and IP address of the connected client (lines 23-27), and calls theecho function that services
the client (line 29). When the echo routine returns, the main routine closes the connected descriptor (line
30). Once the client and server have closed their respective descriptors, the connection is terminated.

code/net/echoserveri.c

1 #include "csapp.h"
2

3 void echo(int connfd);
4

5 int main(int argc, char **argv)
6 {
7 int listenfd, connfd, port, clientlen;
8 struct sockaddr_in clientaddr;
9 struct hostent *hp;

10 char *haddrp;
11

12 if (argc != 2) {
13 fprintf(stderr, "usage: %s <port>\n", argv[0]);
14 exit(0);
15 }
16 port = atoi(argv[1]);
17

18 listenfd = open_listenfd(port);
19 while (1) {
20 clientlen = sizeof(clientaddr);
21 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
22

23 /* determine the domain name and IP address of the client */
24 hp = Gethostbyaddr((const char *)&clientaddr.sin_addr.s_addr,
25 sizeof(clientaddr.sin_addr.s_addr), AF_INET);
26 haddrp = inet_ntoa(clientaddr.sin_addr);
27 printf("server connected to %s (%s)\n", hp->h_name, haddrp);
28

29 echo(connfd);
30 Close(connfd);
31 }
32 }

code/net/echoserveri.c

Figure 12.28:Iterative echo server main routine.

Figure 12.29 shows the code for theecho routine, which repeatedly reads and writes lines of text until the
readline function encounters end-of-file in line 8.

638 CHAPTER 12. NETWORK PROGRAMMING

code/net/echo.c

1 #include "csapp.h"
2

3 void echo(int connfd)
4 {
5 size_t n;
6 char buf[MAXLINE];
7

8 while((n = Readline(connfd, buf, MAXLINE)) != 0) {
9 printf("server received %d bytes\n", n);

10 Writen(connfd, buf, n);
11 }
12 }

code/net/echo.c

Figure 12.29:echo function that reads and echos text lines.

12.6 Concurrent Servers

The echo server in Figure 12.28 is known as aniterative serverbecause it can only service one client at a
time. The disadvantage of iterative servers is that a slow client can preclude every other client from being
serviced. For a real server that might be expected to service hundreds or thousands of clients per second, it
is unacceptable to allow one slow client to deny service to the others.

A better approach is to build aconcurrent serverthat can service multiple clients concurrently. In this
section, we will investigate alternative concurrent server designs based on processes and threads.

12.6.1 Concurrent Servers Based on Processes

A concurrent server based on processes accepts connection requests in the parent and forks a separate child
process to service each client. For example, suppose we have two clients and a server that is listening for
connection requests on a listening descriptor 3. Now suppose that the server accepts a connection request
from client 1 and returns connected descriptor 4, as shown in Figure 12.30.

client 2

clientfd

client 1

clientfd
server

connfd(4)

listenfd(3)

connection
request

Figure 12.30:Server accepts connection request from client.

After accepting the connection request, the server forks a child, which gets a complete copy of the server’s

12.6. CONCURRENT SERVERS 639

descriptor table. The child closes its copy of listening descriptor 3 and the parent closes its copy of connected
descriptor 4, since they will not be needed. This gives us the situation in Figure 12.31, where the child
process is busy servicing the client.

client 2

clientfd

client 1

clientfd
server

listenfd(3)

child 1

connfd(4)

data
transfers

Figure 12.31:Server forks a child process to service the client.

Now suppose that after the parent creates the child for client 1, it accepts a new connection request from
client 2 and returns a new connected descriptor (say 5), as shown in Figure 12.32.

client 2

clientfd

client 1

clientfd
server

listenfd(3)

child 1

connfd(4)

connection
request

connfd(5)

data
transfers

Figure 12.32:Server accepts another connection request.

The parent forks another child, which begins servicing its client using connected descriptor 5, as shown in
Figure 12.33. At this point, the parent is waiting for the next connection request and the two children are
servicing their respective clients.

Figure 12.34 shows the code for a concurrent echo server based on processes. Theecho function in line 25
is defined in Figure 12.29. There are several points to make about this server.

� Since servers typically run for long periods of time, we must include a SIGCHLD handler that reaps
zombie children (lines 8–14). Since SIGCHLD signals are blocked while the SIGCHLD handler is
executing, and since Unix signals are not queued, the SIGCHLD handler must be prepared to reap
multiple zombie children.

� Notice that the parent and the child close their respective copies ofconnfd (lines 39 and 36 respec-
tively). This especially important for the parent, which must close its copy of the connected descriptor
to avoid a memory leak that will eventually crash the system.

640 CHAPTER 12. NETWORK PROGRAMMING

client 2

clientfd

client 1

clientfd
server

listenfd(3)

child 1

connfd(4)

data
transfers

child 2

connfd(5)

data
transfers

Figure 12.33:Server forks another child to service the new client.

� Because of the reference count in the socket’s file table entry (Figure 12.21), the socket will not be
closed until both the parent’s and child’s copies ofconnfd are closed.

Discussion

Of the concurrent-server designs that we will study in this section, process-based designs are by far the
simplest to write and debug. Processes provide a clean sharing model where descriptors are shared and user
address spaces are not. As long as we remember to reap zombie children and close the parent’s connected
descriptor each time we create a new child, the children run independently of each other and the parent and
can be debugged in isolation.

Process-based designs do have disadvantages though. If a particular service requires processes to share
state information such as a memory-resident file cache, performance statistics that are aggregated across all
processes, or aggregate request logs, then we must use explicit IPC mechanisms such as FIFO’s, System V
shared memory, or System V semaphores (none of which are discussed here). Another disadvantage is that
process-based servers tend to be slower than other designs because the overhead for process control and IPC
is relatively high. Nonetheless, the simplicity of process-based designs provides a powerful attraction.

Practice Problem 12.5:

After the parent closes the connected descriptor in line 39 of the concurrent server in Figure 12.34, the
child is still able to communicate with the client using its copy of the descriptor. Why?

Practice Problem 12.6:

If we were to delete line 36 of Figure 12.34 that closes the connected descriptor, the code would still be
correct, in the sense that there would be no memory leak. Why?

12.6.2 Concurrent Servers Based on Threads

Another approach to building concurrent servers is to use threads instead of processes. There are several
advantages to using threads. First, threads have less run time overhead than processes. We would expect a

12.6. CONCURRENT SERVERS 641

code/net/echoserverp.c

1 #include "csapp.h"
2

3 void echo(int connfd);
4

5 /* SIGCHLD signal handler */
6 void handler(int sig)
7 {
8 pid_t pid;
9 int stat;

10

11 while ((pid = waitpid(-1, &stat, WNOHANG)) > 0)
12 ;
13 return;
14 }
15

16 int main(int argc, char **argv)
17 {
18 int listenfd, connfd, port, clientlen;
19 struct sockaddr_in clientaddr;
20

21 if (argc != 2) {
22 fprintf(stderr, "usage: %s <port>\n", argv[0]);
23 exit(0);
24 }
25 port = atoi(argv[1]);
26

27 Signal(SIGCHLD, handler);
28

29 listenfd = open_listenfd(port);
30 while (1) {
31 clientlen = sizeof(clientaddr);
32 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
33 if (Fork() == 0) {
34 Close(listenfd); /* child closes its listening socket */
35 echo(connfd); /* child services client */
36 Close(connfd); /* child closes connection with client */
37 exit(0); /* child exits */
38 }
39 Close(connfd); /* parent closes connected socket (important!) */
40 }
41 }

code/net/echoserverp.c

Figure 12.34:Concurrent echo server based on processes.

642 CHAPTER 12. NETWORK PROGRAMMING

server based on threads to have better throughput (measured in clients serviced per second) than one based
on processes. Second, because all threads share the same global variables and heap variables, it is much
easier for threads to share state information.

The major disadvantage of using threads is that the same memory model that makes it easy to share data
structures also makes it easy to share data structures unintentionally and incorrectly. As we learned in Chap-
ter 11, shared data must be protected, functions called from threads must be reentrant, and race conditions
must be avoided.

The threaded echo server in Figure 12.35 illustrates some of the subtle issues that can arise. The overall
structure is similar to the process-based design. The main thread repeatedly waits for a connection request
(line 22) and then creates a peer thread to handle the request (line 23).

The first issue we encounter is how to pass the connected descriptor to the peer thread when we call
pthread create. The obvious approach is to pass a pointer to the descriptor:

1 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
2 Pthread_create(&tid, NULL, thread, &connfd);

and then let the peer thread dereference the pointer and assign it to a local variable.

1 void *thread(void *vargp)
2 {
3 int connfd = *((int *)vargp);
4 /* ... */
5 return NULL;
6 }

However, this would be wrong because it introduces a race between the assignment statement in the peer
thread and theaccept statement in the main thread. If the assignment statement completes before the next
accept, then the local connfd variable in the peer thread gets the correct descriptor value. However,
if the assignment completesafter the accept, then the local confd variable in the peer thread gets the
descriptor number of thenextconnection. The unhappy result is two threads are now performing input and
output on the same descriptor. In order to avoid the potentially deadly race, we must assign each connected
descriptor returned byaccept to its own dynamically allocated memory block, as shown in lines 21-22.

Now consider the thread routine in lines 28-38. To avoid memory leaks, we must detach the thread so that
its memory resources will be reclaimed when it terminates (line 32), and we must free the memory block
that was allocated by the main thread (line 33). Finally, the thread routine calls theecho r function (line
35) before terminating in line 37.

So why do we callecho r instead of the trustyecho function? Theecho function calls thereadline
function (Figure 12.16, which in turn calls themy read function (Figure 12.16), which maintains three
static variables, and thus is not reentrant. Sincemy read is not reentrant, neither arereadline or
echo.

To build a correct threaded echo server, we must use a reentrant version ofecho calledecho r, which
is based on thereadline r function, a reentrant version of thereadline function developed by
Stevens [77].

12.6. CONCURRENT SERVERS 643

code/net/echoservert.c

1 #include "csapp.h"
2

3 void echo_r(int connfd);
4 void *thread(void *vargp);
5

6 int main(int argc, char **argv)
7 {
8 int listenfd, *connfdp, port, clientlen;
9 struct sockaddr_in clientaddr;

10 pthread_t tid;
11

12 if (argc != 2) {
13 fprintf(stderr, "usage: %s <port>\n", argv[0]);
14 exit(0);
15 }
16 port = atoi(argv[1]);
17

18 listenfd = open_listenfd(port);
19 while (1) {
20 clientlen = sizeof(clientaddr);
21 connfdp = Malloc(sizeof(int));
22 *connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
23 Pthread_create(&tid, NULL, thread, connfdp);
24 }
25 }
26

27 /* thread routine */
28 void *thread(void *vargp)
29 {
30 int connfd = *((int *)vargp);
31

32 Pthread_detach(pthread_self());
33 Free(vargp);
34

35 echo_r(connfd); /* reentrant version of echo() */
36 Close(connfd);
37 return NULL;
38 }

code/net/echoservert.c

Figure 12.35:Concurrent echo server based on threads.

644 CHAPTER 12. NETWORK PROGRAMMING

#include "csapp.h"

ssize t readline r(Rline *rptr); returns: number of bytes read (0 if EOF), -1 on error

Thereadline function takes as input anRline structure shown in Figure 12.36. The first three members
correspond to the arguments that users pass toreadline. The next three members correspond to the static
variables thatmy read uses for buffering.

code/include/csapp.h

1 typedef struct {
2 int read_fd; /* caller’s descriptor to read from */
3 char *read_ptr; /* caller’s buffer to read into */
4 size_t read_maxlen; /* max bytes to read */
5

6 /* next three are used internally by the function */
7 int rl_cnt; /* initialize to 0 */
8 char *rl_bufptr; /* initialize to rl_buf */
9 char rl_buf[MAXBUF];/* internal buffer */

10 } Rline;

code/include/csapp.h

Figure 12.36:Rline structure used byreadline r and initialized by readline rinit.

The Rline structure is initialized by thereadline rinit function in Figure 12.37, which saves the
user arguments and initializes the internal buffering information.

code/src/csapp.c

1 void readline_rinit(int fd, void *ptr, size_t maxlen, Rline *rptr)
2 {
3 rptr->read_fd = fd; /* save caller’s arguments */
4 rptr->read_ptr = ptr;
5 rptr->read_maxlen = maxlen;
6

7 rptr->rl_cnt = 0; /* and init our counter & pointer */
8 rptr->rl_bufptr = rptr->rl_buf;
9 }

code/src/csapp.c

Figure 12.37:readline rint: Initialization function for readline r.

Figure 12.38 shows the code for thereadline r package. The only difference betweenreadline r
andreadline is thatreadline r calls my read r instead ofmy read in line 28. Themy read r
function is similar to the originalmy read function, except that it references members of theRline struct
instead of static variables.

12.6. CONCURRENT SERVERS 645

code/src/csapp.c

1 static ssize_t my_read_r(Rline *rptr, char *ptr)
2 {
3 if (rptr->rl_cnt <= 0) {
4 again:
5 rptr->rl_cnt = read(rptr->read_fd, rptr->rl_buf,
6 sizeof(rptr->rl_buf));
7 if (rptr->rl_cnt < 0) {
8 if (errno == EINTR)
9 goto again;

10 else
11 return(-1);
12 }
13 else if (rptr->rl_cnt == 0)
14 return(0);
15 rptr->rl_bufptr = rptr->rl_buf;
16 }
17 rptr->rl_cnt--;
18 *ptr = *rptr->rl_bufptr++ & 255;
19 return(1);
20 }
21

22 ssize_t readline_r(Rline *rptr)
23 {
24 int n, rc;
25 char c, *ptr = rptr->read_ptr;
26

27 for (n = 1; n < rptr->read_maxlen; n++) {
28 if ((rc = my_read_r(rptr, &c)) == 1) {
29 *ptr++ = c;
30 if (c == ’\n’)
31 break;
32 } else if (rc == 0) {
33 if (n == 1)
34 return(0); /* EOF, no data read */
35 else
36 break; /* EOF, some data was read */
37 } else
38 return(-1); /* error */
39 }
40 *ptr = 0;
41 return(n);
42 }

code/src/csapp.c

Figure 12.38:readline r package: Reentrant version ofreadline. Adapted from [77].

646 CHAPTER 12. NETWORK PROGRAMMING

Given the reentrantreadline r function, we can now create a reentrant version ofecho (Figure 12.39)
that callsreadline r instead ofreadline.

code/net/echor.c

1 #include "csapp.h"
2

3 void echo_r(int connfd)
4 {
5 size_t n;
6 char buf[MAXLINE];
7 Rline rline;
8

9 readline_rinit(connfd, buf, MAXLINE, &rline);
10 while((n = Readline_r(&rline)) != 0) {
11 printf("server received %d bytes\n", n);
12 Writen(connfd, buf, n);
13 }
14 }

code/net/echor.c

Figure 12.39:echo r: Reentrant version of echo

Discussion

Threaded designs are attractive because they promise better performance than process-based designs. But
the performance gain can come with a steep price in complexity. Unlike processes, which share almost
nothing, threads share almost everything. Because of this, it easy to write incorrect threaded programs
that suffer from races, unprotected shared variables, and non-reentrant functions. These bugs are extremely
difficult to find because they are usually non-deterministic, and thus not easily repeatable. Nothing is scarier
to a programmer than a random non-repeatable bug.

The subtle issues involved in threading our simple echo server are clear evidence of the potential complexity
of threaded designs. Nonetheless, if a process-based design would be unacceptably slow for a particular
application, then we might need to opt for a threaded design.

12.7 Web Servers

So far we have discussed network programming in the context of a simple echo server. In this section, we
will show you how to use the basic ideas of network programming, Unix I/O, and Unix processes to build
your own your small, but functional Web server.

12.7. WEB SERVERS 647

12.7.1 Web Basics

Web clients and servers interact using a text-based application-level protocol known asHTTP (Hypertext
Transfer Protocol). HTTP is a simple protocol. A Web client (known as abrowser) opens an Internet
connection to a server and requests somecontent. The server responds with the requested content and then
closes the connection. The browser reads the content and displays it on the screen.

What makes the Web so different from conventional file retrieval services such as FTP? The main reason is
that the content can be written in a programming language known asHTML (Hypertext Markup Language).
An HTML program (page) contains instructions (tags) that tell the browser how to to display various text
and graphical objects in the page. For example,

 Make me bold!

tells the browser to print the text between the and tags in boldface type. However, the real power
of HTML is that a page can contain pointers (hyperlinks) to content stored on remote servers anywhere in
the Internet. For example,

Carnegie Mellon

tells the browser to highlight the text object “Carnegie Mellon” and to create a hyperlink to an HTML file
calledindex.html that is stored on the CMU Web server. If the user clicks on the highlighted text object,
the browser requests the corresponding HTML file from the CMU server and displays it.

12.7.2 Web Content

To Web clients and servers,contentis a sequence of bytes with an associatedMIME (Multipurpose Internet
Mail Extensions) type. Figure 12.40 shows some common MIME types.

MIME type Description

text/html HTML page
text/plain Unformatted text
application/postscript Postscript document
image/gif Binary image encoded in GIF format
image/jpg Binary image encoded in JPG format

Figure 12.40:Example MIME types.

Web servers provide content to clients in two different ways:

� Fetch a disk file and return its contents to the client. The disk file is known asstatic contentand the
process of returning the file to the client is known asserving static content.

� Run an executable file and return its output to the client. The output produced by the executable at
runtime is known asdynamic content, and the process of running the program and returning its output
to the client is known asserving dynamic content.

648 CHAPTER 12. NETWORK PROGRAMMING

Thus, every piece of content returned by a Web server is associated with some file that it manages. Each of
these files has a unique name known as aURL (Universal Resource Locator). For example, the URL

http://www.aol.com:80/index.html

identifies an HTML file called/index.html on Internet hostwww.aol.com that is managed by a Web
server listening on port 80. The port number is optional and defaults to well-known port 80.

URLs for executable files can include program arguments after the filename. A ’?’ character separates the
filename from the arguments, and each argument is separated by a ’&’ character. For example, the URL

http://kittyhawk.cmcl.cs.cmu.edu:8000/cgi-bin/adder?15000&213

identifies an executable called/cgi-bin/adder that will be called with two argument strings:15000
and213.

Clients and servers use different parts of the URL during a transaction. For example, a client uses the prefix

http://www.aol.com:80

to determine what kind of server to contact, where the server is, and what port it is listening on. The server
uses the suffix

/index.html

to find the file on its filesystem, and to determine whether the request is for static or dynamic content. There
are several important points to understand about how servers interpret the suffix of a URL:

� There are no standard rules for determining whether a URL refers to static or dynamic content. Each
server has its own rules for the files that it manages. A common approach is to identify a set of
directories, such ascgi-bin, where all executables must reside.

� The initial ’/’ in the suffix doesnot denote the Unix root directory. Rather is denotes the home
directory for whatever kind of content is being requested. For example, a server might by configured
so that all static content is stored in directory/usr/httpd/html and all dynamic content is stored
in directory/usr/httpd/cgi-bin .

� The minimal URL suffix is the ’/’ character, which all servers expand to some default home page such
as/index.html. This explains why it is possible to fetch the home page of a site by simply typing
a domain name to the browser. The browser appends the missing ’/’ to the URL and passes it to the
server, which expands the ’/’ to some default file name.

12.7.3 HTTP Transactions

Since HTTP is based on text lines transmitted over Internet connections, we can use the UnixTELNET

program to conduct transactions with any Web server on the Internet. TheTELNET program is very handy
for debugging servers that talk to clients with text lines over connections. For example, Figure 12.41 uses
TELNET to request the home page from the AOL Web server.

12.7. WEB SERVERS 649

1 unix> telnet www.aol.com 80 Client: open connection to server

2 Trying 205.188.146.23... Telnet prints 3 lines to the terminal

3 Connected to aol.com.
4 Escape character is ’ˆ]’.
5 GET / HTTP/1.1 Client: request line

6 host: www.aol.com Client: required HTTP/1.1 header

7 Client: empty line terminates headers.

8 HTTP/1.0 200 OK Server: response line

9 MIME-Version: 1.0 Server: followed by five response headers

10 Date: Mon, 08 Jan 2001 04:59:42 GMT
11 Server: NaviServer/2.0 AOLserver/2.3.3
12 Content-Type: text/html Server: expect HTML in the response body

13 Content-Length: 42092 Server: expect 42,092 bytes in the response body

14 Server: empty line terminates response headers

15 <html> Server: first HTML line in response body

16 ... Server: 766 lines of HTML not shown.

17 </html> Server: last HTML line in response body

18 Connection closed by foreign host. Server: closes connection

19 unix> Client: closes connection and terminates

Figure 12.41:An HTTP transaction that serves static content.

In line 1 we runTELNET from a Unix shell and ask it to open a connection to the AOL Web server. TELNET

prints three lines of output to the terminal, opens the connection, and then waits for us to enter text (line
5). Each time we enter a text line and hit theenter key, TELNET reads the line, appends carriage return
and line feed characters ("\r\n" in C notation), and sends the line to the server. This is consistent with
the HTTP standard, which requires every text line to be terminated by a carriage return and line feed pair.
To initiate the transaction, we enter an HTTP request (lines 5-7). The server replies with an HTTP response
(lines 8-17) and then closes the connection (line 18).

HTTP Requests

An HTTP requestconsists of arequest line(line 5), followed by zero or morerequest headers(line 6),
followed by an empty text line that terminates the list of headers (line 7). A request line has the form

<method> <uri> <version>

HTTP supports a number of differentmethods, including GET, POST, OPTIONS, HEAD, PUT, DELETE,
and TRACE). We will only discuss the workhorse GET method, which according to one study accounts for
over 99% of HTTP requests [75]. The GET method instructs the server to generate and return the content
identified by theURI (Uniform Resource Identifier). The URI is the suffix of the corresponding URL that
includes the file name and optional arguments.1

1Actually, this is only true when a browser requests content. If a proxy server requests content, then the URI must be the
complete URL.

650 CHAPTER 12. NETWORK PROGRAMMING

The <version> field in the request line indicates the HTTP version that the request conforms to. The
current version is HTTP/1.1 [25]. HTTP/1.0 is a previous version from 1996 that is still in use [3]. HTTP/1.1
defines additional headers that provide support for advanced features such as caching and security, as well
as a (seldom used) mechanism that allows a client and server to perform multiple transactions over the same
persistent connection. In practice, the two versions are compatible because HTTP/1.0 clients and servers
simply ignore unknown HTTP/1.1 headers.

In sum, the request line in line 5 asks the server to fetch and return the HTML file/index.html. It also
informs the server that the remainder of the request will be in HTTP/1.1 format.

Request headers provide additional information to the server, such as the brand name of the browser or the
MIME types that the browser understands. Request headers have the form

<header name>: <header data>

For our purposes, the only header we need to be concerned with is theHost header (line 5), which is
required in HTTP/1.1 requests, but not in HTTP/1.0 requests. TheHost header is only used byproxy
caches, which sometimes serve as intermediaries between a browser and theorigin serverthat manages the
requested file. Multiple proxies can exist between a client and an origin server in a so-calledproxy chain.
The data in theHost header, which identifies the domain name of the origin server, allows a proxy in the
middle of a proxy chain to determine if it might have a locally cached copy of the requested content.

Continuing with our example in Figure 12.41, the empty text line in line 6 (generated by hittingenter on
our keyboard) terminates the headers and instructs the server to send the requested HTML file.

HTTP Responses

HTTP responses are similar to HTTP requests. AnHTTP responseconsists of aresponse line(line 8),
followed by zero or moreresponse headers(lines 9-13), followed by an empty line that terminates the
headers (line 14), followed by theresponse body(lines 15-17).

A response line has the form

<version> <status code> <status message>

The version field describes the HTTP version that the response conforms to. Thestatus codeis a 3-digit
positive integer that indicates the disposition of the request. Thestatus messagegives the English equivalent
of the error code. Figure 12.42 lists some common status codes and their corresponding messages.

The response headers in lines 9-13 provide additional information about the response. The two most im-
portant headers areContent-Type (line 12), which tells the client the MIME type of the content in the
response body, andContent-Length (line 13), which indicates its size in byte.

The empty text line in line 11 that terminates the response headers is followed by the request body, which
contains the requested content.

12.7. WEB SERVERS 651

Status code Status Message Description

200 OK Request was handled without error.
301 Moved permanently Content has moved to the hostname in the Location header.
400 Bad request Request could not be understood by the server.
403 Forbidden Server lacks permission to access the requested file.
404 Not found Server could not find the requested file.
501 Not implemented Server does not support the request method.
505 HTTP version not supported Server does not support version in request.

Figure 12.42:Some HTTP status codes.

12.7.4 Serving Dynamic Content

If we stop to think for a moment how a server might provide dynamic content to a client, certain questions
arise. For example, how does the client pass any program arguments to the server? How does the server
pass these arguments to the child process that it creates? How does the server pass other information to the
child that it might need to generate the content? Where does the child send its output? These questions are
addressed by a de facto standard calledCGI (Common Gateway Interface).

How Does the Client Pass Program Arguments to the Server?

Arguments for GET requests are passed in the URI. Each argument is separated by a ’&’ character. Spaces
are not allowed in arguments and must be denoted with the%20string. Similar encodings exist for other
special characters.

Aside: Passing arguments in HTTP POST requests.
Arguments for HTTP POST requests are passed in the request body rather than the URI.End Aside.

How Does the Server Pass Arguments to the Child?

After a server receives a request such as

GET /cgi-bin/adder?15000&213 HTTP/1.1

it calls fork to creates a child process and callsexecve to run the/cgi-bin/adder program in the
context of the child. Theadder program is often referred to asCGI programbecause it obeys the rules of
the CGI standard. And since many CGI programs are written as Perl scripts, CGI programs are often called
CGI scripts.

Before the call toexecve, the child process sets the CGI environment variable QUERYSTRING to
15000&213, which the adder program can reference at runtime using the Unixgetenv function.

How Does the Server Pass Other Information to the Child?

CGI defines a number of other environment variables that a CGI program can expect to be set when it runs.
Figure 12.43 shows a subset.

652 CHAPTER 12. NETWORK PROGRAMMING

Environment variable Description

SERVERPORT Port that the parent is listening on
REQUESTMETHOD GET or POST
REMOTE HOST Domain name of client
REMOTE ADDR Dotted-decimal IP address of client
CONTENT TYPE POST only: MIME type of the request body
CONTENT LENGTH POST only: Size in bytes of the request body

Figure 12.43:Examples of CGI environment variables.

Where Does the Child Send its Output?

A CGI program prints dynamic content to the standard output. Before the child process loads and runs the
CGI program, it uses the Unixdup2 function to redirect standard output to the connected descriptor that is
associated with the client. Thus, anything that the CGI program writes to standard output goes directly to
the client.

Aside: Passing arguments to HTTP POST requests.
For POST requests, the child would also need to redirect standard input to the connected descriptor. The CGI
program would then read the arguments in the request body from standard input.End Aside.

Notice that since the parent does not know the type or size of the content that the child generates, the child
is responsible for generating theContent-type andContent-length response headers, as well as
the empty line that terminates the headers.

Figure 12.44 shows a simple CGI program that sums its two arguments and returns an HTML file with the
result to the client. Figure 12.45 shows an HTTP transaction that serves dynamic content from theadder
program.

Practice Problem 12.7:

In Section 12.4.8, we warned about the dangers of using the C standard I/O functions in servers. Yet the
CGI program in Figure 12.44 is able to use standard I/O without any problems. Why?

12.8 Putting it Together: TheTINY Web Server

We will conclude our discussion of network programming by developing a small but functioning Web server
called TINY. TINY is an interesting program. It combines many of the ideas that we have learned about
concurrency, Unix I/O, the sockets interface, and HTTP in only 250 lines of code. While it lacks the
functionality, robustness, and security of a real server, it is powerful enough to serve both static and dynamic
content to real Web browsers. We encourage you to study it and implement it yourself. It is quite exciting
(even for the authors!) to point a real browser at your own server and watch it display a complicated Web
page with text and graphics.

12.8. PUTTING IT TOGETHER: THETINY WEB SERVER 653

code/net/tiny/cgi-bin/adder.c

1 #include "csapp.h"
2

3 int main(void) {
4 char *buf, *p;
5 char arg1[MAXLINE], arg2[MAXLINE], content[MAXLINE];
6 int n1=0, n2=0;
7

8 /* extract the two arguments */
9 if ((buf = getenv("QUERY_STRING")) != NULL) {

10 p = strchr(buf, ’&’);
11 *p = ’\0’;
12 strcpy(arg1, buf);
13 strcpy(arg2, p+1);
14 n1 = atoi(arg1);
15 n2 = atoi(arg2);
16 }
17

18 /* make the response body */
19 sprintf(content, "Welcome to add.com: ");
20 sprintf(content, "%sTHE Internet addition portal.\r\n<p>", content);
21 sprintf(content, "%sThe answer is: %d + %d = %d\r\n<p>",
22 content, n1, n2, n1 + n2);
23 sprintf(content, "%sThanks for visiting!\r\n", content);
24

25 /* generate the HTTP response */
26 printf("Content-length: %d\r\n", strlen(content));
27 printf("Content-type: text/html\r\n\r\n");
28 printf("%s", content);
29 fflush(stdout);
30 exit(0);
31 }

code/net/tiny/cgi-bin/adder.c

Figure 12.44:CGI program that sums two integers.

654 CHAPTER 12. NETWORK PROGRAMMING

1 unix> telnet kittyhawk.cmcl.cs.cmu.edu 8000 Client: open connection

2 Trying 128.2.194.242...
3 Connected to kittyhawk.cmcl.cs.cmu.edu.
4 Escape character is ’ˆ]’.
5 GET /cgi-bin/adder?15000&213 HTTP/1.0 Client: request line

6 Client: empty line terminates headers

7 HTTP/1.0 200 OK Server: response line

8 Server: Tiny Web Server Server: identify server

9 Content-length: 115 Adder: expect 115 bytes in response body

10 Content-type: text/html Adder: expect HTML in response body

11 Adder: empty line terminates headers

12 Welcome to add.com: THE Internet addition portal. Adder: first HTML line

13 <p>The answer is: 15000 + 213 = 15213 Adder: second HTML line in response body

14 <p>Thanks for visiting! Adder: third HTML line in response body

15 Connection closed by foreign host. Server: closes connection

16 unix> Client: closes connection and terminates

Figure 12.45:An HTTP transaction that serves dynamic HTML content.

The TINY main Routine

Figure 12.46 shows TINY ’s main routine. TINY is an iterative server that listens for connection requests
on the port that is passed in the command line. After opening a listening socket (line 28) by calling the
open listenfd function from Figure 12.46, TINY executes the typical infinite server loop, repeatedly
accepting a connection request (line 31) and performing a transaction (line 32).

The doit Function

Thedoit function in Figure 12.47 handles one HTTP transaction. First, we read and parse the request line
(lines 9-10). Notice that we are using the robustreadline function from Figure 12.16 to read the request
line.

TINY only supports the GET method. If the client requests another method (such as POST), we send it an
error message and return to the main routine (lines 11-15), which then closes the connection and awaits the
next connection request. Otherwise, we read and (as we shall see) ignore any request headers (line 16).

Next, we parse the URI into a filename and a possibly empty CGI argument string, and we set a flag that
indicates whether the request is for static or dynamic content (line 19). If the file does not exist on disk, we
immediately send an error message to the client and return (lines 20-24).

Finally, if the request is for static content (lines 26), we verify that the file is a regular file (i.e., not a directory
file or a FIFO) and that we have read permission (line 27). If so, we serve the static content (line 32) to the
client. Similarly, if the request is for dynamic content (line 34), we verify that the file is executable (line
35), and if so we go ahead and serve the dynamic content (line 40).

12.8. PUTTING IT TOGETHER: THETINY WEB SERVER 655

code/net/tiny/tiny.c

1 /*
2 * tiny.c - A simple HTTP/1.0 Web server that uses the GET method
3 * to serve static and dynamic content.
4 */
5 #include "csapp.h"
6

7 void doit(int fd);
8 void read_requesthdrs(int fd);
9 int parse_uri(char *uri, char *filename, char *cgiargs);

10 void serve_static(int fd, char *filename, int filesize);
11 void get_filetype(char *filename, char *filetype);
12 void serve_dynamic(int fd, char *filename, char *cgiargs);
13 void clienterror(int fd, char *cause, char *errnum,
14 char *shortmsg, char *longmsg);
15

16 int main(int argc, char **argv)
17 {
18 int listenfd, connfd, port, clientlen;
19 struct sockaddr_in clientaddr;
20

21 /* check command line args */
22 if (argc != 2) {
23 fprintf(stderr, "usage: %s <port>\n", argv[0]);
24 exit(1);
25 }
26 port = atoi(argv[1]);
27

28 listenfd = open_listenfd(port);
29 while (1) {
30 clientlen = sizeof(clientaddr);
31 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
32 doit(connfd);
33 Close(connfd);
34 }
35 }

code/net/tiny/tiny.c

Figure 12.46:The TINY Web server.

656 CHAPTER 12. NETWORK PROGRAMMING

code/net/tiny/tiny.c

1 void doit(int fd)
2 {
3 int is_static;
4 struct stat sbuf;
5 char buf[MAXLINE], method[MAXLINE], uri[MAXLINE], version[MAXLINE];
6 char filename[MAXLINE], cgiargs[MAXLINE];
7

8 /* read request line and headers */
9 Readline(fd, buf, MAXLINE);

10 sscanf(buf, "%s %s %s\n", method, uri, version);
11 if (strcasecmp(method, "GET")) {
12 clienterror(fd, method, "501", "Not Implemented",
13 "Tiny does not implement this method");
14 return;
15 }
16 read_requesthdrs(fd);
17

18 /* parse URI from GET request */
19 is_static = parse_uri(uri, filename, cgiargs);
20 if (stat(filename, &sbuf) < 0) {
21 clienterror(fd, filename, "404", "Not found",
22 "Tiny couldn’t find this file");
23 return;
24 }
25

26 if (is_static) { /* serve static content */
27 if (!(S_ISREG(sbuf.st_mode)) || !(S_IRUSR & sbuf.st_mode)) {
28 clienterror(fd, filename, "403", "Forbidden",
29 "Tiny couldn’t read the file");
30 return;
31 }
32 serve_static(fd, filename, sbuf.st_size);
33 }
34 else { /* serve dynamic content */
35 if (!(S_ISREG(sbuf.st_mode)) || !(S_IXUSR & sbuf.st_mode)) {
36 clienterror(fd, filename, "403", "Forbidden",
37 "Tiny couldn’t run the CGI program");
38 return;
39 }
40 serve_dynamic(fd, filename, cgiargs);
41 }
42 }

code/net/tiny/tiny.c

Figure 12.47: TINY doit: Handles one HTTP transaction.

12.8. PUTTING IT TOGETHER: THETINY WEB SERVER 657

The clienterror Function

TINY lacks many of the robustness features of a real server. However it does check for some obvious errors
and reports them to the client. Theclienterror function in Figure 12.48 sends an HTTP response to
the client with the appropriate status code and status message in the response line, along with an HTML file
in the response body that explains the error to the browser’s user.

code/net/tiny/tiny.c

1 void clienterror(int fd, char *cause, char *errnum,
2 char *shortmsg, char *longmsg)
3 {
4 char buf[MAXLINE], body[MAXBUF];
5

6 /* build the HTTP response body */
7 sprintf(body, "<html><title>Tiny Error</title>");
8 sprintf(body, "%s<body bgcolor=""ffffff"">\r\n", body);
9 sprintf(body, "%s%s: %s\r\n", body, errnum, shortmsg);

10 sprintf(body, "%s<p>%s: %s\r\n", body, longmsg, cause);
11 sprintf(body, "%s<hr>The Tiny Web server\r\n", body);
12

13 /* print the HTTP response */
14 sprintf(buf, "HTTP/1.0 %s %s\r\n", errnum, shortmsg);
15 Writen(fd, buf, strlen(buf));
16 sprintf(buf, "Content-type: text/html\r\n");
17 Writen(fd, buf, strlen(buf));
18 sprintf(buf, "Content-length: %d\r\n\r\n", strlen(body));
19 Writen(fd, buf, strlen(buf));
20 Writen(fd, body, strlen(body));
21 }

code/net/tiny/tiny.c

Figure 12.48: TINY clienterror: Sends an error message to the client.

Recall that an HTML response should indicate the size and type the content in the body. Thus, we have
opted to build the HTML content as a single string (lines 7-11) so that we can easily determine its size (line
18). Also, notice that we are using the robustwriten function from Figure 12.15 for all output.

The read requesthdrs Function

TINY does not use any of the information in the request headers. It simply reads and ignores them by
calling theread requesthdrs function in Figure 12.49. Notice that the empty text line that terminates
the request headers consists of a carriage return and line feed pair, which we check for in line 6.

658 CHAPTER 12. NETWORK PROGRAMMING

code/net/tiny/tiny.c

1 void read_requesthdrs(int fd)
2 {
3 char buf[MAXLINE];
4

5 Readline(fd, buf, MAXLINE);
6 while(strcmp(buf, "\r\n"))
7 Readline(fd, buf, MAXLINE);
8 return;
9 }

code/net/tiny/tiny.c

Figure 12.49: TINY read requesthdrs: Reads and ignores request headers.

The parse uri Function

TINY assumes that the home directory for static content is the current Unix directory’.’, and that the
home directory for executables is./cgi-bin. Any URI that contains the string cgi-bin is assumed to
denote a request for dynamic content. The default file name is./home.html.

Theparse uri function in Figure 12.50 implements these policies. It parses the URI into a filename and
an optional CGI argument string. If the request is for static content (line 5) we clear the CGI argument string
(line 6), and then convert the URI into a relative Unix pathname such as./index.html (lines 7-8). If the
URI ends with a’/’ character (line 9), then we append the default file name (lines 9). On the other hand,
if the request is for dynamic content (line 13), we extract any CGI arguments (line 14-20) and convert the
remaining portion of the URI to a relative Unix file name (lines 21-22).

The serve static Function

TINY serves 4 different types of static content: HTML files, unformatted text files, and images encoded in
GIF and JPG formats. These file types account for the majority of static content served over the Web.

Theserve static function in Figure 12.51 sends an HTTP response whose body contains the contents
of a local file. First, we determine the file type by inspecting the suffix in the filename (line 7), and then
send the response line and response headers to the client (lines 6-12). Notice that we are using thewriten
function from Figure 12.15 for all output on the descriptor. Notice also that a blank line terminates the
headers (line 12).

Next, we send the response body by copying the contents of the requested file to the connected descriptor
fd (lines 15-19). The code here is somewhat subtle and needs to be studied carefully.

Line 15 opensfilename for reading and gets its descriptor. In line 16, the Unixmmapfunction maps the
requested file to a virtual memory area. Recall from our discussion ofmmapin Section 10.8 that the call
to mmapmaps the firstfilesize bytes of filesrcfd to a private read-only area of virtual memory that
starts at addresssrcp.

Once we have mapped the file to memory, we no longer need its descriptor, so we close the file (line 17).

12.8. PUTTING IT TOGETHER: THETINY WEB SERVER 659

code/net/tiny/tiny.c

1 int parse_uri(char *uri, char *filename, char *cgiargs)
2 {
3 char *ptr;
4

5 if (!strstr(uri, "cgi-bin")) { /* static content */
6 strcpy(cgiargs, "");
7 strcpy(filename, ".");
8 strcat(filename, uri);
9 if (uri[strlen(uri)-1] == ’/’)

10 strcat(filename, "home.html");
11 return 1;
12 }
13 else { /* dynamic content */
14 ptr = index(uri, ’?’);
15 if (ptr) {
16 strcpy(cgiargs, ptr+1);
17 *ptr = ’\0’;
18 }
19 else
20 strcpy(cgiargs, "");
21 strcpy(filename, ".");
22 strcat(filename, uri);
23 return 0;
24 }
25 }

code/net/tiny/tiny.c

Figure 12.50: TINY parse uri: Parses an HTTP URI.

660 CHAPTER 12. NETWORK PROGRAMMING

code/net/tiny/tiny.c

1 void serve_static(int fd, char *filename, int filesize)
2 {
3 int srcfd;
4 char *srcp, filetype[MAXLINE], buf[MAXBUF];
5

6 /* send response headers to client */
7 get_filetype(filename, filetype);
8 sprintf(buf, "HTTP/1.0 200 OK\r\n");
9 sprintf(buf, "%sServer: Tiny Web Server\r\n", buf);

10 sprintf(buf, "%sContent-length: %d\n", buf, filesize);
11 sprintf(buf, "%sContent-type: %s\r\n\r\n", buf, filetype);
12 Writen(fd, buf, strlen(buf));
13

14 /* send response body to client */
15 srcfd = Open(filename, O_RDONLY, 0);
16 srcp = Mmap(0, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);
17 Close(srcfd);
18 Writen(fd, srcp, filesize);
19 Munmap(srcp, filesize);
20 }
21

22 /*
23 * get_filetype - derive file type from file name
24 */
25 void get_filetype(char *filename, char *filetype)
26 {
27 if (strstr(filename, ".html"))
28 strcpy(filetype, "text/html");
29 else if (strstr(filename, ".gif"))
30 strcpy(filetype, "image/gif");
31 else if (strstr(filename, ".jpg"))
32 strcpy(filetype, "image/jpg");
33 else
34 strcpy(filetype, "text/plain");
35 }

code/net/tiny/tiny.c

Figure 12.51: TINY serve static: Serves static content to a client.

12.8. PUTTING IT TOGETHER: THETINY WEB SERVER 661

Failing to do this would introduce a potentially fatal memory leak.

Line 18 performs the actual transfer of the file to the client. Thewriten function copies thefilesize
bytes starting at locationsrcp (which of course is mapped to the requested file) to the client’s connected
descriptor. Finally, line 19 frees the mapped virtual memory area. This is important to avoid a potentially
fatal memory leak.

The serve dynamic Function

TINY serves any type of dynamic content by forking a child process, and then running a CGI program in
the context of the child.

Theserve dynamic function in Figure 12.52 begins by sending a response line indicating success to the
client (lines 6-7), along with an informationalServer header (lines 8-9). The CGI program is responsible
for sending the rest of the response. Notice that this is not as robust as we might wish, since it doesn’t allow
for the possibility that the CGI program might encounter some error.

code/net/tiny/tiny.c

1 void serve_dynamic(int fd, char *filename, char *cgiargs)
2 {
3 char buf[MAXLINE];
4

5 /* return first part of HTTP response */
6 sprintf(buf, "HTTP/1.0 200 OK\r\n");
7 Writen(fd, buf, strlen(buf));
8 sprintf(buf, "Server: Tiny Web Server\r\n");
9 Writen(fd, buf, strlen(buf));

10

11 if (Fork() == 0) { /* child */
12 /* real server would set all CGI vars here */
13 setenv("QUERY_STRING", cgiargs, 1);
14 Dup2(fd, STDOUT_FILENO); /* redirect output to client */
15 Execve(filename, NULL, environ); /* run CGI program */
16 }
17 Wait(NULL); /* parent reaps child */
18 }

code/net/tiny/tiny.c

Figure 12.52: TINY serve dynamic: Serves dynamic content to a client.

After sending the first part of the response, we fork a new child process (line 11). The child initializes the
QUERY STRING environment variable with the CGI arguments from the request URI (line 13). Notice
that a real server would set the other CGI environment variables here as well. For brevity, we have omitted
this step.

Next, the child redirects the child’s standard output to the connected file descriptor (line 14), and then loads
and runs the CGI program (line 15). Since the CGI program runs in the context of the child, it has access to

662 CHAPTER 12. NETWORK PROGRAMMING

the same open descriptors and environment variables that existed before the call to theexecve function.
Thus, everything that the CGI program writes to standard output goes directly to the client process, without
any intervention from the parent process.

Meanwhile, the parent blocks in a call towait, waiting to reap the child when it terminates (line 17).

Practice Problem 12.8:

A. Is the TINY doit routine reentrant? Why or why not?

B. If not, how would you make it reentrant?

12.9 Summary

In this chapter we have learned some basic concepts about network applications. Network applications use
the client-server model, where servers perform services on behalf of their clients. The Internet provides
network applications with two key mechanisms: (1) A unique name for each Internet host, and (2) a mech-
anism for establishing a connection to a server running on any of those hosts. Clients and servers establish
connections by using the sockets interface, and they communicate over these connections using standard
Unix file I/O functions.

There are two basic design options for servers. An iterative server handles one request at a time. A concur-
rent server can handle multiple requests concurrently. We investigated two designs for concurrent servers,
one that forks a new process for each request, the other that creates a new thread for each request. Other
designs are possible, such as using the Unixselect function to explicitly manage the concurrency, or
avoiding the per-connection overhead by pre-forking a set of child processes to handle connection requests.

Finally, we studied the design and implementation of a simple but functional Web server. In a few lines of
code, it ties together many important systems concepts such as Unix I/O, memory mapping, concurrency,
the sockets interface, and the HTTP protocol.

Bibliographic Notes

The official source information for the Internet is contained in a set of freely-available numbered documents
known asRFCs(Requests for Comments). A searchable index of RFCs is available from

http://www.rfc-editor.org/rfc.html

RFCs are typically written for developers of Internet infrastructure, and thus are usually too detailed for the
casual reader. However, for authoritative information, there is no better source.

There are many texts on computer networking [41, 55, 80]. The great technical writer W. Richard Stevens
developed a whole series of classic texts on such topics as advanced Unix programming [72], the Internet
protocols [73, 74, 75], and Unix network programming [77, 76]. Serious students of Unix systems pro-
gramming will want to study all of them. Tragically, Stevens died in 1999. His contributions will be greatly
missed.

12.9. SUMMARY 663

The authoritative list of MIME types is maintained at

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types

The HTTP/1.1 protocol is documented in RFC 2616.

Homework Problems

Homework Problem 12.9[Category 2]:

Modify the cpstdinbuf program in Figure 12.14 so that it usesreadn andwriten to copy standard
input to standard output, MAXBUF bytes at a time.

Homework Problem 12.10[Category 2]:

A. Modify T INY so that it echos every request line and request header.

B. Use your favorite browser to make a request to TINY for static content. Capture the output from TINY

in a file.

C. Inspect the output from TINY to determine the the version of HTTP your browser uses.

D. Consult the HTTP/1.1 standard in RFC 2616 to determine the meaning of each header in the HTTP
request from your browser. You can obtain RFC 2616 fromwww.rfc-editor.org/rfc.html.

Homework Problem 12.11[Category 2]:

Extend TINY to so that it serves MPG video files. Check your work using a real browser.

Homework Problem 12.12[Category 2]:

Modify TINY so that its reaps CGI children inside a SIGCHLD handler instead of explicitly waiting for
them to terminate.

Homework Problem 12.13[Category 2]:

Modify TINY so that when it serves static content, it copies the requested file to the connected descriptor
usingmalloc, read, and write, instead of mmapandwrite.

Homework Problem 12.14[Category 2]:

A. Write an HTML form for the CGIadder function in Figure 12.44. Your form should include two
text boxes that users will fill in with the two numbers they want to add together. Your form should
also request content using the GET method.

B. Check your work by using a real browser to request the form from TINY, submit the filled in form to
TINY, and then display the the dynamic content generated byadder.

664 CHAPTER 12. NETWORK PROGRAMMING

Homework Problem 12.15[Category 2]:

Extend TINY to support the HTTP HEAD method. Check your work usingTELNET as a Web client.

Homework Problem 12.16[Category 3]:

Extend TINY so that it serves dynamic contest requested by the HTTP POST method. Check your work
using your favorite Web browser.

Homework Problem 12.17[Category 3]:

Build a concurrent TINY server based on processes.

Homework Problem 12.18[Category 3]:

Build a concurrent TINY server based on threads.

Homework Problem 12.19[Category 4]:

Build your own concurrent Web proxy cache.

Appendix A

Error handling

A.1 Introduction

Programmers shouldalwayscheck the error codes returned by system-level functions. There are many
subtle ways that things can go wrong, and it only makes sense to use the status information that the kernel is
able to provide us. Unfortunately, programmers are often reluctant to do error checking because it clutters
their code, turning a single line of code into a multi-line conditional statement. Error checking is also
confusing because different functions indicate errors in different ways.

We were faced with a similar problem when writing this text. On the one hand, we would like our code
examples to be concise and simple to read. On the other hand, we do not want to give students the wrong
impression that it is OK to skip error checking. To resolve these issues, we have adopted an approach based
on error-handling wrappersthat was pioneered by W. Richard Stevens in his classic network programming
text [77].

The idea is that given some base system-level functionfoo, we define a wrapper functionFoo with identical
arguments, but with the first letter capitalized. The wrapper calls the base function and checks for errors.
If it detects an error, the wrapper prints an informative message and terminates the process. Otherwise it
returns to the caller. Notice that if there are no errors, the wrapper behaves exactly like the base function.
Put another way, if a program runs correctly with wrappers, it will run correctly if we lower-case the first
letter of each wrapper and recompile.

The wrappers are packaged in a single source file (csapp.c) that is compiled and linked into each program.
A separate header file (csapp.h) contains the function prototypes for the wrappers.

This appendix gives a tutorial on the different kinds of error-handling in Unix systems and gives examples
of the different styles of error-handling wrappers. For reference, we also include the complete sources for
thecsapp.h andcsapp.c files.

665

666 APPENDIX A. ERROR HANDLING

A.2 Error handling in Unix systems

The systems-level function calls that we will encounter in this book use three different styles for returning
errors:Unix-style, Posix-style, andDNS-style.

Unix-style error handling

Functions such asfork andwait that were developed in the early days of Unix (as well as some older
Posix functions) overload the function return value with both error codesanduseful results. For example,
when the Unix-stylewait function encounters an error (e.g., there is no child process to reap) it returns�1
and sets the global variableerrno to an error code that indicate the cause of the error. Ifwait completes
successfully, then it returns the useful result, which is the PID of the reaped child. Unix-style error-handling
code is typically of the form:

1 if ((pid = wait(NULL)) < 0) {
2 fprintf(stderr, "wait error: %s\n", strerror(errno));
3 exit(0);
4 }

Thestrerror function returns a text description for a particular value oferrno.

Posix-style error handling

Many of the newer Posix functions such as Pthreads use the return value only to indicate success (0) or fail-
ure (nonzero). Any useful results are returned in function arguments that are passed by reference. We refer
to this approach asPosix-style error handling. For example, the Posix-stylepthread create function
indicates success or failure with its return value and returns the ID of the newly created thread (the useful
result) by reference in its first argument. Posix-style error-handling code is typically of the form:

1 if ((retcode = pthread_create(&tid, NULL, thread, NULL)) != 0) {
2 fprintf(stderr, "pthread_create error: %s\n", strerror(retcode));
3 exit(0);
4 }
5

DNS-style error handling

Thegethostbyname andgethostbyaddr functions that retrieve DNS (Domain Name System) host
entries have yet another approach for returning errors. These functions return a NULL pointer on failure
and set the globalh errno variable. DNS-style error handling is typically of the form:

1 if ((p = gethostbyname(name)) == NULL) {
2 fprintf(stderr, "gethostbyname error: %s\n:", hstrerror(h_errno));
3 exit(0);
4 }

A.3. ERROR-HANDLING WRAPPERS 667

Thehstrerror function returns a text description for a particular value ofh errno.

Summary of error-reporting functions

Thoughout this book, we use the following error-reporting functions to accomodate different error-handling
styles.

#include "csapp.h"

void unix error(char *msg);
void posix error(int code, char *msg);
void dns error(char *msg);
void app error(char *msg);

return: nothing

As their names suggest, theunix error, posix error, and dns error functions report Unix-style
errors, Posix-style, and DNS-style errors and then terminate. Theapp error function is included as a
convenience for application errors. It simply prints its input and then terminates. Figure A.1 shows the code
for the error reporting functions.

A.3 Error-handling wrappers

Here are some examples of the different error-handling wrappers.

Unix-style error-handling wrappers

Figure A.2 shows the wrapper for the Unix-stylewait function. If thewait returns with an error, the
wrapper prints an informative message and then exits. Otherwise, it returns a PID to the caller.

Figure A.3 shows the wrapper for the Unix-stylekill function. Notice that this function, unlikeWait,
returnsvoid on success.

Posix-style error-handling wrappers

Figure A.4 shows the wrapper for the Posix-stylepthread mutex lock function. Like most Posix-
style functions, it does not overload useful results with error return codes, so the wrapper returnsvoid on
success.

One exception is the Posix-stylepthread cond timedwait which returns an error code of ETIMED-
OUT if the call times out. Since this particular return code is useful to applications, the wrapper passes it
back to the caller, as shown in Figure A.5.

668 APPENDIX A. ERROR HANDLING

code/src/csapp.c

1 void unix_error(char *msg) /* unix-style error */
2 {
3 fprintf(stderr, "%s: %s\n", msg, strerror(errno));
4 exit(0);
5 }
6

7 void posix_error(int code, char *msg) /* posix-style error */
8 {
9 fprintf(stderr, "%s: %s\n", msg, strerror(code));

10 exit(0);
11 }
12

13 void dns_error(char *msg) /* dns-style error */
14 {
15 fprintf(stderr, "%s: %s\n", msg, hstrerror(h_errno));
16 exit(0);
17 }
18

19 void app_error(char *msg) /* application error */
20 {
21 fprintf(stderr, "%s\n", msg);
22 exit(0);
23 }

code/src/csapp.c

Figure A.1:Error-reporting functions.

code/src/csapp.c

1 pid_t Wait(int *status)
2 {
3 pid_t pid;
4

5 if ((pid = wait(status)) < 0)
6 unix_error("Wait error");
7 return pid;
8 }

code/src/csapp.c

Figure A.2:Wrapper for Unix-style wait function.

A.3. ERROR-HANDLING WRAPPERS 669

code/src/csapp.c

1 void Kill(pid_t pid, int signum)
2 {
3 int rc;
4

5 if ((rc = kill(pid, signum)) < 0)
6 unix_error("Kill error");
7 }

code/src/csapp.c

Figure A.3:Wrapper for Unix-style kill function.

code/src/csapp.c

1 void Pthread_mutex_lock(pthread_mutex_t *mutex)
2 {
3 int rc;
4

5 if ((rc = pthread_mutex_lock(mutex)) != 0)
6 posix_error(rc, "Pthread_mutex_lock error");
7 }

code/src/csapp.c

Figure A.4:Wrapper for Posix-style pthread mutex lock function.

code/src/csapp.c

1 int Pthread_cond_timedwait(pthread_cond_t *cond,
2 pthread_mutex_t *mutex,
3 struct timespec *abstime)
4 {
5 int rc = pthread_cond_timedwait(cond, mutex, abstime);
6

7 if ((rc != 0) && (rc != ETIMEDOUT))
8 posix_error(rc, "Pthread_cond_timedwait error");
9 return rc;

10 }

code/src/csapp.c

Figure A.5:Wrapper for Posix-style pthread cond timedwait function.

670 APPENDIX A. ERROR HANDLING

DNS-style error-handling wrappers

Figure A.6 shows the error-handling wrapper for the DNS-stylegethostbyname function.

code/src/csapp.c

1 struct hostent *Gethostbyname(const char *name)
2 {
3 struct hostent *p;
4

5 if ((p = gethostbyname(name)) == NULL)
6 dns_error("Gethostbyname error");
7 return p;
8 }

code/src/csapp.c

Figure A.6:Wrapper for DNS-style gethostbyname function.

A.4. THE CSAPP.H HEADER FILE 671

A.4 The csapp.h header file

code/include/csapp.h

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4 #include <string.h>
5 #include <ctype.h>
6 #include <setjmp.h>
7 #include <signal.h>
8 #include <sys/time.h>
9 #include <sys/types.h>

10 #include <sys/wait.h>
11 #include <sys/stat.h>
12 #include <fcntl.h>
13 #include <sys/mman.h>
14 #include <errno.h>
15 #include <math.h>
16 #include <pthread.h>
17 #include <semaphore.h>
18 #include <sys/socket.h>
19 #include <netdb.h>
20 #include <netinet/in.h>
21 #include <arpa/inet.h>
22

23 /* Simplifies calls to bind(), connect(), and accept() */
24 typedef struct sockaddr SA;
25

26 /* External variables */
27 extern int h_errno; /* defined by BIND for DNS errors */
28 extern char **environ; /* defined by libc */
29

30 /* Misc constants */
31 #define MAXLINE 8192 /* max text line length */
32 #define MAXBUF 8192 /* max I/O buffer size */
33 #define LISTENQ 1024 /* second argument to listen() */
34

35 /* Our own error-handling functions */
36 void unix_error(char *msg);
37 void posix_error(int code, char *msg);
38 void dns_error(char *msg);
39 void app_error(char *msg);
40

41 /* Process control wrappers */
42 pid_t Fork(void);
43 void Execve(const char *filename, char *const argv[], char *const envp[]);
44 pid_t Wait(int *status);
45 pid_t Waitpid(pid_t pid, int *iptr, int options);
46 void Kill(pid_t pid, int signum);

672 APPENDIX A. ERROR HANDLING

47 unsigned int Sleep(unsigned int secs);
48 void Pause(void);
49 unsigned int Alarm(unsigned int seconds);
50 void Setpgid(pid_t pid, pid_t pgid);
51 pid_t Getpgrp();
52

53 /* Sigaction wrapper */
54 typedef void handler_t(int);
55 handler_t *Signal(int signum, handler_t *handler);
56

57 /* Unix I/O wrappers */
58 int Open(const char *pathname, int flags, mode_t mode);
59 ssize_t Read(int fd, void *buf, size_t count);
60 ssize_t Write(int fd, const void *buf, size_t count);
61 off_t Lseek(int fildes, off_t offset, int whence);
62 void Close(int fd);
63 int Select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
64 struct timeval *timeout);
65 void Dup2(int fd1, int fd2);
66

67 /* Memory mapping wrappers */
68 void *Mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);
69 void Munmap(void *start, size_t length);
70

71 /* Standard I/O wrappers */
72 void Fclose(FILE *fp);
73 FILE *Fdopen(int fd, const char *type);
74 char *Fgets(char *ptr, int n, FILE *stream);
75 FILE *Fopen(const char *filename, const char *mode);
76 void Fputs(const char *ptr, FILE *stream);
77 size_t Fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
78 void Fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);
79

80 /* Dynamic storage allocation wrappers */
81 void *Malloc(size_t size);
82 void *Calloc(size_t nmemb, size_t size);
83 void Free(void *ptr);
84

85 /* Thread control wrappers */
86 void Pthread_create(pthread_t *tidp, pthread_attr_t *attrp,
87 void * (*routine)(void *), void *argp);
88 void Pthread_join(pthread_t tid, void **thread_return);
89 void Pthread_cancel(pthread_t tid);
90 void Pthread_detach(pthread_t tid);
91 void Pthread_exit(void *retval);
92 pthread_t Pthread_self(void);
93

94 /* Semaphore wrappers */
95 void Sem_init(sem_t *sem, int pshared, unsigned int value);
96 void P(sem_t *sem);

A.4. THE CSAPP.H HEADER FILE 673

97 void V(sem_t *sem);
98

99 /* Mutex wrappers */
100 void Pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t *attr);
101 void Pthread_mutex_lock(pthread_mutex_t *mutex);
102 void Pthread_mutex_unlock(pthread_mutex_t *mutex);
103

104 /* Condition variable wrappers */
105 void Pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr);
106 void Pthread_cond_signal(pthread_cond_t *cond);
107 void Pthread_cond_broadcast(pthread_cond_t *cond);
108 void Pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
109 int Pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
110 struct timespec *abstime);
111

112 /* Sockets interface wrappers */
113 int Socket(int domain, int type, int protocol);
114 void Setsockopt(int s, int level, int optname, const void *optval, int optlen);
115 void Bind(int sockfd, struct sockaddr *my_addr, int addrlen);
116 void Listen(int s, int backlog);
117 int Accept(int s, struct sockaddr *addr, int *addrlen);
118 void Connect(int sockfd, struct sockaddr *serv_addr, int addrlen);
119

120 /* DNS wrappers */
121 struct hostent *Gethostbyname(const char *name);
122 struct hostent *Gethostbyaddr(const char *addr, int len, int type);
123

124 /* Stevens’s socket I/O functions (UNP, Sec 3.9) */
125 ssize_t readn(int fd, void *vptr, size_t n);
126 ssize_t writen(int fd, const void *vptr, size_t n);
127 ssize_t readline(int fd, void *vptr, size_t maxlen); /* non-reentrant */
128

129 /*
130 * Stevens’s reentrant readline_r package
131 */
132 /* struct used by readline_r */
133 typedef struct {
134 int read_fd; /* caller’s descriptor to read from */
135 char *read_ptr; /* caller’s buffer to read into */
136 size_t read_maxlen; /* max bytes to read */
137

138 /* next three are used internally by the function */
139 int rl_cnt; /* initialize to 0 */
140 char *rl_bufptr; /* initialize to rl_buf */
141 char rl_buf[MAXBUF];/* internal buffer */
142 } Rline;
143

144 void readline_rinit(int fd, void *ptr, size_t maxlen, Rline *rptr);
145 ssize_t readline_r(Rline *rptr);
146

674 APPENDIX A. ERROR HANDLING

147 /* Wrappers for Stevens’s socket I/O helpers */
148 ssize_t Readn(int fd, void *vptr, size_t n);
149 void Writen(int fd, void *vptr, size_t n);
150 ssize_t Readline(int fd, void *vptr, size_t maxlen);
151 ssize_t Readline_r(Rline *);
152 void Readline_rinit(int fd, void *ptr, size_t maxlen, Rline *rptr);
153

154 /* Our own client/server helper functions */
155 int open_clientfd(char *hostname, int portno);
156 int open_listenfd(int portno);

code/include/csapp.h

A.5. THE CSAPP.C SOURCE FILE 675

A.5 The csapp.c source file

code/src/csapp.c

1 #include "csapp.h"
2

3 /**************************
4 * Error-handling functions
5 **************************/
6 void unix_error(char *msg) /* unix-style error */
7 {
8 fprintf(stderr, "%s: %s\n", msg, strerror(errno));
9 exit(0);

10 }
11

12 void posix_error(int code, char *msg) /* posix-style error */
13 {
14 fprintf(stderr, "%s: %s\n", msg, strerror(code));
15 exit(0);
16 }
17

18 void dns_error(char *msg) /* dns-style error */
19 {
20 fprintf(stderr, "%s: %s\n", msg, hstrerror(h_errno));
21 exit(0);
22 }
23

24 void app_error(char *msg) /* application error */
25 {
26 fprintf(stderr, "%s\n", msg);
27 exit(0);
28 }
29

30 /***
31 * Wrappers for Unix process control functions
32 **/
33

34 pid_t Fork(void)
35 {
36 pid_t pid;
37

38 if ((pid = fork()) < 0)
39 unix_error("Fork error");
40 return pid;
41 }
42

43 void Execve(const char *filename, char *const argv[], char *const envp[])
44 {
45 if (execve(filename, argv, envp) < 0)
46 unix_error("Execve error");

676 APPENDIX A. ERROR HANDLING

47 }
48

49 pid_t Wait(int *status)
50 {
51 pid_t pid;
52

53 if ((pid = wait(status)) < 0)
54 unix_error("Wait error");
55 return pid;
56 }
57

58 pid_t Waitpid(pid_t pid, int *iptr, int options)
59 {
60 pid_t retpid;
61

62 if ((retpid = waitpid(pid, iptr, options)) < 0)
63 unix_error("Waitpid error");
64 return(retpid);
65 }
66

67 handler_t *Signal(int signum, handler_t *handler)
68 {
69 struct sigaction action, old_action;
70

71 action.sa_handler = handler;
72 sigemptyset(&action.sa_mask); /* block sigs of type being handled */
73 action.sa_flags = SA_RESTART; /* restart syscalls if possible */
74

75 if (sigaction(signum, &action, &old_action) < 0)
76 unix_error("Signal error");
77 return (old_action.sa_handler);
78 }
79

80 void Kill(pid_t pid, int signum)
81 {
82 int rc;
83

84 if ((rc = kill(pid, signum)) < 0)
85 unix_error("Kill error");
86 }
87

88 void Pause()
89 {
90 (void)pause();
91 return;
92 }
93

94 unsigned int Sleep(unsigned int secs)
95 {
96 unsigned int rc;

A.5. THE CSAPP.C SOURCE FILE 677

97

98 if ((rc = sleep(secs)) < 0)
99 unix_error("Sleep error");

100 return rc;
101 }
102

103 unsigned int Alarm(unsigned int seconds) {
104 return alarm(seconds);
105 }
106

107 void Setpgid(pid_t pid, pid_t pgid) {
108 int rc;
109

110 if ((rc = setpgid(pid, pgid)) < 0)
111 unix_error("Setpgid error");
112 return;
113 }
114

115 pid_t Getpgrp(void) {
116 return getpgrp();
117 }
118

119 /********************************
120 * Wrappers for Unix I/O routines
121 ********************************/
122

123 int Open(const char *pathname, int flags, mode_t mode)
124 {
125 int rc;
126

127 if ((rc = open(pathname, flags, mode)) < 0)
128 unix_error("Open error");
129 return rc;
130 }
131

132 ssize_t Read(int fd, void *buf, size_t count)
133 {
134 ssize_t rc;
135

136 if ((rc = read(fd, buf, count)) < 0)
137 unix_error("Read error");
138 return rc;
139 }
140

141 ssize_t Write(int fd, const void *buf, size_t count)
142 {
143 ssize_t rc;
144

145 if ((rc = write(fd, buf, count)) < 0)
146 unix_error("Write error");

678 APPENDIX A. ERROR HANDLING

147 return rc;
148 }
149

150 off_t Lseek(int fildes, off_t offset, int whence)
151 {
152 off_t rc;
153

154 if ((rc = lseek(fildes, offset, whence)) < 0)
155 unix_error("Lseek error");
156 return rc;
157 }
158

159 void Close(int fd)
160 {
161 int rc;
162

163 if ((rc = close(fd)) < 0)
164 unix_error("Close error");
165 }
166

167 int Select(int n, fd_set *readfds, fd_set *writefds,
168 fd_set *exceptfds, struct timeval *timeout)
169 {
170 int rc;
171

172 if ((rc = select(n, readfds, writefds, exceptfds, timeout)) < 0)
173 unix_error("Select error");
174 return rc;
175 }
176

177 void Dup2(int fd1, int fd2)
178 {
179 if (dup2(fd1, fd2) == -1)
180 unix_error("dup2 error");
181 }
182

183 /**************************************
184 * Wrapper for memory mapping functions
185 **************************************/
186 void *Mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset)
187 {
188 void *ptr;
189

190 if ((ptr = mmap(addr, len, prot, flags, fd, offset)) == ((void *) -1))
191 unix_error("mmap error");
192 return(ptr);
193 }
194

195 void Munmap(void *start, size_t length)
196 {

A.5. THE CSAPP.C SOURCE FILE 679

197 if (munmap(start, length) < 0)
198 unix_error("munmap error");
199 }
200

201 /***
202 * Wrappers for dynamic storage allocation functions
203 ***/
204

205 void *Malloc(size_t size)
206 {
207 void *p;
208

209 if ((p = malloc(size)) == NULL)
210 unix_error("Malloc error");
211 return p;
212 }
213

214 void *Calloc(size_t nmemb, size_t size)
215 {
216 void *p;
217

218 if ((p = calloc(nmemb, size)) == NULL)
219 unix_error("Calloc error");
220 return p;
221 }
222

223 void Free(void *ptr)
224 {
225 free(ptr);
226 }
227

228 /***
229 * Error-handling wrappers for the Standard I/O functions.
230 ***/
231 void Fclose(FILE *fp)
232 {
233 if (fclose(fp) != 0)
234 unix_error("Fclose error");
235 }
236

237 FILE *Fdopen(int fd, const char *type)
238 {
239 FILE *fp;
240

241 if ((fp = fdopen(fd, type)) == NULL)
242 unix_error("Fdopen error");
243

244 return fp;
245 }
246

680 APPENDIX A. ERROR HANDLING

247 char *Fgets(char *ptr, int n, FILE *stream)
248 {
249 char *rptr;
250

251 if (((rptr = fgets(ptr, n, stream)) == NULL) && ferror(stream))
252 app_error("Fgets error");
253

254 return rptr;
255 }
256

257 FILE *Fopen(const char *filename, const char *mode)
258 {
259 FILE *fp;
260

261 if ((fp = fopen(filename, mode)) == NULL)
262 unix_error("Fopen error");
263

264 return fp;
265 }
266

267 void Fputs(const char *ptr, FILE *stream)
268 {
269 if (fputs(ptr, stream) == EOF)
270 unix_error("Fputs error");
271 }
272

273 size_t Fread(void *ptr, size_t size, size_t nmemb, FILE *stream)
274 {
275 size_t n;
276

277 if (((n = fread(ptr, size, nmemb, stream)) < nmemb) && ferror(stream))
278 unix_error("Fread error");
279 return n;
280 }
281

282 void Fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream)
283 {
284 if (fwrite(ptr, size, nmemb, stream) < nmemb)
285 unix_error("Fwrite error");
286 }
287

288

289 /**
290 * Wrappers for Pthreads thread control functions
291 **/
292

293 void Pthread_create(pthread_t *tidp, pthread_attr_t *attrp,
294 void * (*routine)(void *), void *argp)
295 {
296 int rc;

A.5. THE CSAPP.C SOURCE FILE 681

297

298 if ((rc = pthread_create(tidp, attrp, routine, argp)) != 0)
299 posix_error(rc, "Pthread_create error");
300 }
301

302 void Pthread_cancel(pthread_t tid) {
303 int rc;
304

305 if ((rc = pthread_cancel(tid)) != 0)
306 posix_error(rc, "Pthread_cancel error");
307 }
308

309 void Pthread_join(pthread_t tid, void **thread_return) {
310 int rc;
311

312 if ((rc = pthread_join(tid, thread_return)) != 0)
313 posix_error(rc, "Pthread_join error");
314 }
315

316 void Pthread_detach(pthread_t tid) {
317 int rc;
318

319 if ((rc = pthread_detach(tid)) != 0)
320 posix_error(rc, "Pthread_detach error");
321 }
322

323 void Pthread_exit(void *retval) {
324 pthread_exit(retval);
325 }
326

327 pthread_t Pthread_self(void) {
328 return pthread_self();
329 }
330

331 /***
332 * Wrappers for Pthreads mutex and condition variable functions
333 **/
334

335 void Pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t *attr)
336 {
337 int rc;
338

339 if ((rc = pthread_mutex_init(mutex, attr)) != 0)
340 posix_error(rc, "Pthread_mutex_init error");
341 }
342

343 void Pthread_mutex_lock(pthread_mutex_t *mutex)
344 {
345 int rc;
346

682 APPENDIX A. ERROR HANDLING

347 if ((rc = pthread_mutex_lock(mutex)) != 0)
348 posix_error(rc, "Pthread_mutex_lock error");
349 }
350

351 void Pthread_mutex_unlock(pthread_mutex_t *mutex)
352 {
353 int rc;
354

355 if ((rc = pthread_mutex_unlock(mutex)) != 0)
356 posix_error(rc, "Pthread_mutex_unlock error");
357 }
358

359 void Pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *attr)
360 {
361 int rc;
362

363 if ((rc = pthread_cond_init(cond, attr)) != 0)
364 posix_error(rc, "Pthread_cond_init error");
365 }
366

367 void Pthread_cond_signal(pthread_cond_t *cond)
368 {
369 int rc;
370

371 if ((rc = pthread_cond_signal(cond)) != 0)
372 posix_error(rc, "Pthread_cond_signal error");
373 }
374

375 void Pthread_cond_broadcast(pthread_cond_t *cond)
376 {
377 int rc;
378

379 if ((rc = pthread_cond_broadcast(cond)) != 0)
380 posix_error(rc, "Pthread_cond_broadcast error");
381 }
382

383 void Pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
384 {
385 int rc;
386

387 if ((rc = pthread_cond_wait(cond, mutex)) != 0)
388 posix_error(rc, "Pthread_cond_wait error");
389 }
390

391 int Pthread_cond_timedwait(pthread_cond_t *cond,
392 pthread_mutex_t *mutex,
393 struct timespec *abstime)
394 {
395 int rc = pthread_cond_timedwait(cond, mutex, abstime);
396

A.5. THE CSAPP.C SOURCE FILE 683

397 if ((rc != 0) && (rc != ETIMEDOUT))
398 posix_error(rc, "Pthread_cond_timedwait error");
399 return rc;
400 }
401

402 /*******************************
403 * Wrappers for Posix semaphores
404 *******************************/
405

406 void Sem_init(sem_t *sem, int pshared, unsigned int value)
407 {
408 if (sem_init(sem, pshared, value) < 0)
409 unix_error("Sem_init error");
410 }
411

412 void P(sem_t *sem)
413 {
414 if (sem_wait(sem) < 0)
415 unix_error("P error");
416 }
417

418 void V(sem_t *sem)
419 {
420 if (sem_post(sem) < 0)
421 unix_error("V error");
422 }
423

424 /****************************
425 * Sockets interface wrappers
426 ****************************/
427

428 int Socket(int domain, int type, int protocol)
429 {
430 int rc;
431

432 if ((rc = socket(domain, type, protocol)) < 0)
433 unix_error("Socket error");
434 return rc;
435 }
436

437 void Setsockopt(int s, int level, int optname, const void *optval, int optlen)
438 {
439 int rc;
440

441 if ((rc = setsockopt(s, level, optname, optval, optlen)) < 0)
442 unix_error("Setsockopt error");
443 }
444

445 void Bind(int sockfd, struct sockaddr *my_addr, int addrlen)
446 {

684 APPENDIX A. ERROR HANDLING

447 int rc;
448

449 if ((rc = bind(sockfd, my_addr, addrlen)) < 0)
450 unix_error("Bind error");
451 }
452

453 void Listen(int s, int backlog)
454 {
455 int rc;
456

457 if ((rc = listen(s, backlog)) < 0)
458 unix_error("Listen error");
459 }
460

461 int Accept(int s, struct sockaddr *addr, int *addrlen)
462 {
463 int rc;
464

465 if ((rc = accept(s, addr, addrlen)) < 0)
466 unix_error("Accept error");
467 return rc;
468 }
469

470 void Connect(int sockfd, struct sockaddr *serv_addr, int addrlen)
471 {
472 int rc;
473

474 if ((rc = connect(sockfd, serv_addr, addrlen)) < 0)
475 unix_error("Connect error");
476 }
477

478 /************************
479 * DNS interface wrappers
480 ***********************/
481

482 struct hostent *Gethostbyname(const char *name)
483 {
484 struct hostent *p;
485

486 if ((p = gethostbyname(name)) == NULL)
487 dns_error("Gethostbyname error");
488 return p;
489 }
490

491 struct hostent *Gethostbyaddr(const char *addr, int len, int type)
492 {
493 struct hostent *p;
494

495 if ((p = gethostbyaddr(addr, len, type)) == NULL)
496 dns_error("Gethostbyaddr error");

A.5. THE CSAPP.C SOURCE FILE 685

497 return p;
498 }
499

500

501 /********************************
502 * Client/server helper functions
503 ********************************/
504 /*
505 * open_clientfd - open connection to server at <hostname, port>
506 * and return a socket descriptor ready for reading and writing.
507 */
508 int open_clientfd(char *hostname, int port)
509 {
510 int clientfd;
511 struct hostent *hp;
512 struct sockaddr_in serveraddr;
513

514 clientfd = Socket(AF_INET, SOCK_STREAM, 0);
515

516 /* fill in the server’s IP address and port */
517 hp = Gethostbyname(hostname);
518 bzero((char *) &serveraddr, sizeof(serveraddr));
519 serveraddr.sin_family = AF_INET;
520 bcopy((char *)hp->h_addr,
521 (char *)&serveraddr.sin_addr.s_addr, hp->h_length);
522 serveraddr.sin_port = htons(port);
523

524 /* establish a connection with the server */
525 Connect(clientfd, (SA *) &serveraddr, sizeof(serveraddr));
526

527 return clientfd;
528 }
529

530 /*
531 * open_listenfd - open and return a listening socket on port
532 */
533 int open_listenfd(int port)
534 {
535 int listenfd;
536 int optval;
537 struct sockaddr_in serveraddr;
538

539 /* create a socket descriptor */
540 listenfd = Socket(AF_INET, SOCK_STREAM, 0);
541

542 /* eliminates "Address already in use" error from bind. */
543 optval = 1;
544 Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
545 (const void *)&optval , sizeof(int));
546

686 APPENDIX A. ERROR HANDLING

547 /* listenfd will be an endpoint for all requests to port
548 on any IP address for this host */
549 bzero((char *) &serveraddr, sizeof(serveraddr));
550 serveraddr.sin_family = AF_INET;
551 serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
552 serveraddr.sin_port = htons((unsigned short)port);
553 Bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr));
554

555 /* make it a listening socket ready to accept connection requests */
556 Listen(listenfd, LISTENQ);
557

558 return listenfd;
559 }
560

561 /**
562 * I/O helper functions (from Stevens UNP)
563 **/
564 ssize_t readn(int fd, void *buf, size_t count)
565 {
566 size_t nleft = count;
567 ssize_t nread;
568 char *ptr = buf;
569

570 while (nleft > 0) {
571 if ((nread = read(fd, ptr, nleft)) < 0) {
572 if (errno == EINTR)
573 nread = 0; /* and call read() again */
574 else
575 return -1; /* errno set by read() */
576 }
577 else if (nread == 0)
578 break; /* EOF */
579 nleft -= nread;
580 ptr += nread;
581 }
582 return (count - nleft); /* return >= 0 */
583 }
584

585 ssize_t writen(int fd, const void *buf, size_t count)
586 {
587 size_t nleft = count;
588 ssize_t nwritten;
589 const char *ptr = buf;
590

591 while (nleft > 0) {
592 if ((nwritten = write(fd, ptr, nleft)) <= 0) {
593 if (errno == EINTR)
594 nwritten = 0; /* and call write() again */
595 else
596 return -1; /* errorno set by write() */

A.5. THE CSAPP.C SOURCE FILE 687

597 }
598 nleft -= nwritten;
599 ptr += nwritten;
600 }
601 return count;
602 }
603

604 static ssize_t my_read(int fd, char *ptr)
605 {
606 static int read_cnt = 0;
607 static char *read_ptr, read_buf[MAXLINE];
608

609 if (read_cnt <= 0) {
610 again:
611 if ((read_cnt = read(fd, read_buf, sizeof(read_buf))) < 0) {
612 if (errno == EINTR)
613 goto again;
614 return -1;
615 }
616 else if (read_cnt == 0)
617 return 0;
618 read_ptr = read_buf;
619 }
620 read_cnt--;
621 *ptr = *read_ptr++;
622 return 1;
623 }
624

625 ssize_t readline(int fd, void *buf, size_t maxlen)
626 {
627 int n, rc;
628 char c, *ptr = buf;
629

630 for (n = 1; n < maxlen; n++) { /* notice that loop starts at 1 */
631 if ((rc = my_read(fd, &c)) == 1) {
632 *ptr++ = c;
633 if (c == ’\n’)
634 break; /* newline is stored, like fgets() */
635 }
636 else if (rc == 0) {
637 if (n == 1)
638 return 0; /* EOF, no data read */
639 else
640 break; /* EOF, some data was read */
641 }
642 else
643 return -1; /* error, errno set by read() */
644 }
645 *ptr = 0; /* null terminate like fgets() */
646 return n;

688 APPENDIX A. ERROR HANDLING

647 }
648

649 /*
650 * readline_r: Stevens’s reentrant readline package
651 * (mentioned but not defined in UNP 23.5)
652 */
653

654 static ssize_t my_read_r(Rline *rptr, char *ptr)
655 {
656 if (rptr->rl_cnt <= 0) {
657 again:
658 rptr->rl_cnt = read(rptr->read_fd, rptr->rl_buf,
659 sizeof(rptr->rl_buf));
660 if (rptr->rl_cnt < 0) {
661 if (errno == EINTR)
662 goto again;
663 else
664 return(-1);
665 }
666 else if (rptr->rl_cnt == 0)
667 return(0);
668 rptr->rl_bufptr = rptr->rl_buf;
669 }
670 rptr->rl_cnt--;
671 *ptr = *rptr->rl_bufptr++ & 255;
672 return(1);
673 }
674

675 ssize_t readline_r(Rline *rptr)
676 {
677 int n, rc;
678 char c, *ptr = rptr->read_ptr;
679

680 for (n = 1; n < rptr->read_maxlen; n++) {
681 if ((rc = my_read_r(rptr, &c)) == 1) {
682 *ptr++ = c;
683 if (c == ’\n’)
684 break;
685 } else if (rc == 0) {
686 if (n == 1)
687 return(0); /* EOF, no data read */
688 else
689 break; /* EOF, some data was read */
690 } else
691 return(-1); /* error */
692 }
693 *ptr = 0;
694 return(n);
695 }
696

A.5. THE CSAPP.C SOURCE FILE 689

697 /*
698 * readline_rinit - initialization function for readline_r
699 */
700 void readline_rinit(int fd, void *ptr, size_t maxlen, Rline *rptr)
701 {
702 rptr->read_fd = fd; /* save caller’s arguments */
703 rptr->read_ptr = ptr;
704 rptr->read_maxlen = maxlen;
705

706 rptr->rl_cnt = 0; /* and init our counter & pointer */
707 rptr->rl_bufptr = rptr->rl_buf;
708 }
709

710 /**
711 * Error-handling wrappers for Stevens’s I/O helpers
712 **/
713

714 ssize_t Readn(int fd, void *ptr, size_t nbytes)
715 {
716 ssize_t n;
717

718 if ((n = readn(fd, ptr, nbytes)) < 0)
719 unix_error("Readn error");
720 return n;
721 }
722

723 void Writen(int fd, void *ptr, size_t nbytes)
724 {
725 if (writen(fd, ptr, nbytes) != nbytes)
726 unix_error("Writen error");
727 }
728

729 ssize_t Readline(int fd, void *ptr, size_t maxlen)
730 {
731 ssize_t n;
732

733 if ((n = readline(fd, ptr, maxlen)) < 0)
734 unix_error("Readline error");
735 return n;
736 }
737

738 ssize_t Readline_r(Rline *rptr)
739 {
740 ssize_t n;
741

742 if ((n = readline_r(rptr)) == -1)
743 unix_error("readline_r error");
744 return(n);
745 }
746

690 APPENDIX A. ERROR HANDLING

747 void Readline_rinit(int fd, void *ptr, size_t maxlen, Rline *rptr)
748 {
749 readline_rinit(fd, ptr, maxlen, rptr);
750 }

code/src/csapp.c

Appendix B

Solutions to Practice Problems

B.1 Intro

B.2 Representing and Manipulating Information

Problem 2.1 Solution: [Pg. 24]

Converting between binary and hexadecimal is not very exciting, but it is an important skill. Like many
skills, it can only be gained by practice.

Decimal Binary Hexadecimal
0 00000000 00
55 00110111 37
136 10001000 88
243 11110011 F3
82 01010010 52
172 10101100 AC
231 11100111 E7
167 10100111 A7
62 00111110 3E
188 10111100 BC

Problem 2.2 Solution: [Pg. 32]

This problem tests your understanding of the byte representation of data and the two different byte orderings.

A. Little endian:78 Big endian:12

B. Little endian:78 56 Big endian:12 34

C. Little endian:78 56 34 Big endian:12 34 56

691

692 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

Note that on a little-endian machine we enumerate bytes starting from the most signficant byte and working
toward the least, while on the big-endian machine we enumerate bytes starting from the least signficant byte
and working toward the most.

Problem 2.3 Solution: [Pg. 32]

This problem is another chance to practice hexadecimal to binary conversion. It also gets you thinking about
integer and floating-point representations. We will explore these representations in more detail later in this
chapter.

A. Using the notation of the example in the text, we write the two strings as

0 0 3 5 4 3 2 1
00000000001101010100001100100001

4 A 5 5 0 C 8 4

01001010010101010000110010000100

B. With the second word shifted two positions relative to the first we find a sequence with 21 matching
bits.

C. We find all bits of the integer embedded in the floating point number, except for the most signficant
bit having value 1. Such is the case for the example in the text as well. In addition the floating-point
number has some nonzero high-order bits that do not match those of the integer.

Problem 2.4 Solution: [Pg. 33]

It prints 41 42 43 44 45 46. Recall also that the library routinestrlen does not count the terminat-
ing null character, and soshow_bytes printed only through the character ‘F.’

Problem 2.5 Solution: [Pg. 36]

This problem is a drill to help you become more familiar with Boolean operations.

Operation Result
a [01101001]
b [01010101]

˜ a [10010110]
˜ b [10101010]

a & b [01000001]
a | b [01111101]
a ˆ b [00111100]

Problem 2.6 Solution: [Pg. 37]

This procedure relies on the fact that EXCLUSIVE-OR is commutative and associative, and thata ˆ a = 0
for anya. We will see in Chapter 5 that the code does not work correctly when the two pointersx andy are
equal, that is, they point to the same location.

B.2. REPRESENTING AND MANIPULATING INFORMATION 693

Step *x *y
Initially a b

Step 1 a ˆ b b

Step 2 a ˆ b (a ˆ b) ˆ b = (b ˆ b) ˆ a = a

Step 3 (a ˆ b) ˆ a = (a ˆ a) ˆ b = b a

Problem 2.7 Solution: [Pg. 38]

Here are the expressions:

A. x | ˜0xFF

B. x ˆ 0xFF

C. x & ˜0xFF

These expressions are typical of the kind commonly found in performing low-level bit operations. The
expressioñ0xFF creates a mask where the 8 least-significant bits equal 0 and the rest equal 1. Observe
that such a mask will be generated regardless of the word size. By contrast, the expression0xFFFFFF00
would only work on a 32-bit machine.

Problem 2.8 Solution: [Pg. 38]

These problems help you think about the relation between Boolean operations and typical masking opera-
tions. Here is the code:

/* Bit Set */
int bis(int x, int m)
{

int result = x | m;
return result;

}

/* Bit Clear */
int bic(int x, int m)
{

int result = x & ˜m;
return result;

}

It is easy to see thatbis is equivalent to Boolean OR—a bit is set inz if either this bit is set inx or it is set
in m.

Thebic operation is a bit more subtle. We want to set a bit ofz to 0 if the corresponding bit ofmequals
1. If we complement the mask giving˜m, then we want to set a bit ofz to 0 if the corresponding bit of the
complemented mask equals 0. We can do this with the AND operation.

Problem 2.9 Solution: [Pg. 39]

This problem highlights the relation between bit-level Boolean operations and logic operations in C.

694 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

Expression Value Expression Value
x & y 0x02 x && y 0x01
x | y 0xF7 x || y 0x01

˜x | ˜y 0xFD !x || !y 0x00
x & !y 0x00 x && ˜y 0x01

Problem 2.10 Solution: [Pg. 40]

The expression is!(x ˆ y).

That isxˆy will be zero if and only if every bit ofx matches the corresponding bit ofy . We then exploit
the ability of! to determine whether a word contains any nonzero bit.

There is no real reason to use this expression rather than simply writingx == y , but it demonstrates some
of the nuances of bit-level and logical operations.

Problem 2.11 Solution: [Pg. 40]

This problem is a drill to help you understand the different shift operations.

x x << 3 x >> 2 x >> 2
(Logical) (Arithmetic)

0xF0 0x80 0x3C 0xFC
0x0F 0x78 0x03 0x03
0xCC 0x60 0x33 0xF3
0x55 0xA8 0x15 0x15

Problem 2.12 Solution: [Pg. 43]

In general, working through examples for very small word sizes is a very good way to understand computer
arithmetic.

The unsigned values correspond to those in Figure 2.1.

For the two’s complement values, hex digits0 through7 have a most significant bit of 0, yielding non-
negative values, while while hex digits8 throughF, have a most significant bit of 1, yielding a negative
value.

x (Hex) B2U 4(x) B2T 4(x)

0 0 0

3 3 3

8 8 �8
A 10 �6
F 15 �1

Problem 2.13 Solution: [Pg. 45]

The functionsT2U andU2T are very peculiar from a mathematical perspective. It is important to under-
stand how they behave.

B.2. REPRESENTING AND MANIPULATING INFORMATION 695

We solve this problem by simply reordering the rows according to the two’s complement value, and then
list the unsigned value as the result of the function application.

x T2U 4(x)

�8 8

�6 10

�1 15

0 0

3 3

Problem 2.14 Solution: [Pg. 46]

This exercise tests your understanding of Equation 2.4.

For the first eight entries, the values ofx are negative andT2U 4(x) = x + 24. For the remaining eight
entries, the values ofx are nonnegative andT2U 4(x) = x.

Problem 2.15 Solution: [Pg. 52]

The effect of truncation is fairly intuitive for unsigned numbers, but not for two’s complement numbers.
This exercise lets you explore its properties using very small word sizes.

Hex Unsigned Two’s Complement
Original Truncated Original Truncated Original Truncated

0 0 0 0 0 0

3 3 3 3 3 3

8 0 8 0 �8 0

A 2 10 2 �6 2

F 7 15 7 �1 �1

As Equation 2.7 states, the effect of this truncation on unsigned values is to simply to find their residue,
modulo 8. The effect of the truncation on signed values is a bit more complex. According to Equation 2.8,
we first compute the modulo 8 residue of the argument. This will give values0–7 for arguments0–7, and
also for arguments�8–�1. Then we apply functionU2T 3 to these residues, giving two repetitions of the
sequences0–3 and�4–�1.

Problem 2.16 Solution: [Pg. 52]

This problem was designed to demonstrate how easily bugs can arise due to the implicit casting from signed
to unsigned. It seems quite natural to pass parameterlength as an unsigned, since one would never want
to use a negative length. The stopping criterioni <= length-1 also seems quite natural. But combining
these two yields an unexpected outcome!

Since parameterlength is unsigned, the computation0�1 is performed using unsigned arithmetic, which
is equivalent to modular addition. The result is thenUMax 32 (assuming a 32-bit machine). The� compar-
ison is also performed using an unsigned comparison, and since any 32-bit number is less than or equal to
UMax 32, the comparison always holds! Thus, the code attempts to access invalid elements of arraya.

696 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

The code can be fixed by either declaringlength to be anint, or by changing the test of thefor loop to
be i < length.

Problem 2.17 Solution: [Pg. 56]

This problem is a simple demonstration of arithmetic modulo 16. The easiest way to solve it is to convert
the hex pattern into its unsigned decimal value. For nonzero values ofx, we must have(- u

4 x) + x = 16.
Then we convert the complemented value back to hex.

x - u
4 x

Hex Decimal Decimal Hex
0 0 0 0
3 3 13 D
8 8 8 8
A 10 6 6
F 15 1 1

Problem 2.18 Solution: [Pg. 58]

This problem is an exercise to make sure you understand two’s complement addition.

x y x+ y x +t
4 y Case

�16 �11 �27 5 1
[10000] [10101] [00101]

�16 �16 �32 0 1
[10000] [10000] [00000]

�8 7 �1 �1 2
[11000] [00111] [11111]

�2 5 3 3 3
[11110] [00101] [00011]

8 8 16 �16 4
[01000] [01000] [10000]

Problem 2.19 Solution: [Pg. 60]

This problem helps you understand two’s complement negation using a very small word size.

Forw = 4, we haveTMin4 = �8. So�8 is its own additive inverse, while other values are negated by
integer negation.

x - t
4 x

Hex Decimal Decimal Hex
0 0 0 0
3 3 �3 D
8 �8 �8 8
A �6 6 6
F �1 1 1

B.2. REPRESENTING AND MANIPULATING INFORMATION 697

The bit patterns are the same as for unsigned negation.

Problem 2.20 Solution: [Pg. 63]

This problem is an exercise to make sure you understand two’s complement multiplication.

Mode x y x � y Truncatedx � y
Unsigned 6 [110] 2 [010] 12 [001100] 4 [100]
Two’s Comp. �2 [110] 2 [010] �4 [111100] �4 [100]

Unsigned 1 [001] 7 [111] 7 [000111] 7 [111]
Two’s Comp. 1 [001] �1 [111] �1 [111111] 7 [111]

Unsigned 7 [111] 7 [111] 49 [110001] 1 [001]
Two’s Comp. �1 [111] �1 [111] 1 [000001] 1 [001]

Problem 2.21 Solution: [Pg. 64]

In Chapter 3, we will see many examples of theleal instruction in action. The instruction is provided
to support pointer arithmetic, but the C compiler often uses it as a way to perform multiplication by small
constants.

For each value ofk, we can compute two multiples:2k (whenb is 0) and2k + 1 (whenb is a. Thus, we
can compute multiples 1, 2, 3, 4, 5, 8, and 9.

Problem 2.22 Solution: [Pg. 65]

We have found that students find this exercise looks difficult when working directly with assembly code.
Formulating it in the manner we have shown inoptarith can help clarify the behavior.

We can see thatMis 15;x*M is computed as(x<<4)-x.

We can see thatN is 4; a bias value of 3 is added wheny is negative, and the right shift is by 2.

Problem 2.23 Solution: [Pg. 68]

Understanding fractional binary representations is an important step to understanding floating-point encod-
ings. This exercise lets you try out some simple examples.

Fractional Value Binary Rep. Decimal Rep.
1
4

0:01 0:25
3
8

0:011 0:375
23
16

1:0111 1:4375
77
32

10:1101 2:40625
11
8

1:011 1:375
45
8

101:101 5:625
49
16

11:0001 3:0625

One simple way to think about fractional binary representations is to represent a number as a fraction of the
form x

2k
. We can write this in binary using the binary representation ofx, with the binary point insertedk

698 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

positions from the right. As an example, for23
16

, we have2310 = 101112. We then put the binary point 4
positions from the right to get1:01112.

Problem 2.24 Solution: [Pg. 68]

In most cases, the limited precision of floating-point numbers is not a major problem, because therelative
error of the computation is still fairly low. In this example, however, the system was sensitive to theabsolute
error.

A. We can see thatx� 0:1 has binary representation:

0:000000000000000000000001100[1100] � � �2

Comparing this to the binary representation of1
10

, we can see that it is simply2�20 � 1
10

, which is
around9:54 � 10�8.

B. 9:54 � 10�8 � 100 � 60� 60� 10 � 0:343.

C. 0:343 � 2000 � 687.

Problem 2.25 Solution: [Pg. 73]

Working through floating point representations for very small word sizes helps clarify how IEEE floating
point works. Note especially the transition between denormalized and normalized values.

Bits e E f M V

0 00 00 0 0 0 0 0

0 00 01 0 0 1
4

1
4

1
4

0 00 10 0 0 2
4

2
4

2
4

0 00 11 0 0 3
4

3
4

3
4

0 01 00 1 0 0
4

4
4

4
4

0 01 01 1 0 1
4

5
4

5
4

0 01 10 1 0 2
4

6
4

6
4

0 01 11 1 0 3
4

7
4

7
4

0 10 00 2 1 0
4

4
4

8
4

0 10 01 2 1 1
4

5
4

10
4

0 10 10 2 1 2
4

6
4

12
4

0 10 11 2 1 3
4

7
4

14
4

0 11 00 — — — — +1
0 11 01 — — — — NaN

0 11 10 — — — — NaN

0 11 11 — — — — NaN

B.2. REPRESENTING AND MANIPULATING INFORMATION 699

Problem 2.26 Solution: [Pg. 74]

This exercise helps you think about what numbers cannot be represented exactly in floating point.

The number has binary representation1 followed byn 0’s followed by1, giving value2n+1 + 1.

Whenn = 23, the value is224 + 1 = 16; 777; 217.

Problem 2.27 Solution: [Pg. 78]

In general it is better to use a library macro rather than inventing your own code. This code seems to work
on a variety of machines, however.

We assume that the value1e400 overflows to infinity.

code/data/ieee.c

1 #define POS_INFINITY 1e400
2 #define NEG_INFINITY (-POS_INFINITY)
3 #define NEG_ZERO (-1.0/POS_INFINITY)

code/data/ieee.c

Problem 2.28 Solution: [Pg. 79]

Exercises such as this one help you develop your ability to reason about floating point operations from a
programmer’s perspective. Make sure you understand each of the answers.

A. x == (int)(float) x
No. For example whenx isTMax .

B. x == (int)(double) x
Yes, sincedouble has greater precision and range thanint.

C. f == (float)(double) f
Yes, sincedouble has greater precision and range thanfloat.

D. d == (float) d
No. For example whend is 1e40, we will get +1 on the right.

E. f == -(-f)
Yes, since a floating-point number is negated by simply inverting its sign bit.

F. 2/3 == 2/3.0
No, the left hand value will be the integer value0, while the right hand value will be the floating-point
approximation of2

3
.

G. (d >= 0.0) || ((d*2) < 0.0)
Yes, since multiplication is monotonic.

H. (d+f)-d == f
No, for example whend is +1 andf is 1, the left hand side will beNaN , while the right hand side
will be 1.

700 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

B.3 Machine Level Representation of C Programs

Problem 3.1 Solution: [Pg. 101]

This exercise gives you practice with the different operand forms.

Operand Value Comment
%eax 0x100 Register
0x104 0xAB Absolute address
$0x108 0x108 Immediate
(%eax) 0xFF Address0x100
4(%eax) 0xAB Address0x104
9(%eax,%ecx) 0x11 Address0x10C
260(%ecx,%edx) 0x13 Address0x108
0xFC(,%ecx,4) 0xFF Address0x100
(%eax,%edx,4) 0x11 Address0x10C

Problem 3.2 Solution: [Pg. 104]

Reverse engineering is a good way to understand systems. In this case, we want to reverse the effect of the
C compiler to determine what C code gave rise to this assembly code. The best way is to run a “simulation,”
starting with valuesx , y , andz at the locations designated by pointersxp, yp, and zp, respectively. We
would then get the following behavior:

1 movl 8(%ebp),%edi xp

2 movl 12(%ebp),%ebx yp

3 movl 16(%ebp),%esi zp

4 movl (%edi),%eax x

5 movl (%ebx),%edx y

6 movl (%esi),%ecx z

7 movl %eax,(%ebx) *yp = x

8 movl %edx,(%esi) *zp = y

9 movl %ecx,(%edi) *xp = z

From this we can generate the following C code:

code/asm/decode1-ans.c

1 void decode1(int *xp, int *yp, int *zp)
2 {
3 int tx = *xp;
4 int ty = *yp;
5 int tz = *zp;
6

7 *yp = tx;
8 *zp = ty;
9 *xp = tz;

10 }

B.3. MACHINE LEVEL REPRESENTATION OF C PROGRAMS 701

code/asm/decode1-ans.c

Problem 3.3 Solution: [Pg. 106]

This exercise demonstrates the versatility of theleal instruction and gives you more practice in deciphering
the different operand forms. Note that although the operand forms are classified as type “Memory” in Figure
3.3, no memory access occurs.

Expression Result
leal 6(%eax), %edx 6 + x

leal (%eax,%ecx), %edx x+ y

leal (%eax,%ecx,4), %edx x+ 4y

leal 7(%eax,%eax,8), %edx 7 + 9x

leal 0xA(,$ecx,4), %edx 10 + 4y

leal 9(%eax,%ecx,2), %edx 9 + x+ 2y

Problem 3.4 Solution: [Pg. 106]

This problem gives you a chance to test your understanding of operands and the arithmetic instructions.

Instruction Destination Value
addl %ecx,(%eax) 0x100 0x100
subl %edx,4(%eax) 0x104 0xA8
imull $16,(%eax,%edx,4) 0x10C 0x110
incl 8(%eax) 0x108 0x14
decl %ecx %ecx 0x0
subl %edx,%eax %eax 0xFD

Problem 3.5 Solution: [Pg. 107]

This exercise gives you a chance to generate a little bit of assembly code. The solution code was generated
by GCC. By loading parametern in register%ecx, it can then use byte register%cl to specify the shift
amount for thesarl instruction.

1 movl 12(%ebp),%ecx Get x

2 movl 8(%ebp),%eax Get n

3 sall $2,%eax x <<= 2

4 sarl %cl,%eax x >>= n

Problem 3.6 Solution: [Pg. 108]

This instruction is used to set register%edx to 0, exploiting the property thatx ˆ x = 0 for any x. It
corresponds to the C statementi = 0 .

This is an example of an assembly languageidiom—a fragment of code that is often generated to fulfill a
special purpose. Recognizing such idioms is one step in becoming proficient at reading assembly code.

702 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

Problem 3.7 Solution: [Pg. 113]

This example requires you to think about the different comparison and set instructions. A key point to note
is that by casting the value on one side of a comparison tounsigned, the comparison is performed as if
both sides are unsigned, due to implicit casting.

1 char ctest(int a, int b, int c)
2 {
3 char t1 = a < b;
4 char t2 = b < (unsigned) a;
5 char t3 = (short) c >= (short) a;
6 char t4 = (char) a != (char) c;
7 char t5 = c > b;
8 char t6 = a > 0;
9 return t1 + t2 + t3 + t4 + t5 + t6;

10 }

Problem 3.8 Solution: [Pg. 116]

This exercise requires you to examine disassembled code in detail and reason about the encodings for jump
targets. It also gives you practice in hexadecimal arithmetic.

A. The jbe instruction has as target0x8048d1c + 0xda. As the original disassembled code shows,
this is0x8048cf8.

8048d1c: 76 da jbe 8048cf8
8048d1e: eb 24 jmp 8048d44

B. According to the annotation produced by the disassembler, the jump target is at absolute address
0x8048d44. According to the byte encoding, this must be at an address0x54 bytes beyond that of
themov instruction. Subtracting these gives address0x8048cf0, as confirmed by the disassembled
code:

8048cee: eb 54 jmp 8048d44
8048cf0: c7 45 f8 10 00 mov $0x10,0xfffffff8(%ebp)

C. The target is at offset000000cb relative to0x8048907 (the address of thenop instruction). Sum-
ming these gives address0x80489d2.

8048902: e9 cb 00 00 00 jmp 80489d2
8048907: 90 nop

D. An indirect jump is denoted by instruction codeff 25. The address from which the jump target is
to be read is encoded explicitly by the following 4 bytes. Since the machine is little endian, these are
given in reverse order ase0 a2 04 08.

80483f0: ff 25 e0 a2 04 jmp *0x804a2e0
80483f5: 08

B.3. MACHINE LEVEL REPRESENTATION OF C PROGRAMS 703

Problem 3.9 Solution: [Pg. 119]

Annotating assembly code and writing C code that mimics its control flow are good first steps in under-
standing assembly language programs. This problem gives you practice for an example with simple control
flow. It also gives you a chance to examine the implementation of logical operations.

A. code/asm/simple-if.c

1 void cond(int a, int *p)
2 {
3 if (p == 0)
4 goto done;
5 if (a <= 0)
6 goto done;
7 *p += a;
8 done:
9 }

code/asm/simple-if.c

B. The first conditional branch is part of the implementation of the|| expression. If the test forp being
nonnull fails, the code will skip the test ofa > 0 .

Problem 3.10 Solution: [Pg. 120]

The code generated when compiling loops can be tricky to analyze, because the compiler can perform
many different optimizations on loop code, and because it can be difficult to match program variables with
registers. We start practicing this skill with a fairly simple loop.

A. The register usage can be determined by simply looking at how the arguments get fetched.

Register Usage
Register Variable Initially
%esi x x
%ebx y y
%ecx n n

B. The body-statementportion consists of lines 4 to 6 in the C code and lines 6 to 8 in the assembly
code. Thetest-exprportion is on line 7 in the C code. In the assembly code, it is implemented by the
instructions on lines 9 to 14 as well as the branch condition on line 15.

C. The annotated code is as follows.

Initially x, y, and n are at offsets 8, 12, and 16 from %ebp

1 movl 8(%ebp),%esi Put x in %esi

2 movl 12(%ebp),%ebx Put y in %ebx

3 movl 16(%ebp),%ecx Put n in %ecx

704 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

4 .p2align 4,,7
5 .L6: loop:

6 imull %ecx,%ebx y *= n

7 addl %ecx,%esi x += n

8 decl %ecx n--

9 testl %ecx,%ecx Test n

10 setg %al n > 0

11 cmpl %ecx,%ebx Compare y:n

12 setl %dl y < n

13 andl %edx,%eax (n > 0) & (y < n)

14 testb $1,%al Test least significant bit

15 jne .L6 If != 0, goto loop

Note the somewhat strange implementation of the test expression. Apparently, the compiler recog-
nizes that the two predicates(n > 0) and (y < n) can only evaluate to 0 or 1, and hence the
branch condition need only test the least significant byte of theirAND. The compiler could have been
more clever and used thetestb instruction to perform theAND operation.

Problem 3.11 Solution: [Pg. 125]

This is another chance to practice deciphering loop code. The C compiler has done some interesting opti-
mizations.

A. The register usage can be determined by looking at how the arguments get fetched, and how registers
are initialized.

Register Usage
Register Variable Initially
%eax a a
%ebx b b
%ecx i 0
%edx result a

B. The test-exproccurs on line 5 of the C code and on line 10 and the jump condition of line 11 in the
assembly code. Thebody-statementoccurs on lines 6 through 8 of the C code and on lines 7 to 9 of
the assembly code. The compiler has detected that the initial test of the while loop will always be
true, sincei is initialized to 0, which is clearly less than 256.

C. The annotated code is as follows

1 movl 8(%ebp),%eax Put a in %eax

2 movl 12(%ebp),%ebx Put b in %ebx

3 xorl %ecx,%ecx i = 0

4 movl %eax,%edx result = a

5 .p2align 4,,7
a in %eax, b in %ebx, i in %ecx, result in %edx

B.3. MACHINE LEVEL REPRESENTATION OF C PROGRAMS 705

6 .L5: loop:

7 addl %eax,%edx result += a

8 subl %ebx,%eax a -= b

9 addl %ebx,%ecx i += b

10 cmpl $255,%ecx Compare i:255

11 jle .L5 If <= goto loop

12 movl %edx,%eax Set result as return value

D. The equivalentgoto code is as follows

1 int loop_while_goto(int a, int b)
2 {
3 int i = 0;
4 int result = a;
5 loop:
6 result += a;
7 a -= b;
8 i += b;
9 if (i <= 255)

10 goto loop;
11 return result;
12 }

Problem 3.12 Solution: [Pg. 127]

One way to analyze assembly code is to try to reverse the compilation process and produce C code that
would look “natural” to a C programmer. For example, we wouldn’t want anygoto statements, since these
are seldom used in C. Most likely, we wouldn’t use ado-while statement either. This exercise forces
you to reverse the compilation into a particular framework. It requires thinking about the translation offor
loops. It also demonstrates an optimization technique known ascode motion, where a computation is moved
out of a loop when it can be determined that its result will not change within the loop.

A. We can see thatresult must be in register%eax. It gets set to 0 initially and it is left in%eax at
the end of the loop as a return value. We can see thati is held in register%edx, since this register is
used as the basis for two conditional tests.

B. The instructions on lines 2 and 4 set%edx to n-1.

C. The tests on lines 5 and 12 requirei to be nonnegative.

D. Variablei gets decremented by instruction 4.

E. Instructions 1, 6, and 7 causex*y to be stored in register%edx.

F. Here is the original code:

706 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

1 int loop(int x, int y, int n)
2 {
3 int result = 0;
4 int i;
5 for (i = n-1; i >= 0; i = i-x) {
6 result += y * x;
7 }
8 return result;
9 }

Problem 3.13 Solution: [Pg. 131]

This problem gives you a chance to reason about the control flow of a switch statement. Answering the
questions requires you to combine information from several places in the assembly code:

1. Line 2 of the assembly code adds 2 tox to set the lower range of the cases to 0. That means that the
minimum case label is�2.

2. Lines 3 and 4 cause the program to jump to the default case when the adjusted case value is greater
than 6. This implies that the maximum case label is�2 + 6 = 4.

3. In the jump table, we see that the second entry (case label�1) has the same destination (.L10) as
the jump instruction on line 4, indicating the default case behavior. Thus, case label�1 is missing in
the switch statement body.

4. In the jump table, we see that the fifth and sixth entries have the same destination. These correspond
to case labels2 and3.

From this reasoning we conclude:

A. The case labels in the switch statement body had values�2, 0, 1, 2, 3, and4.

B. The case with destination.L8 had labels2 and3.

Problem 3.14 Solution: [Pg. 135]

This is another example of an assembly code idiom. At first it seems quite peculiar—acall instruction
with no matchingret. Then we realize that it is not really a procedure call after all.

A. %eax is set to the address of thepopl instruction.

B. This is not a true subroutine call, since the control follows the same ordering as the instructions and
the return address is popped from the stack.

C. This is the only way in IA32 to get the value of the program counter into an integer register.

B.3. MACHINE LEVEL REPRESENTATION OF C PROGRAMS 707

Problem 3.15 Solution: [Pg. 136]

This problem makes concrete the discussion of register usage conventions. Registers%edi, %esi, and
%ebx are callee save. The procedure must save them on the stack before altering their values and restore
them before returning. The other three registers are caller save. They can be altered without affecting the
behavior of the caller.

Problem 3.16 Solution: [Pg. 139]

Being able to reason about how functions use the stack is a critical part of understanding compiler-generated
code. As this example illustrates, the compiler allocates a significant amount of space that never gets used.

A. We started with%esp having value0x800040. Line 2 decrements this by 4, giving0x80003C,
and this becomes the new value of%ebp.

B. We can see how the twoleal instructions compute the arguments to pass toscanf. Since arguments
are pushed in reverse order, we can see thatx is at offset�4 relative to%ebpandy is at offset�8.
The addresses are therefore0x800038 and0x800034.

C. Starting with the original value of0x800040, line 2 decremented the stack pointer by 4. Line 4
decremented it by 24, and line 5 decremented it by 4. The three pushes decremented it by 12, giving
an overall change of 44. Thus, at line 11%espequals0x800014.

D. The stack frame has the following structure and contents:

+----------+
0x80003C | 0x800060 | <-- %ebp

+----------+
0x800038 | 0x53 | (x)

+----------+
0x800034 | 0x46 | (y)

+----------+
0x800030 | |

+----------+
0x80002C | |

+----------+
0x800028 | |

+----------+
0x800024 | |

+----------+
0x800020 | |

+----------+
0x80001C | 0x800038 |

+----------+
0x800018 | 0x800034 |

+----------+
0x800014 | 0x300070 | <-- %esp

+----------+

E. Byte addresses0x800020 through0x800033 are unused.

708 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

Problem 3.17 Solution: [Pg. 143]

This exercise tests your understanding of data sizes and array indexing. Observe that a pointer of any kind
is four bytes long. TheGCC implementation oflong double uses 12 bytes to store each value, even
though the actual format requires only 10 bytes.

Array Element Size Total Size Start Address Elementi
S 2 28 xS xS + 2i
T 4 12 xT xT + 4i
U 4 24 xU xU+ 4i
V 12 96 xV xV + 12i
W 4 16 xW xW+ 4i

Problem 3.18 Solution: [Pg. 145]

This problem is a variant of the one shown for integer arrayE. It is important to understand the difference
between a pointer and the object being pointed to. Since data typeshort requires two bytes, all of the
array indices are scaled by a factor of two. Rather than usingmovl as before, we now usemovw.

Expression Type Value Assembly
S+1 short * xS+ 2 leal 2(%edx),%eax
S[3] short Mem[xS + 6] movw 6(%edx),%ax
&S[i] short * xS + 2i leal (%edx,%ecx,2),%eax
S[4*i+1] short Mem[xS + 8i+ 2] movw 2(%edx,%ecx,8),%ax
S+i-5 short * xS + 2i� 10 leal -10(%edx,%ecx,2),%eax

Problem 3.19 Solution: [Pg. 147]

This problem requires you to work through the scaling operations to determine the address computations,
and to apply the formula for row-major indexing. The first step is to annotate the assembly to determine
how the address references are computed:

1 movl 8(%ebp),%ecx Get i

2 movl 12(%ebp),%eax Get j

3 leal 0(,%eax,4),%ebx 4*j

4 leal 0(,%ecx,8),%edx 8*i

5 subl %ecx,%edx 7*i

6 addl %ebx,%eax 5*j

7 sall $2,%eax 20*j

8 movl mat2(%eax,%ecx,4),%eax mat2[(20*j + 4*i)/4]

9 addl mat1(%ebx,%edx,4),%eax + mat1[(4*j + 28*i)/4]

From this we can see that the reference to matrixmat1 is at byte offset4(7i + j), while the reference to
matrixmat2 is at byte offset4(5j + i). From this we can determine thatmat1 has 7 columns, whilemat2
has 5, givingM = 5 andN = 7.

B.3. MACHINE LEVEL REPRESENTATION OF C PROGRAMS 709

Problem 3.20 Solution: [Pg. 150]

This exercise requires you to study assembly code to understand how it has been optimized. This is an
important skill for improving program performance. By adjusting your source code, you can have an effect
on the efficiency of the generated machine code.

Here is an optimized version of the C code:

1 /* Set all diagonal elements to val */
2 void fix_set_diag_opt(fix_matrix A, int val)
3 {
4 int *Aptr = &A[0][0] + 255;
5 int cnt = N-1;
6 do {
7 *Aptr = val;
8 Aptr -= (N+1);
9 cnt--;

10 } while (cnt >= 0);
11 }

The relation to the assembly code can be seen via the following annotations:

1 movl 12(%ebp),%edx Get val

2 movl 8(%ebp),%eax Get A

3 movl $15,%ecx i = 0

4 addl $1020,%eax Aptr = &A[0][0] + 1020/4

5 .p2align 4,,7
6 .L50: loop:

7 movl %edx,(%eax) *Aptr = val

8 addl $-68,%eax Aptr -= 68/4

9 decl %ecx i--

10 jns .L50 if i >= 0 goto loop

Observe how the assembly code program starts at the end of the array and works backward. It decrements
the pointer by 68 (= 17 � 4), since array elementsA[i-1][i-1] andA[i][i] are spacedN+1 elements
apart.

Problem 3.21 Solution: [Pg. 155]

This problem gets you to think about structure layout and the code used to access structure fields. The
structure declaration is a variant of the example shown in the text. It shows that nested structures are
allocated by embedding the inner structures within the outer ones.

A. The layout of the structure is as follows:

Offset 0 4 8 12
Contents p s.x s.y next

B. 16 bytes

710 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

C. As always, we start by annotating the assembly code:

1 movl 8(%ebp),%eax Get sp

2 movl 8(%eax),%edx Get sp->s.y

3 movl %edx,4(%eax) Copy to sp->s.x

4 leal 4(%eax),%edx Get &(sp->s.x)

5 movl %edx,(%eax) Copy to sp->p

6 movl %eax,12(%eax) sp->next = p

From this, we can generate C code as follows:

void sp_init(struct prob *sp)
{

sp->s.x = sp->s.y;
sp->p = &(sp->s.x);
sp->next = sp;

}

Problem 3.22 Solution: [Pg. 159]

This is a very tricky problem. It raises the need for puzzle-solving skills as part of reverse engineering to
new heights. It shows very clearly that unions are simply a way to associate multiple names (and types)
with a single storage location.

A. The layout of the union is as follows. As the figure illustrate, the union can have either its “e1”
interpretation, having fieldse1.p and e1.y, or it can have its “e2” interpretation, having fields
e2.x ande2.next.

Offset 0 4
Contents e1.p e1.y

e2.x e2.next

B. 8 bytes

C. As always, we start by annotating the assembly code. In our annotations, we show multiple possible
interpretations for some of the instructions, and then indicate which interpretation later gets discarded.
For example, line 2 could be interpreted as either getting elemente1.y or e2.next. In line 3, we
see that the value gets used in an indirect memory reference, for which only the second interpretation
of line 2 is possible.

1 movl 8(%ebp),%eax Get up

2 movl 4(%eax),%edx up->e1.y (no) or up->e2.next

3 movl (%edx),%ecx up->e2.next->e1.p or up->e2.next->e2.x (no)

4 movl (%eax),%eax up->e1.p (no) or up->e2.x

5 movl (%ecx),%ecx *(up->e2.next->e1.p)

6 subl %eax,%ecx *(up->e2.next->e1.p) - up->e2.x

7 movl %ecx,4(%edx) Store in up->e2.next->e1.y

B.3. MACHINE LEVEL REPRESENTATION OF C PROGRAMS 711

From this, we can generate C code as follows:

void proc (union ele *up)
{

up->e2.next->e1.y = *(up->e2.next->e1.p) - up->e2.x;
}

Problem 3.23 Solution: [Pg. 162]

Understanding structure layout and alignment is very important for understanding how much storage differ-
ent data structures require and for understanding the code generated by the compiler for accessing structures.
This problem lets you work out the details of some example structures.

A. struct P1 { int i; char c; int j; char d; };

i c j d Total Alignment
0 4 8 12 16 4

B. struct P2 { int i; char c; char d; int j; };

i c d j Total Alignment
0 4 5 8 12 4

C. struct P3 { short w[3]; char c[3] };

w c Total Alignment
0 6 10 2

D. struct P4 { short w[3]; char *c[3] };

w c Total Alignment
0 8 20 4

E. struct P3 { struct P1 a[2]; struct P2 *p };

a p Total Alignment
0 32 36 4

Problem 3.24 Solution: [Pg. 170]

This problem covers a wide range of topics: stack frames, string representations, ASCII code, and byte
ordering. It demonstrates the dangers of out-of-bounds memory references and the basic ideas behind buffer
overflow.

A. Stack at line 7.

712 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

+-------------+
| 08 04 86 43 | Return Address
+-------------+
| bf ff fc 94 | Saved %ebp <-- %ebp
+-------------+
| | buf[4-7]
+-------------+
| | buf[0-3]
+-------------+
| |
+-------------+
| |
+-------------+
| 00 00 00 01 | Saved %esi
+-------------+
| 00 00 00 02 | Saved %ebx
+-------------+

B. Stack after line 10 (showing only words that are modified).

+-------------+
| 08 04 86 00 | Return Address
+-------------+
| 31 30 39 38 | Saved %ebp <-- %ebp
+-------------+
| 37 36 35 34 | buf[4-7]
+-------------+
| 33 32 31 30 | buf[0-3]
+-------------+

C. The program is attempting to return to address0x08048600. The low-order byte was overwritten
by the terminating null character.

D. The saved value of register%ebp was changed to0x31303938, and this will be loaded into the
register beforegetline returns. The other saved registers are not affected, since they are saved on
the stack at lower addresses thanbuf.

E. The call tomalloc should have hadstrlen(buf)+1 as its argument, and it should also check
that the returned value is non-null.

Problem 3.25 Solution: [Pg. 178]

This problem gives you a chance to try out the recursive procedure described in 3.14.3.

B.3. MACHINE LEVEL REPRESENTATION OF C PROGRAMS 713

1 load c c %st(0)

2 load b b

c
%st(0)

%st(1)

3 multp b � c %st(0)

4 load a a
b � c

%st(0)

%st(1)

5 addp a+ b � c %st(0)

6 neg �(a+ b � c) %st(0)

7 load c c
�(a+ b � c)

%st(0)

%st(1)

8 load b b

c
�(a+ b � c)

%st(0)

%st(1)

%st(2)

9 load a a
b

c
�(a+ b � c)

%st(0)

%st(1)

%st(2)

%st(3)

10 multp a � b
c

�(a+ b � c)

%st(0)

%st(1)

%st(2)

11 divp a � b=c
�(a+ b � c)

%st(0)

%st(1)

12 multp a � b=c � � (a+ b � c) %st(0)

13 storep x

Problem 3.26 Solution: [Pg. 179]

This code is similar to that generated by the compiler for selecting between two values based on the outcome
of a test.

test %eax,%eax

jne L11 a
b

%st(0)

%st(1)

fstp %st(0) b %st(0)

jmp L9

L11:

fstp %st(1) a %st(0)

L9:

The resulting top of stack value isx ? a : b .

Problem 3.27 Solution: [Pg. 182]

714 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

Floating-point code is tricky, with all the different conventions about popping operands, the order of the
arguments, etc. This problem gives you a chance to work through some specific cases in complete detail.

1 fldl b b %st(0)

2 fldl a a
b

%st(0)

%st(1)

3 fmul %st(1),%st a � b
b

%st(0)

%st(1)

4 fxch b
a � b

%st(0)

%st(1)

5 fdivrl c c=b
a � b

%st(0)

%st(1)

6 fsubrp a � b� c=b %st(0)

7 fstp x

This code computes the expressionx = a*b - c/b.

Problem 3.28 Solution: [Pg. 184]

This problem requires you to think about the different operand types and sizes in floating-point code.

code/asm/fpfunct2-ans.c

1 double funct2(int a, double x, float b, float i)
2 {
3 return a/(x+b) - (i+1);
4 }

code/asm/fpfunct2-ans.c

Problem 3.29 Solution: [Pg. 186]

Insert the following code between lines 4 and 5:

1 cmpb $1,%ah Test if comparison outcome is <

Problem 3.30 Solution: [Pg. 191]

code/asm/asmprobs-ans.c

B.4. PROCESSOR ARCHITECTURE 715

1 int ok_smul(int x, int y, int *dest)
2 {
3 long long prod = (long long) x * y;
4 int trunc = (int) prod;
5

6 *dest = trunc;
7 return (trunc == prod);
8 }

code/asm/asmprobs-ans.c

B.4 Processor Architecture

B.5 Optimizing Program Performance

Problem 5.1 Solution: [Pg. 205]

This problem illustrates some of the subtle effects of memory aliasing.

As the commented code below shows, the effect will be to set the value atxp to zero.

1 *xp = *xp + *xp; /* 2x */
2 *xp = *xp - *xp; /* 2x-2x = 0 */
3 *xp = *xp - *xp; /* 0-0 = 0 */

This example illustrates that our intuition about program behavior can often be wrong. We naturally think
of the case wherexp andyp are distinct but overlook the possibility that they might be equal. Bugs often
arise due to conditions the programmer does not anticipate.

Problem 5.2 Solution: [Pg. 216]

This is a simple exercise, but it is important to recognize that the four statements of afor loop—initial,
test, update, and body—get executed different numbers of times.

Code min max incr square
A. 1 91 90 90
B. 91 1 90 90
C. 1 1 90 90

Problem 5.3 Solution: [Pg. 238]

As we found in Chapter 3, reverse engineering from assembly code to C code provides useful insights into
the compilation process. The following code shows the form for general data and combining operation.

1 void combine5px8(vec_ptr v, data_t *dest)
2 {

716 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

3 int length = vec_length(v);
4 int limit = length - 3;
5 data_t *data = get_vec_start(v);
6 data_t x = IDENT;
7 int i;
8

9 /* Combine 8 elements at a time */
10 for (i = 0; i < limit; i+=8) {
11 x = x OPER data[0]
12 OPER data[1]
13 OPER data[2]
14 OPER data[3]
15 OPER data[4]
16 OPER data[5]
17 OPER data[6]
18 OPER data[7];
19 data += 8;
20 }
21

22 /* Finish any remaining elements */
23 for (; i < length; i++) {
24 x = x OPER data[0];
25 data++;
26 }
27 *dest = x;
28 }

Our handwritten pointer code is able to eliminate loop variablei by computing an ending value for the
pointer. This is another example of where a human can often see transformations that are overlooked by the
compiler.

Problem 5.4 Solution: [Pg. 246]

Spilled values are generally stored in the local stack frame. They therefore have a negative offset relative to
%ebp. We can see such a reference at line 12 in the assembly code.

A. Variable limit has been spilled to the stack.

B. It is at offset�8 relative to%ebp.

C. This value is only required to determine whether thejl instruction closing the loop should be taken.
If the branch prediction logic predicts the branch as taken, then the next iteration can proceed before
the loop test has completed. Therefore, the comparison instruction is not part of the critical path
determining the loop performance. Furthermore, since this variable is not altered within the loop,
having it on the stack does not require any additional store operations.

Problem 5.5 Solution: [Pg. 252]

B.6. THE MEMORY HIERARCHY 717

This problem demonstrates the need to be careful when using conditional moves. They require evaluating a
value for the source operand, even when this value is not used.

This code always dereferencesxp (instruction B2). This will cause a null pointer reference in the case
wherexp is zero.

Problem 5.6 Solution: [Pg. 260]

This problem requires you to analyze the potential load-store interactions in a program.

A. It will set each elementa[i] to i+ 1, for 0 � i � 998.

B. It will set each elementa[i] to 0, for1 � i � 999.

C. In the second case, the load of one iteration depends on the result of the store from the previous
iteration. Thus, there is a write/read dependency between successive iterations.

D. It will give a CPE of 5.00, since there are no dependencies between stores and subsequent loads.

Problem 5.7 Solution: [Pg. 266]

Amdahl’s Law is best understood by working through some examples. This one requires you to look at
Equation 5.1 from an unusual perspective.

This problem is a simple application of the equation. You are givenS = 2 and� = :8, and you must then
solve fork:

2 =
1

(1� 0:8) + 0:8=k

0:4 + 1:6=k = 1:0

k = 2:67

B.6 The Memory Hierarchy

Problem 6.1 Solution: [Pg. 280]

The idea here is to minimize the number of address bits by minimizing the aspect ratiomax(r; c)=min(r; c).
In other words, the squarer the array, the fewer the address bits.

Organization r c br bc max(br; bc)

16� 1 4 4 2 2 2
16� 4 4 4 2 2 2
128� 8 16 8 4 3 4
512� 4 32 16 5 4 5
1024� 4 32 32 5 5 5

718 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

Problem 6.2 Solution: [Pg. 287]

The point of this little drill is to make sure you understand the relationship between cylinders and tracks.
Once you have that straight, just plug and chug:

Disk capacity =
512 bytes

sector
� 400 sectors

track
� 10,000 tracks

surface
� 2 surfaces

platter
� 2 platters

disk
= 8,192,000,000 bytes

= 8.192 GB:

Problem 6.3 Solution: [Pg. 289]

This solution to this problem is a straightforward application of the formula for disk access time. The
average rotational latency (in ms) is

Tavg rotation = 1/2� Tmax rotation

= 1/2� (60 secs / 15,000 RPM)� 1000 ms/sec

� 2 ms:

The average transfer time is

Tavg transfer = (60 secs / 15,000 RPM)� 1/500 sectors/track� 1000 ms/sec

� 0.008 ms:

Putting it all together, the total estimated access time is

Taccess = Tavg seek + Tavg rotation + Tavg transfer

= 8 ms+ 2 ms+ 0.008 ms

� 10 ms:

Problem 6.4 Solution: [Pg. 298]

To create a stride-1 reference pattern, the loops must be permuted so that the rightmost indices change most
rapidly.

1 int sumarray3d(int a[N][N][N])
2 {
3 int i, j, k, sum = 0;
4

5 for (k = 0; k < N; k++) {
6 for (i = 0; i < N; i++) {
7 for (j = 0; j < N; j++) {
8 sum += a[k][i][j];
9 }

10 }
11 }
12 return sum;
13 }

B.6. THE MEMORY HIERARCHY 719

This is an important idea. Make sure you understand why this particular loop permutation results in a
stride-1 access pattern.

Problem 6.5 Solution: [Pg. 298]

The key to solving this problem is to visualize how the array is laid out in memory and then analyze the
reference patterns. Functionclear1 accesses the array using a stride-1 reference pattern and thus clearly
has the best spatial locality. Functionclear2 scans each of theN structs in order, which is good, but
within each struct it hops around in a non-stride-1 pattern at the following offsets from the beginning of the
struct:0, 12, 4, 16, 8, 20. Soclear2 has worse spatial locality thanclear1. Function clear3 not only
hops around within each struct, but it also hops from struct to struct. Soclear3 exhibits worse spatial
locality thanclear2 andclear1.

Problem 6.6 Solution: [Pg. 306]

The solution is a straightforward application of the definitions of the various cache parameters in Fig-
ure 6.26. Not very exciting, but you need to understand how the cache organization induces these partitions
in the address bits before you can really understand how caches work.

m C B E S t s b

1. 32 1024 4 1 256 22 8 2
2. 32 1024 8 4 32 24 5 3
3. 32 1024 32 32 1 27 0 5

Problem 6.7 Solution: [Pg. 312]

The padding eliminates the conflict misses. Thus3=4 of the references are hits.

Problem 6.8 Solution: [Pg. 313]

Sometimes, understanding why something is a bad idea helps you understand why the alternative is a good
idea. Here, the bad idea we are looking at is indexing the cache with the high order bits instead of the middle
bits.

A. With high-order bit indexing, each contiguous array chunk consists of2t blocks, wheret is the number
of tag bits. Thus, the first2t contiguous blocks of the array would map to Set 0, the next2t blocks
would map to Set 1, and so on.

B. For a direct-mapped cache where(S;E;B;m) = (512; 1; 32; 32), the cache capacity is 512 32-byte
blocks, and there aret = 18 tag bits in each cache line. Thus, the first218 blocks in the array would
map to Set 0, the next218 blocks to Set 1. Since our array consists of only4096=32 = 512 blocks, all
of the blocks in the array map to Set 0. Thus the cache will hold at most 1 array block at any point in
time, even though the array is small enough to fit entirely in the cache. Clearly, using high-order bit
indexing makes poor use of the cache.

Problem 6.9 Solution: [Pg. 316]

720 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

The two low order bits are the block offset (CO), followed by three bits of set index (CI), with the remaining
bits serving as the tag (CT).

12 11 10 9 8 7 6 5 4 3 2 1 0
CT CT CT CT CT CT CT CT CI CI CI CO CO

Problem 6.10 Solution: [Pg. 317]

Address:0x0E34

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 1 0 0 0 1 1 0 1 0 0

CT CT CT CT CT CT CT CT CI CI CI CO CO

B. Memory reference:

Parameter Value

Cache block offset (CO) 0x0
Cache set index (CI) 0x5
Cache tag (CT) 0x71
Cache hit? (Y/N) Y
Cache byte returned 0xB

Problem 6.11 Solution: [Pg. 318]

Address:0x0DD5

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 1 0 1 1 1 0 1 0 1 0 1

CT CT CT CT CT CT CT CT CI CI CI CO CO

B. Memory reference:

Parameter Value

Cache block offset (CO) 0x1
Cache set index (CI) 0x5
Cache tag (CT) 0x6E
Cache hit? (Y/N) N
Cache byte returned –

B.6. THE MEMORY HIERARCHY 721

Problem 6.12 Solution: [Pg. 318]

Address:0x1FF4

A. Address format (one bit per box):

12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 1 1 1 0 0 1 0 0

CT CT CT CT CT CT CT CT CI CI CI CO CO

B. Memory reference:

Parameter Value

Cache block offset 0x0
Cache set index 0x1
Cache tag 0xFF
Cache hit? (Y/N) N
Cache byte returned –

Problem 6.13 Solution: [Pg. 318]

This problem is a sort of inverse version of Problems 6.9–6.12 that requires you to work backwards from
the contents of the cache to derive the addresses that will hit in a particular set. In this case, Set 3 contains
one valid line with a tag of0x32. Since there is only one valid line in the set, four addresses will hit. These
addresses have the binary form0 0110 0100 11xx. Thus, the four hex addresses that hit in Set 3 are:

0x064C, 0x064D, 0x064E, and 0x064F.

src

dst

0

16

main memory
cache

line 0
line 1

Figure B.1:Figure for Problem 6.14.

Problem 6.14 Solution: [Pg. 324]

A. The key to solving this problem is to visualize the picture in Figure B.1. Notice that each cache line
holds exactly one row of the array, that the cache is exactly large enough to hold one array, and that
for all i, row i of src anddst maps to the same cache line. Because the cache is too small to hold
both arrays, references to one array keep evicting useful lines from the other array. For example, the
write to dst[0][0] evicts the line that was loaded when we readsrc[0][0]. So when we next
readsrc[0][1]we have a miss.

722 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

dst array
col 0 col 1

row 0 m m
row 1 m m

src array
col 0 col 1

row 0 m m
row 1 m h

B. When the cache is 32 bytes, it is large enough to hold both arrays. Thus the only misses are the initial
cold misses.

dst array
col 0 col 1

row 0 m h
row 1 m h

src array
col 0 col 1

row 0 m h
row 1 m h

Problem 6.15 Solution: [Pg. 325]

Each 16-byte cache line holds two contiguousalgae position structures. Each loop visits these struc-
tures in memory order, reading one integer element each time. So the pattern for each loop is: miss, hit,
miss, hit, and so on. Notice that for this problem, we could have predicted the miss rate without actually
enumerating the total number of reads and misses.

A. What is the total number of read accesses? 512 reads.

B. What is the total number of read accesses that miss in the cache? 256 misses.

C. What is the miss rate?256=512 = 50%.

Problem 6.16 Solution: [Pg. 326]

The key to this problem is noticing that the cache can only hold1=2 of the array. So the column-wise scan
of the second half of the array evicts the lines that were loaded during the scan of the first half. For example,
reading the first element ofgrid[16][0] evicts the line that was loaded when we read elements from
grid[0][0]. This line also contained grid[0][1]). So when we begin scanning the next column, the
reference to the first element ofgrid[0][1] misses.

A. What is the total number of read accesses? 512 reads.

B. What is the total number of read accesses that miss in the cache? 256 misses.

C. What is the miss rate?256=512 = 50%.

D. What would the miss rate be if the cache were twice as big? If the cache were twice as big, it could
hold the entiregrid array. The only misses would be the initial cold misses, and the miss rate would
be1=4 = 25%.

Problem 6.17 Solution: [Pg. 326]

This loop has a nice stride-1 reference pattern, and thus the only misses are the initial cold misses.

B.7. LINKING 723

A. What is the total number of read accesses? 512 reads.

B. What is the total number of read accesses that miss in the cache? 128 misses.

C. What is the miss rate?128=512 = 25%.

D. What would the miss rate be if the cache were twice as big? Increasing the cache size by any amount
would not change the miss rate, since cold misses are unavoidable.

Problem 6.18 Solution: [Pg. 331]

This problem is just a sanity check to make sure you been following the discussion. Stride corresponds to
spatial locality. Working set size corresponds to temporal locality.

Problem 6.19 Solution: [Pg. 331]

A. The peak throughput from L1 is about 1000 MB/s and the clock frequency is about 500 MHz. Thus
it takes roughly500=1000 � 4 = 2 cycles to access a word from L1.

B. To estimate the L2 access time, we need to identify a region on the memory mountain where each
reference is missing in L1 and then hitting in L2. In particular, we want a region where (1) the working
set is too big for L1 but fits in L2 (e.g., 256 bytes) and (2) the stride exceeds the line size (e.g., a stride
of 16 words). From the memory mountain graph, observe that the effective throughput in the region
(size=256, stride=16) is about 300 MB/s. Thus, we estimate that it takes about500=300 � 4 � 7
cycles to read a word from L2.

C. To estimate the main memory access time, we look at the point on the mountain with the largest stride
and working set size, where every reference is missing in both L1 and L2. From the graph, the read
throughput in the region (size=8M, stride=16) is about 80 MB/s. Thus, we estimate that it takes about
500=80 � 4 � 25 cycles to read a word from main memory.

B.7 Linking

Problem 7.1 Solution: [Pg. 357]

The purpose of this problem is to help you understand the relationship between linker symbols and C
variables and functions. Notice that the C local variabletemp doesnot have a symbol table entry.

Symbol swap.o .symtab entry? Symbol type Module where defined Section

buf yes extern main.o .data
bufp0 yes global swap.o .data
bufp1 yes global swap.o .bss
swap yes global swap.o .text
temp no — — —

724 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

Problem 7.2 Solution: [Pg. 360]

This is a simple drill that checks your understanding of the rules that a Unix linker uses when it resolves
global symbols that are defined in more than one module. Understanding these rules can help you avoid
some nasty programming bugs.

A. The linker chooses the strong symbol defined in Module 1 over the weak symbol defined in Module
2 (Rule 2):

(a) REF(main.1) --> DEF(main.1)

(b) REF(main.2) --> DEF(main.1)

B. This is an ERROR, because each module defines a strong symbolmain (Rule 1).

C. The linker chooses the strong symbol defined in Module 2 over the weak symbol defined in Module
1 (Rule 2):

(a) REF(x.1) --> DEF(x.2)

(b) REF(x.2) --> DEF(x.2)

Problem 7.3 Solution: [Pg. 365]

Placing static libraries in the wrong order on the command line is a common source of linker errors that
confuses many programmers. However, once you understand how linkers use static libraries to resolve
references, it’s pretty straightforward. This little drill checks your understanding of this idea:

A. gcc p.o libx.a

B. gcc p.o libx.a liby.a

C. gcc p.o libx.a liby.a libx.a

Problem 7.4 Solution: [Pg. 369]

This problem concerns the disassembly listing in Figure 7.10. Our purpose here is to give you some practice
reading disassembly listings and to check your understanding of PC-relative addressing.

A. The hex address of the relocated reference in line 5 is0x80483bb.

B. The hex value of the relocated reference in line 5 is0x9. Remember that the disassembly listing
shows the value of the reference in little-endian byte order.

C. The key observation here is that no matter where the linker locates the.text section, the distance
between the reference and theswap function is always the same. Thus, because the reference is a
PC-relative address, its value will be0x9, regardless of where the linker locates the.text section.

B.8. EXCEPTIONAL CONTROL FLOW 725

Problem 7.5 Solution: [Pg. 374]

How C programs actually start up is a mystery to most programmers. These questios check your under-
standing of this startup process. You can answer them by referrig to the C startup code in Figure 7.14:

A. Every program needs amain function, because the C startup code, which is common to every C
program, jumps to a function calledmain.

B. If main terminates with areturn statement, then control passes back to the startup routine, which
returns control to the operating system by callingexit. The same behavior occurs if the user omits
thereturn statement. Ifmain terminates with a call toexit, then exit eventually returns control
to the operating system by callingexit. The net effect is the same in all three cases: whenmain
has finished, control passes back to the operating system.

B.8 Exceptional Control Flow

Problem 8.1 Solution: [Pg. 408]

In our example program in Figure 8.13, the parent and child execute disjoint sets of instructions. However,
in this program, the parent and child execute non-disjoint sets of instructions, which is possible because the
parent and child have identical code segments. This can be a difficult conceptual hurdle. So be sure you
understand the solution to this problem.

A. What is the output of the child process? The key idea here is that the child executes bothprintf
statements. After thefork returns, it executes theprintf in line 8. Then it falls out of theif
statement and executes theprintf in line 9. Here is the output produced by the child:

printf1: x=2
printf2: x=1

B. What is the output of the parent process? The parent executes only theprintf in line 9:

printf2: x=0

Problem 8.2 Solution: [Pg. 408]

This program has the same process hierarchy as the program in Figure 8.14(c). There are a total of four
processes, each of which prints a single “hello” line. Thus, the program prints four “hello” lines.

Problem 8.3 Solution: [Pg. 408]

This program has the same process hierarchy as the program in Figure 8.14(c). There are four processes.
Each process prints one “hello” line indoit and one “hello” line inmain after it returns fromdoit. Thus,
the program prints a total of eight “hello” lines.

Problem 8.4 Solution: [Pg. 411]

726 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

A. Each time we run this program, it generates six output lines.

B. The ordering of the output lines will vary from system to system, depending on the how the kernel
interleaves the instructions of the parent and the child. In general, any topological sort of the following
graph is a valid ordering:

--> ‘‘0’’ --> ‘‘2’’ --> ‘‘Bye’’ parent process
/

‘‘Hello’’
\

--> ‘‘1’’ --> ‘‘Bye’’ child process

For example, when we run the program on our system, we get the following output:

unix> ./waitprob1
Hello
0
1
Bye
2
Bye

In this case, the parent runs first, printing “Hello” in line 8 and “0 ” in line 10. The call towait
blocks because the child has not yet terminated, so the kernel does a context switch and passes control
to the child, which prints “1” in line 10 and “Bye” in line 16, and then terminates with an exit status
of 2 in line 17. After the child terminates, the parent resumes, printing the child’s exit status in line
14 and “Bye” in line 16.

Problem 8.5 Solution: [Pg. 415]

code/ecf/snooze.c

1 unsigned int snooze(unsigned int secs) {
2 unsigned int rc = sleep(secs);
3 printf("Slept for %u of %u secs.\n", secs - rc, secs);
4 return rc;
5 }

code/ecf/snooze.c

Problem 8.6 Solution: [Pg. 417]

code/ecf/myecho.c

1 #include "csapp.h"
2

3 int main(int argc, char *argv[], char *envp[])
4 {
5 int i;

B.8. EXCEPTIONAL CONTROL FLOW 727

6

7 printf("Command line arguments:\n");
8 for (i=0; argv[i] != NULL; i++)
9 printf(" argv[%2d]: %s\n", i, argv[i]);

10

11 printf("\n");
12 printf("Environment variables:\n");
13 for (i=0; envp[i] != NULL; i++)
14 printf(" envp[%2d]: %s\n", i, envp[i]);
15

16 exit(0);
17 }

code/ecf/myecho.c

Problem 8.7 Solution: [Pg. 429]

Thesleep function returns prematurely whenever the sleeping process receives a signal that is not ignored.
But since the default action upon receipt of a SIGINT is to terminate the process (Figure 8.23), we must
install a SIGINT handler to allow thesleep function to return. The handler simply catches the SIGNAL
and returns control to thesleep function, which then returns immediately.

code/ecf/snooze.c

1 #include "csapp.h"
2

3 /* SIGINT handler */
4 void handler(int sig)
5 {
6 return; /* catch the signal and return */
7 }
8

9 unsigned int snooze(unsigned int secs) {
10 unsigned int rc = sleep(secs);
11 printf("Slept for %u of %u secs.\n", secs - rc, secs);
12 return rc;
13 }
14

15 int main(int argc, char **argv) {
16

17 if (argc != 2) {
18 fprintf(stderr, "usage: %s <secs>\n", argv[0]);
19 exit(0);
20 }
21

22 if (signal(SIGINT, handler) == SIG_ERR) /* install SIGINT handler */
23 unix_error("signal error\n");
24 (void)snooze(atoi(argv[1]));
25 exit(0);
26 }

728 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

code/ecf/snooze.c

B.9 Measuring Program Performance

Problem 9.1 Solution: [Pg. 451]

At first, it seems ridiculous to interrupt the CPU and execute 100,000 cycles just to deal with a single
keystroke. When you work through the numbers, however, it becomes clear that the overall load on the
CPU will be fairly small.

100 WPM corresponds to 10 keystrokes per second. The total number of cycles used per second by the 100
typists will be10� 102 � 105 = 108, i.e.,10% of the total cycles the processor can supply.

Problem 9.2 Solution: [Pg. 454]

This problem requires careful study of the trace, and an anticipation of the type of pattern that will arise.

A. They occur every 9.98–9.99ms:358.93, 368.91, 378.89,388.88, 398.86,408.85, 418.83,428.81.
Note that the ones that are not italicized were determined by adding 9.98 to the preceding time.

B. The italicized times shown above. They caused a new period of inactivity.

C. The inactive times include the time spent servicing two interrupts in addition to the time spent exe-
cuting the other process.

D. Our process is active for around 9.5ms every 20.0 ms, i.e., 47.5% of the time.

Problem 9.3 Solution: [Pg. 457]

This problem involves simply labeling the execution sequence according to the process that is executing,
and determining whether the process is in user or kernel mode.

Au Au As Bu Bu Bu Bu Bs Bu As Au Au Au Au Bs Bu Bu Bu Bs Au As Au Au Au As

A 100u + 40s

B 80u + 30s

B BAA A

Problem 9.4 Solution: [Pg. 457]

This is an interesting thought problem. It helps you reason about the range of possible times that can lead
to a given interval count.

The following diagram illustrates the two cases:

B.9. MEASURING PROGRAM PERFORMANCE 729

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

For the minimum case, the segment started just before the interrupt at time 10 and finished right as the
interrupt at time 70 occurred, giving a total time of just over 60ms. For the maximum case, the segment
started right after the interrupt at time 0 and continued until just before the interrupt at time 80, giving a
total time of just under 80ms.

Problem 9.5 Solution: [Pg. 457]

This problem requires thinking about how well the accounting scheme works. The seven timer interrupts
occur while the process is active. This would give a user time of 70ms and a system time of 0ms. In the
actual trace, the process ran for 63.7ms in user mode and 3.3ms in kernel mode. The counter overestimated
the true execution time by70=(63:7 + 3:3) = 1:04X.

Problem 9.6 Solution: [Pg. 465]

This problem requires reasoning about the different sources of delay in a program and under what conditions
these sources will apply.

From these measurements we get:

c+m+ p+ d = 399

c+ d = 133� 1

c+ p = 317

From this we conclude thatc = 100, d � 33, p = 217, andm = 49.

Problem 9.7 Solution: [Pg. 475]

This problem requires applying probability theory to a simple model of process scheduling. It demonstrates
that obtaining accurate measurements becomes very difficult as the times approach the process time limit.

A. For t � 50, the probability of running in one segment is1� t=50. Fort > 50, the probability is 0.

B. For t � 50, we will never get any trial that executes within a single process segment. Fort < 50, the
probability of success isp = (50� t)=50, and hence we would expect3=p = 150=(50� t) trials. For
t = 20 we expect to require 5 trials, while fort = 40 we expect 15.

Problem 9.8 Solution: [Pg. 476]

730 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

This is theUNIX version of the Y2K problem. Some people predict total disaster when the clock wraps
around. Just as with Y2K, we believe these fears are unwarranted.

This will occur231 seconds after January 1, 1970, i.e., on January 19, 2038, at 3:14AM.

B.10 Virtual Memory

Problem 10.1 Solution: [Pg. 488]

This problem gives you some appreciation for the sizes of different address spaces. At one point in time, a
32-bit address space seemed impossibly large. But now there are database and scientific applications that
need more, and you can expect this trend to continue. At some point in your lifetime, expect to find yourself
complaining about the cramped 64-bit address space on your personal computer!

address bits (n) # unique addresses (N) Largest address

8 2
8
= 256 2

8 � 1 = 255

16 2
16

= 64K 2
16 � 1 = 64K � 1

32 2
32

= 4G 2
32 � 1 = 4G� 1

48 2
48

= 256T 2
48

= 256T � 1

64 2
64

= 16; 384P 2
64 � 1 = 16; 384P � 1

Problem 10.2 Solution: [Pg. 490]

Since each virtual page isP = 2p bytes, there are a total of2n=2p = 2n�p possible pages in the system,
each of which needs a page table entry (PTE).

n P = 2
p # PTE’s

16 4K 16
16 8K 8
32 4K 1M
32 8K 512K

Problem 10.3 Solution: [Pg. 500]

You need to understand this kind of problem cold in order to understand address translation. Here is how
to solve the first subproblem: We are givenn = 32 virtual address bits andm = 24 physical address bits.
A page size ofP = 1KB means we needlog2(1K) = 10 bits for both the VPO and PPO (Recall that the
VPO and PPO are identical). The remaining address bits are the VPN and PPN respectively.

P # VPN bits # VPO bits # PPN bits # PPO bits

1 KB 22 10 14 10
2 KB 21 11 13 11
4 KB 20 12 12 12
8 KB 19 13 11 13

Problem 10.4 Solution: [Pg. 507]

B.10. VIRTUAL MEMORY 731

Doing a few of these manual simulations is a great way to firm up your understanding of address translation.
You might find it helpful to write out all the bits in the addresses, and then draw boxes around the different
bit fields, such as VPN, TLBI, etc. In this particular problem, there are no misses of any kind: the TLB has
a copy of the PTE and the cache has a copy of the requested data words. See Problems 10.11, 10.12, and
10.13 for some different combinations of hits and misses.

A. 00 0011 1101 0111

B. VPN: 0xf
TLBI: 0x3
TLBT: 0x3
TLB hit? Y
page fault? N
PPN: 0xd

C. 0011 0101 0111

D. CO: 0x3
CI: 0x5
CT: 0xd
cache hit? Y
cache byte? 0x1d

Problem 10.5 Solution: [Pg. 522]

Solving this problem will give you a good feel for the idea of memory mapping. Try it your yourself. We
haven’t discussed theopen, fstat, or write functions, so you’ll need to read their man pages to see
how they work.

code/vm/mmapcopy.c

1 #include "csapp.h"
2

3 /*
4 * mmapcopy - uses mmap to copy file fd to stdout
5 */
6 void mmapcopy(int fd, int size)
7 {
8 char *bufp; /* ptr to memory mapped VM area */
9

10 bufp = Mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, 0);
11 Write(1, bufp, size);
12 return;
13 }
14

15 /* mmapcopy driver */
16 int main(int argc, char **argv)

732 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

17 {
18 struct stat stat;
19 int fd;
20

21 /* check for required command line argument */
22 if (argc != 2) {
23 printf("usage: %s <filename>\n", argv[0]);
24 exit(0);
25 }
26

27 /* copy the input argument to stdout */
28 fd = Open(argv[1], O_RDONLY, 0);
29 fstat(fd, &stat);
30 mmapcopy(fd, stat.st_size);
31 exit(0);
32 }

code/vm/mmapcopy.c

Problem 10.6 Solution: [Pg. 531]

This problem touches on some core ideas such as alignment requirements, minimum block sizes, and header
encodings. The general approach for determining the block size is to round the sum of the requested payload
and the header size to nearest multiple of the alignment requirement (in this case eight bytes). For example,
the block size for themalloc(1) request is4 + 1 = 5 rounded up to eight. The block size for the
malloc(13) request is13 + 4 = 17 rounded up to 24.

Request Block size (decimal bytes) Block header (hex)

malloc(1) 8 0x9
malloc(5) 16 0x11

malloc(12) 16 0x11
malloc(13) 24 0x19

Problem 10.7 Solution: [Pg. 535]

The minimum block size can have a significant effect on internal fragmentation. Thus, it is good to under-
stand the minimum block sizes associated with different allocator designs and alignment requirements. The
tricky part is to realize that the same block can be allocated or free at different points in time. Thus, the
minimum block size is the maximum of the minimum allocated block size and the minimum free block size.
For example, in the last subproblem, the minimum allocated block size is a four-byte header and a one-byte
payload rounded up to eight bytes. The minimum free block size is a four-byte header and four-byte footer,
which is already a multiple of eight and doesn’t need to be rounded. So the minimum block size for this
allocator is eight bytes.

Alignment Allocated block Free block Minimum block size (bytes)

Single-word Header and footer Header and footer 12
Single-word Header, but no footer Header and footer 8
Double-word Header and footer Header and footer 16
Double-word Header, but no footer Header and footer 8

B.10. VIRTUAL MEMORY 733

Problem 10.8 Solution: [Pg. 543]

There is nothing very tricky here. But the solution requires you to understand how the rest of our simple
implicit-list allocator works and how to manipulate and traverse blocks.

code/vm/malloc.c

1 static void *find_fit(size_t asize)
2 {
3 void *bp;
4

5 /* first fit search */
6 for (bp = heap_listp; GET_SIZE(HDRP(bp)) > 0; bp = NEXT_BLKP(bp)) {
7 if (!GET_ALLOC(HDRP(bp)) && (asize <= GET_SIZE(HDRP(bp)))) {
8 return bp;
9 }

10 }
11 return NULL; /* no fit */
12 }

code/vm/malloc.c

Problem 10.9 Solution: [Pg. 543]

The is another warm-up exercise to help you become familiar with allocators. Notice that for this allocator
the minimum block size is 16 bytes. If the remainder of the block after splitting would be greater than or
equal to the minimum block size, then we go ahead and split the block (lines 6 to 10). The only tricky part
here is to realize that you need to place the new allocated block (lines 6 and 7) before moving to the next
block (line 8).

code/vm/malloc.c

1 static void place(void *bp, size_t asize)
2 {
3 size_t csize = GET_SIZE(HDRP(bp));
4

5 if ((csize - asize) >= (DSIZE + OVERHEAD)) {
6 PUT(HDRP(bp), PACK(asize, 1));
7 PUT(FTRP(bp), PACK(asize, 1));
8 bp = NEXT_BLKP(bp);
9 PUT(HDRP(bp), PACK(csize-asize, 0));

10 PUT(FTRP(bp), PACK(csize-asize, 0));
11 }
12 else {
13 PUT(HDRP(bp), PACK(csize, 1));
14 PUT(FTRP(bp), PACK(csize, 1));
15 }
16 }

code/vm/malloc.c

734 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

Problem 10.10 Solution: [Pg. 545]

Here is one pattern that will cause external fragmentation: The application makes numerous allocation and
free requests to the first size class, followed by numerous allocation and free requests to the second size
class, followed by numerous allocation and free requests to the third size class, and so on. For each size
class, the allocator creates a lot of memory that is never reclaimed because the allocator doesn’t coalesce,
and because the application never requests blocks from that size class again.

B.11 Concurrent Programming with Threads

Problem 11.1 Solution: [Pg. 569]

This is your first exposure to the many synchronization problems that can arise in threaded programs.

A. The problem is that the main thread callsexit without waiting for the peer thread to terminate. The
exit call terminates the entire process, including any threads that happen to be running. So the peer
thread is being killed before it has a chance to print its output string.

B. We can fix the bug by replacing theexit function with eitherpthread exit, which waits for
outstanding threads to terminate before it terminates the process, orpthread join which explicitly
reaps the peer thread.

Problem 11.2 Solution: [Pg. 572]

The main idea here is that stack variables are private while global and static variables are shared. Static
variables such ascnt are a little tricky because the sharing is limited to the functions within their scope, in
this case the thread routine.

A. Here is the table:

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0 ? peer thread 1?

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.p0 no yes no
myid.p1 no no yes

Notes:

ptr: A global variable that is written by the main thread and read by the peer threads.

cnt: A static variable with only one instance in memory that is read and written by the two peer
threads.

B.11. CONCURRENT PROGRAMMING WITH THREADS 735

i.m: A local automatic variable stored on the stack of the main thread. Even though its value is
passed to the peer threads, the peer threads never reference it on the stack, and thus it is not
shared.

msgs.m: A local automatic variable stored on the main thread’s stack and referenced indirectly
throughptr by both peer threads.

myid.0 and myid.1: Instances of a local automatic variable residing on the stacks of peer threads
0 and 1 respectively.

B. Variablesptr, cnt, and msgs are referenced by more than one thread, and thus are shared.

Problem 11.3 Solution: [Pg. 576]

A. Sequentially consistent.

B. Not sequentially consistent becauseU1 executes beforeL1.

C. Sequentially consistent.

D. Not sequentially consistent becauseS2 executes beforeU2.

Problem 11.4 Solution: [Pg. 576]

The important idea here is that sequential consistency is not enough to guarantee correctness. Programs
must explicitly synchronize accesses to shared variables.

Step Thread Instr %eax1 %eax2 ctr

1 1 H1 – – 0
2 1 L1 0 – 0
3 2 H2 – – 0
4 2 L2 – 0 0
5 2 U2 – 1 0
6 2 S2 – 1 1
7 1 U1 1 – 1
8 1 S1 1 – 1
9 1 T1 1 – 1
10 2 T2 1 – 1

Variablecnt has a final incorrect value of1.

Problem 11.5 Solution: [Pg. 599]

If we free the block immediately after the call topthread create in line 15, then we will introduce a
new race, this time between the call tofree in the main thread, and the assignment statement in line 25 of
the thread routine.

Problem 11.6 Solution: [Pg. 599]

736 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

A. Another approach is to pass the integeri directly, rather than passing a pointer toi :

for (i = 0; i < N; i++)
Pthread_create(&tid[i], NULL, thread, (void *)i);

In the thread routine, we cast the argument back to anint and assign it tomyid:

int myid = (int) vargp;

B. The advantage is that it reduces overhead by eliminating the calls tomalloc andfree. A significant
disadvantage is that it assumes that pointers are at least as large asints. While this assumption is
true for all modern systems, it might not be true for legacy or future systems.

Problem 11.7 Solution: [Pg. 600]

A. This program always deadlocks because the initial state is within the deadlock region..

B. To eliminate the deadlock, initaliaize the binary semaphoret to 1 instead of 0.

B.12 Network Programming

Problem 12.1 Solution: [Pg. 613]

Hex address Dotted decimal address

0x0 0.0.0.0
0xffffffff 255.255.255.255
0x7f000001 127.0.0.1
0xcdbca079 205.188.160.121
0x400c950d 64.12.149.13
0xcdbc9217 205.188.146.23

Problem 12.2 Solution: [Pg. 614]

code/net/hex2dd.c

1 #include "csapp.h"
2

3 int main(int argc, char **argv)
4 {
5 struct in_addr inaddr; /* addr in network byte order */
6 unsigned int addr; /* addr in host byte order */
7

B.12. NETWORK PROGRAMMING 737

8 if (argc != 2) {
9 fprintf(stderr, "usage: %s <hex number>\n", argv[0]);

10 exit(0);
11 }
12 sscanf(argv[1], "%x", &addr);
13 inaddr.s_addr = htonl(addr);
14 printf("%s\n", inet_ntoa(inaddr));
15

16 exit(0);
17 }

code/net/hex2dd.c

Problem 12.3 Solution: [Pg. 614]

code/net/dd2hex.c

1 #include "csapp.h"
2

3 int main(int argc, char **argv)
4 {
5 struct in_addr inaddr; /* addr in network byte order */
6 unsigned int addr; /* addr in host byte order */
7

8 if (argc != 2) {
9 fprintf(stderr, "usage: %s <dotted-decimal>\n", argv[0]);

10 exit(0);
11 }
12

13 if (inet_aton(argv[1], &inaddr) == 0)
14 app_error("inet_aton error");
15 addr = ntohl(inaddr.s_addr);
16 printf("0x%x\n", addr);
17

18 exit(0);
19 }

code/net/dd2hex.c

Problem 12.4 Solution: [Pg. 618]

Each time we request the host entry foraol.com, the list of corresponding Internet addresses is returned
in a different, round-robin order.

unix> ./hostinfo aol.com
official hostname: aol.com
address: 205.188.146.23
address: 205.188.160.121
address: 64.12.149.13

unix>> ./hostinfo aol.com

738 APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS

official hostname: aol.com
address: 64.12.149.13
address: 205.188.146.23
address: 205.188.160.121

unix>> ./hostinfo aol.com
official hostname: aol.com
address: 205.188.146.23
address: 205.188.160.121
address: 64.12.149.13

The different ordering of the addresses in different DNS queries is known asDNS round-robin. It can be
used to load-balance requests to a heavily used domain name.

Problem 12.5 Solution: [Pg. 640]

When the parent forks the child, it gets a copy of the connected descriptor and the reference count for the
associated file table in incremented from 1 to 2. When the parent closes its copy of the descriptor, the
reference count is decremented from 2 to 1. Since the kernel will not close a file until the reference counter
in its file table goes to zero, the child’s end of the connection stays open.

Problem 12.6 Solution: [Pg. 640]

When a process terminates for any reason, the kernel closes all open descriptors. Thus, the child’s copy of
the connected file descriptor will be closed automatically when the child exits.

Problem 12.7 Solution: [Pg. 652]

The reason that standard I/O works in CGI programs is that we never have to explicitly close the standard
input and output streams. When the child exits, the kernel will close streams and their associated file
descriptors automatically.

Problem 12.8 Solution: [Pg. 662]

A. Thedoit function is not reentrant, because it and its subfunctions use the non-reentrantreadline
function.

B. To make Tiny reentrant, we must replace all calls toreadline with its reentrant counterpartread-
line r, being carefull to callreadline rinit in doit before the first call toreadline r.

Bibliography

[1] K. Arnold and J. Gosling.The Java Programming Language. Addison-Wesley, 1996.

[2] V. Bala, E. Duesterwald, and S. Banerjiia. Dynamo: A transparent dynamic optimization system. In
Proceedings of the 1995 ACM Conference on Programming Language Design and Implementation
(PLDI), pages 1–12, June 2000.

[3] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext transfer protocol - HTTP/1.0. RFC 1945, 1996.

[4] A. Birrell. An introduction to programming with threads. Technical Report Report 35, Digital Systems
Research Center, 1989.

[5] F. P. Brooks, Jr.The Mythical Man-Month. Addison-Wesley, 1979.

[6] A. Demke Brown and T. Mowry. Taming the memory hogs: Using compiler-inserted releases to
manage physical memory intelligently. InProceedings of the Fourth Symposium on Operating Systems
Design and Implementation (OSDI), pages 31–44, October 2000.

[7] B. R. Buck and J.K. Hollingsworth. An API for runtime code patching.Journal of High Performance
Computing Applications, 14(4):317–324, June 2000.

[8] D. Butenhof.Programming with Posix Threads. Addison-Wesley, 1997.

[9] S. Carson and P. Reynolds. The geometry of semaphore programs.ACM Transactions on Programming
Languages and Systems, 9(1):25–53, 1987.

[10] J. B. Carter, W. C. Hsieh, L. B. Stoller, M. R. Swanson, L. Zhang, E. L. Brunvand, A. Davis, C.-C.
Kuo, R. Kuramkote, M. A. Parker, L. Schaelicke, and T. Tateyama. Impulse: Building a smarter mem-
ory controller. InProceedings of the Fifth International Symposium on High Performance Computer
Architecture (HPCA), pages 70–79, January 1999.

[11] P. Chen, E. Lee, G. Gibson, R. Katz, and D. Patterson. RAID: High-performance, reliable secondary
storage.ACM Computing Surveys, 26(2), June 1994.

[12] S. Chen, P. Gibbons, and T. Mowry. Improving index performance through prefetching. InProceedings
of the 2001 ACM SIGMOD Conference. ACM, May 2001.

[13] T. Chilimbi, M. Hill, and J. Larus. Cache-conscious structure layout. InProceedings of the 1999 ACM
Conference on Programming Language Design and Implementation (PLDI), pages 1–12. ACM, May
1999.

739

740 BIBLIOGRAPHY

[14] B. Cmelik and D. Keppel. Shade: A fast instruction-set simulator for execution profiling. InProceed-
ings of the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems,
pages 128–137, May 1994.

[15] E. Coffman, M. Elphick, and A. Shoshani. System deadlocks.ACM Computing Surveys, 3(2):67–78,
June 1971.

[16] Danny Cohen. On holy wars and a plea for peace.IEEE Computer, 14(10):48–54, October 1981.

[17] Intel Corporation. Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture,
1999. Order Number 243190.
Also available athttp://developer.intel.com/ .

[18] Intel Corporation.Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Refer-
ence, 1999. Order Number 243191.
Also available athttp://developer.intel.com/ .

[19] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer overflows: Attacks and defenses for
the vulnerability of the decade. InDARPA Information Survivability Conference and Expo (DISCEX),
March 2000.

[20] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison of contemporary DRAM
architectures. InProceedings of the Twenty-Sixth International Symposium on Computer Architecture
(ISCA), Atlanta, GA, May 1999. IEEE.

[21] B. Davis, B. Jacob, and T. Mudge. The new DRAM interfaces: SDRAM, RDRAM, and variants. In
Proceedings of the Third International Symposium on High Performance Computing (ISHPC), Tokyo,
Japan, October 2000.

[22] E. W. Dijkstra. Cooperating sequential processes. Technical Report EWD-123, Technological Univer-
sity, Eindhoven, The Netherlands, 1965.

[23] C. Ding and K. Kennedy. Improving cache performance of dynamic applications through data and
computation reorganizations at run time. InProceedings of the 1999 ACM Conference on Program-
ming Language Design and Implementation (PLDI), pages 229–241. ACM, May 1999.

[24] M. W. Eichen and J. A. Rochlis. With microscope and tweezers: An analysis of the Internet virus of
November, 1988. InIEEE Symposium on Research in Security and Privacy, 1989.

[25] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
transfer protocol - HTTP/1.1. RFC 2616, 1999.

[26] G. Gibson, D. Nagle, K. Amiri, J. Butler, F. Chang, H. Gobioff, C. Hardin, E. Riedel, D. Rochberg, and
J. Zelenka. A cost-effective, high-bandwidth storage architecture. InProceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS).
ACM, October 1998.

[27] G. Gibson and R. Van Meter. Network attached storage architecture.Communications of the ACM,
43(11), November 2000.

BIBLIOGRAPHY 741

[28] L. Gwennap. Intel’s P6 uses decoupled superscalar design.Microprocessor Report, 9(2), February
1995.

[29] L. Gwennap. New algorithm improves branch prediction.Microprocessor Report, 9(4), March 1995.

[30] S. P. Harbison and G. L. Steele, Jr.C, A Reference Manual. Prentice-Hall, 1995.

[31] J. L. Hennessy and D. A. Patterson.Computer Architecture: A Quantitative Approach, Second Edition.
Morgan-Kaufmann, San Francisco, 1996.

[32] Intel. Tool Interface Standards Portable Formats Specification, Version 1.1, 1993. Order number
241597.
Also available athttp://developer.intel.com/vtune/tis.htm .

[33] F. Jones, B. Prince, R. Norwood, J. Hartigan, W. Vogley, C. Hart, and D. Bondurant. A new era of fast
dynamic RAMs.IEEE Spectrum, pages 43–39, October 1992.

[34] R. Jones and R. Lins.Garbage Collection: Algorithms for Automatic Dynamic Memory Management.
Wiley, 1996.

[35] M. Kaashoek, D. Engler, G. Ganger, H. Briceo, R. Hunt, D. Maziers, T. Pinckney, R. Grimm, J. Jan-
notti, and K. MacKenzie. Application performance and flexibility on Exokernel systems. InProceed-
ings of the Sixteenth Symposium on Operating System Principles (SOSP), October 1997.

[36] R. Katz. Contemporary Logic Design. Addison-Wesley, 1993.

[37] B. Kernighan and D. Ritchie.The C Programming Language, Second Edition. Prentice Hall, 1988.

[38] B. W. Kernighan and R. Pike.The Practice of Programming. Addison-Wesley, 1999.

[39] T. Kilburn, B. Edwards, M. Lanigan, and F. Sumner. One-level storage system.IRE Transactions on
Electronic Computers, EC-11:223–235, April 1962.

[40] D. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms, Second Edition.
Addison-Wesley, 1973.

[41] J. Kurose and K. Ross.Computer Networking: A Top-Down Approach Featuring the Internet.
Addison-Wesley, 2000.

[42] M. Lam, E. Rothberg, and M. Wolf. The cache performance and optimizations of blocked algorithms.
In Proceedings of the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). ACM, April 1991.

[43] J. R. Larus and E. Schnarr. EEL: Machine-independent executable editing. InProceedings of the 1995
ACM Conference on Programming Language Design and Implementation (PLDI), June 1995.

[44] J. R. Levine.Linkers and Loaders. Morgan-Kaufmann, San Francisco, 1999.

[45] Y. Lin and D. Padua. Compiler analysis of irregular memory accesses. InProceedings of the 2000
ACM Conference on Programming Language Design and Implementation (PLDI), pages 157–168.
ACM, June 2000.

742 BIBLIOGRAPHY

[46] J. L. Lions. Ariane 5 Flight 501 failure. Technical report, European Space Agency, July 1996. Avail-
able as http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html.

[47] S. Macguire.Writing Solid Code. Microsoft Press, 1993.

[48] J. Markoff. Microsoft caught in ‘dirty tricks’ vs. AOL.New York Times, August 16 1999.

[49] E. Marshall. Fatal error: How Patriot overlooked a Scud.Science, page 1347, March 13 1992.

[50] J. Morris, M. Satyanarayanan, M. Conner, J. Howard, D. Rosenthal, and F. Smith. Andrew: A dis-
tributed personal computing environment.Communications of the ACM, March 1986.

[51] T. Mowry, M. Lam, and A. Gupta. Design and evaluation of a compiler algorithm for prefetching. In
Proceedings of the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). ACM, October 1992.

[52] S. S. Muchnick.Advanced Compiler Design and Implementation. Morgan-Kaufmann, 1997.

[53] M. Overton.Numerical Computing with IEEE Floating Point Arithmetic. SIAM, 2001.

[54] D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays of inexpensive disks (RAID). In
Proceedings of the 1998 ACM SIGMOD Conference. ACM, June 1988.

[55] L. Peterson and B. Davies.Computer Networks: A Systems Approach, Third Edition. Morgan-
Kaufmann, 1999.

[56] S. Przybylski. Cache and Memory Hierarchy Design: A Performance-Directed Approach. Morgan-
Kaufmann, 1990.

[57] W. Pugh. The Omega test: A fast and practical integer programming algorithm for dependence analy-
sis. Communications of the ACM, 35(8):102–114, August 1992.

[58] J. Rabaey.Digital Integrated Circuits: A Design Perspective. Prentice Hall, 1996.

[59] D. Ritchie. The evolution of the Unix time-sharing system.AT&T Bell Laboratories Technical Journal,
63(6 Part 2):1577–1593, October 1984.

[60] D. Ritchie. The development of the C language. InProceedings of the Second History of Programming
Languages Conference, Cambridge, MA, April 1993.

[61] D. Ritchie and K. Thompson. The Unix time-sharing system.Communications of the ACM, 17(7):365–
367, July 1974.

[62] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad, and B. Chen. Instrumenta-
tion and optimization of Win32/Intel executables using Etch. InProceedings of the USENIX Windows
NT Workshop, Seattle, Washington, August 1997.

[63] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and D. Steere. Coda: A highly
available file system for a distributed workstation environment.IEEE Transactions on Computers,
39(4):447–459, April 1990.

BIBLIOGRAPHY 743

[64] J. Schindler and G. Ganger. Automated disk drive characterization. Technical Report CMU-CS-99-
176, School of Computer Science, Carnegie Mellon University, 1999.

[65] B. Shriver and B. Smith.Anatomy of a High-Performance Processor. IEEE Computer Society, 1998.

[66] A. Silberschatz and P. Galvin.Operating Systems Concepts, Fifth Edition. John Wiley & Sons, 1998.

[67] R. Skeel. Roundoff error and the Patriot missile.SIAM News, 25(4):11, July 1992.

[68] A. Smith. Cache memories.ACM Computing Surveys, 14(3), September 1982.

[69] E. H. Spafford. The Internet worm program: An analysis. Technical Report CSD-TR-823, Department
of Computer Science, Purdue University, 1988.

[70] A. Srivastava and A. Eustace. ATOM: A system for building customized program analysis tools. In
Proceedings of the 1994 ACM Conference on Programming Language Design and Implementation
(PLDI), June 1994.

[71] W. Stallings. Operating Systems: Internals and Design Principles, Fourth Edition. Prentice Hall,
2000.

[72] W. Richard Stevens.Advanced Programming in the Unix Environment. Addison-Wesley, 1992.

[73] W. Richard Stevens.TCP/IP Illustrated: The Protocols, volume 1. Addison-Wesley, 1994.

[74] W. Richard Stevens.TCP/IP Illustrated: The Implementation, volume 2. Addison-Wesley, 1995.

[75] W. Richard Stevens.TCP/IP Illustrated: TCP for Transactions, HTTP, NNTP and the Unix domain
protocols, volume 3. Addison-Wesley, 1996.

[76] W. Richard Stevens.Unix Network Programming: Interprocess Communications, Second Edition,
volume 2. Prentice-Hall, 1998.

[77] W. Richard Stevens.Unix Network Programming: Networking APIs, Second Edition, volume 1.
Prentice-Hall, 1998.

[78] T. Stricker and T. Gross. Global address space, non-uniform bandwidth: A memory system perfor-
mance characterization of parallel systems. InProceedings of the Third International Symposium on
High Performance Computer Architecture (HPCA), pages 168–179, San Antonio, TX, February 1997.
IEEE.

[79] A. Tanenbaum.Modern Operating Systems, Second Edition. Prentice Hall, 2001.

[80] A. Tannenbaum.Computer Networks, Third Edition. Prentice-Hall, 1996.

[81] K. P. Wadleigh and I. L. Crawford.Software Optimization for High-Performance Computing: Creating
Faster Applications. Prentice-Hall, 2000.

[82] J. F. Wakerly.Digital Design Principles and Practices, Third Edition. Prentice-Hall, 2000.

744 BIBLIOGRAPHY

[83] M. V. Wilkes. Slave memories and dynamic storage allocation.IEEE Transactions on Electronic
Computers, EC-14(2), April 1965.

[84] P. Wilson, M. Johnstone, M. Neely, and D. Boles. Dynamic storage allocation: A survey and critical
review. InInternational Workshop on Memory Management, Kinross, Scotland, 1995.

[85] M. Wolf and M. Lam. A data locality algorithm. InConference on Programming Language Design
and Implementation (SIGPLAN), pages 30–44, June 1991.

[86] J. Wylie, M. Bigrigg, J. Strunk, G. Ganger, H. Kiliccote, and P. Khosla. Survivable information storage
systems.IEEE Computer, August 2000.

[87] X. Zhang, Z. Wang, N. Gloy, J. B. Chen, and M. D. Smith. System support for automatic profiling
and optimization. InProceedings of the Sixteenth ACM Symposium on Operating Systems Principles
(SOSP), pages 15–26, October 1997.

Index

* [C] dereference pointer operation, 103
�t (two’s complement multiplication),62
�u (unsigned multiplication),62
+t (two’s complement addition),57
+u (unsigned addition),56
-> [C] dereference and select field operation,154
�t (two’s complement negation),60
�u (unsigned negation),56
& [C] address of operation, 104
\n (newline character),2

.a static library archive file,362
Abelian group,56
abort,394
accept [Unix] wait for client connection request,

635
access time,287
acquiring (a mutex),586
active socket,633
actuator arm,287
adder [CS:APP] CGI adder,653
addition

two’s complement,57
unsigned,56

addl [IA32] add double word, 105
address

effective,367
physical,486
procedure return, 134
virtual, 487
virtual memory, 23

address order,543
address partitioning

in caches,306
address space,399, 487

linear,487

physical,487
private,399
virtual, 14, 487

address translation,487
adjacency matrix,344
AFS (Andrew File System), 300
alarm [Unix] schedule alarm to self,425
alarm.c [CS:APP]alarm example,427
aliasing,205
alignment,160, 527
allocated bit,529
allocated block,522
ALU (Arithmetic/Logic Unit), 7
Amdahl’s Law,266
andl [IA32] and double word, 105
anonymous file,516
ANSI (American National Standards Institute),2
a.out executable object file,353
AR Unix archiver,362
Archimedes, 88
archive,362
areal density,286
arithmetic shift,40
arithmetic/logic unit,seeALU
arm,seeactuator arm
array

relation to pointer, 30
ASCII, 2, 33
assembler,3, 4
associative memory,314
asynchronous exception,394
automatic variable, local,572

B2T (binary to two’s complement conversion),
42

B2U (binary to unsigned conversion),42

745

746 INDEX

background process,419
backlog,633
badcnt.c [CS:APP] improperly synchronized

Pthreads program,574
barrier,588
barrier [CS:APP] Pthreads barrier routine,589
barrier init [CS:APP] Pthreads barrier ini-

tialization,589
basic block, 268
beeping timebomb,590
Berkeley sockets,611
best fit,531
biased number encoding,70
big endian,27
binary point,67
binary semaphore,580
binary translation,383
bind [Unix] associate socket addr with descrip-

tor, 633
block offset bits,306
block pointer,537
block size

minimum,530
blocked signal,423
blocking,335
blocks,301
bmm-ijk [CS:APP] blocked matrix multiplyijk,

336
Boolean algebra,34
boundary tag,533
Bovik, Harry Q., iv
branch, 117

switch statement, 128
branch penalty,250
branch prediction,222
bridge,608
bridged ethernet,608
browser,647
.bss section,353
Bucking, Phil, 171
buddy,546
buddy system,546
buffer

store, 257

buffer overflow, 167, 552
AOL Instant Messenger, 171

bus,6, 281
bus transaction,281
byte,22
byte order

network,612

C, 2
ANSI C, 2
history of, 2
standard library,2

.c C source file,350
C++

reference parameters, 165
cache, 9, 304–337

lines vs. sets vs. blocks,321
symbols (fig.), 306

cache (as a general concept), 301–304
cache block,305
cache block offset,seeCO
cache bus,304
cache hit,302
cache line,305
cache management,303
cache miss,302
cache pollution,337
cache set index,seeCI
cache tag,seeCT
cache-friendly code,322
caching,301
call [IA32] procedure call, 134
callee,134
caller,134
calloc [C Stdlib] heap storage allocation func-

tion, 151
capacity

of cache,305
of disk,286

capacity miss,303
CAS (Column Access Strobe),278
catching signals, 424
central processing unit,seeCPU
CGI (Common Gateway Interface) program,651

INDEX 747

CGI script,seeCGI program
Chappell, Geoff, 172
child process,404
CI (Cache Set Index),505
client,17,605
client-server model,605
clienterror [CS:APP] TINY helper function,

657
CLK TCK[Unix] clock ticks per second,457
clock

variable rate, 480
clock [C Stdlib] process timing function,457
clock ticks,457
clock t [Unix] clock data type,457
CLOCKSPERSEC[C] clock scaling constant,457
close [C Stdlib] close file,627
close (file),620
cltd [IA32] convert double word to quad word,

109,110
cmovll [IA32] conditional move when less,251
cmpb [IA32] compare bytes, 111
cmpl [IA32] compare double words, 111
cmpw[IA32] compare words, 111
CO (Cache Block Offset),505
coalescing,529, 532

deferred,532
immediate,532

code
error-correcting, 36

code motion,213
code segment,371
cold cache,302
cold miss,302
column access strobe,seeCAS
compilation system,3
compile time,349
compiler,3, 4

driver,3
compiler driver, 350
compulsory miss,302
computation graph,227
computer system,1
concurrent process,399
concurrent server,638

condition variable,583
conditional move,251
conflict miss,302
connect [Unix] establish connection with server,

631
connected descriptor,635
connection,612, 618

full-duplex property of,618
point-to-point property of,618
reliable property of,618

consumer [CS:APP] consumer thread routine,
585

content,647
context,13, 398, 401
context switch,13, 401
control flow,391

exceptional,391
logical, 398,398

control transfer,391
conventional DRAM, 277
copy-on-write,517

private,517
core,422

dumping,422
CPE (cycles per element),207
cpstin.c [CS:APP] copy stdin to stdout,621
CPU (Central Processing Unit),7
critical section,577
csapp.c [CS:APP] wrapper functions, 403
csapp.h [CS:APP] header file, 403, 411
CT (Cache Tag),505
cycle counter,459
cycles per element,207
cylinder,285

spare, 293

d-cache (data cache),319
.data section,353
data cache,319
data segment,371
datagram,611
DDR SDRAM (Double Data-Rate Synchronous

DRAM), 280
deadlock,599

748 INDEX

deadlock region,600
.debug section,354
decl [IA32] decrement double word, 105
default action,428
demand paging,492
demand-zero page,516
denormalized

floating-point value,70
dereferencing, pointer, 103
descriptor,619
descriptor table,626
destination host,609
detached thread,568
DIMM (Dual Inline Memory Module),279
direct jump, 114
direct memory access,seeDMA
direct-mapped cache,306

conflict misses in, 311
detailed example, 308
line matching in, 307
line replacement in, 308
set selection in, 307
thrashing in,312
word selection in, 308

directory file,625
dirty bit

in cache,319
in virtual memory,512

dirty page,512
disk, 285–293

technology trends vs. memory and CPU (fig.),
294

disk controller,289, 290
disk drive,seedisk
disk geometry,285
divl [IA32] unsigned divide, 109,110
DIXtrac (disk characterization tool),292
dlclose [Unix] Close shared library,377
dlerror [Unix] Report shared library error,377
DLL (Dynamic Link Library),374
dlopen [Unix] Open shared libary,376
dlsym [Unix] Get address of shared library sym-

bol, 377
DMA (Direct Memory Access),292

DMA transfer,292
DNS (Domain Naming System),615
do [C] variant ofwhile loop, 119
doit [CS:APP] TINY helper function,656
domain name,612, 614

first-level,614
second-level,614

domain naming system,seeDNS
dotprod [CS:APP] vector dot product,311
dotted-decimal notation,613
double [C] double-precision floating point,77
double precision, 26,69
DRAM (Dynamic RAM),7, 277–281

historical popularity of, 281
SRAM vs., 277
technology trends vs. SRAM, disk, and CPU

(fig.), 294
DRAM array,277
DRAM cache,489
DRAM cell, 277
dual inline memory module,seeDIMM
dup2 [Unix] copy file descriptor,626
dynamic content, 376,647

serving,647
dynamic link library,seeDLL
dynamic linker,374
dynamic linking,374
dynamic memory allocator,522

explicit, 522
implicit, 522
memory utilization of,527
throughput of,527

dynamic random-access memory,seeDRAM

echo [CS:APP] read and echo input lines,638
echo r [CS:APP] reentrantecho function,646
echoclient.c [CS:APP] echo client,636
echoserveri.c [CS:APP] iterative echo server,

637
echoserverp.c [CS:APP] process-based con-

current echo server,641
echoservert.c [CS:APP] thread-based con-

current echo server,643
EDO DRAM (Extended Data Out DRAM),280

INDEX 749

EEPROM (Electrically-Erasable Programmable ROM),
281

effective address,367
eip [IA32] program counter, 93
ELF (Executable and Linkable Format),353

BSD and,353
header table,353
Linux and,353
relocation entry (fig.),366
relocation type

R 386 32 (absolute addressing),367
R 386 PC32(PC-relative addressing),366

segment header table,371
Solaris and,353
symbol table entry (fig.),356
System V Unix and,353

ELF header,353
encapsulation,610
end-of-file (EOF),620, 621
entry point,371, 372
EOF,seeend-of-file
ephemeral port,618
epilogue block,537
EPROM (Erasable Programmable ROM),281
error-correcting codes, 36
error-handling wrapper,403
error-reporting function,402
ethernet,606
ethernet segment,606
eval [CS:APP] shell helper routine,420
event,392
evicting blocks,302
exception,392

asynchronous,394
synchronous,395
table,393

exception handler,392
exception number,393
exception table base register,393
exception tble, 392
exceptional control flow,391
executable and linkable format,seeELF
executable object file,351, 352

fully linked, 371

execve [Unix] load program, 372,415
exit [C Stdlib] terminate process,404
exit status,404
expansion slot,290
explicit thread termination,567
explicitly reentrant function,593
exploit code, 170
exponent,69
extend heap [CS:APP] allocator: extend heap,

540
extended precision,86
external fragmentation,528

fabs [IA32] FP absolute value, 181
fadd [IA32] FP add, 181
fault, 394
faulting instruction,395
fchs [IA32] FP negate, 181
fcom [IA32] FP compare, 185
fcoml [IA32] FP compare double precision, 185
fcomp [IA32] FP compare with pop, 185
fcompl [IA32] FP compare double precision with

pop, 185
fcompp [IA32] FP compare with two pops, 185
fcomps [IA32] FP compare single precision with

pop, 185
fcoms [IA32] FP compare single precision, 185
fcos [IA32] FP cosine, 181
fcyc [CS:APP] compute function execution time,

480
fdiv [IA32] FP divide, 181
fdivr [IA32] FP reverse divide, 181
fildl [IA32] FP load and convert integer, 179
file, 15,619

anonymous,516
binary,2
executable object,3
header,362
include,362
regular,516
source,2
text,2

file descriptor,619
file position,620

750 INDEX

file table,401
file table entry,626
firmware,281
first fit, 531
first-level domain name,614
fistl [IA32] FP convert and store integer, 180
fistpl [IA32] FP convert and store integer with

pop, 180
fisubl [IA32] FP load and convert integer and

subtract, 181
flash memory,281
flat addressing,92
fld1 [IA32] FP load one, 181
fldl [IA32] FP load double precision, 179
fldl [IA32] FP load extended precision, 179
fldl [IA32] FP load from register, 179
flds [IA32] FP load single precision, 179
fldz [IA32] FP load zero, 181
float [C] single-precision floating point,77
floating point, 66–79

denormalized value,70
double precision,69
extended precision,86
IEEE, 69–70
normalized value,70
number representation, 66
rounding operation,75
single precision,69
status word, 184

flow of control,391
fmul [IA32] FP multiply, 181
fnstw [IA32] copy FP status word,185
footer,533
for [C] general loop statement, 126
forbidden region,580
foreground process,419
fork [Unix] Create child process,404
fork.c [CS:APP]fork example,405
formatted capacity,289
formatted printing, 30
FPM DRAM (Fast Page Mode DRAM),280
fractional binary number, 67
fractional binary representation, 69
fragmentation,528

external,528
false,532
internal,528

frame,608
stack,132

free [C Stdlib] deallocate heap storage,524
free block,522
free list

implicit, 530
free software, 4
fscale [IA32] FP scale by power of two,200
fsin [IA32] FP sine, 181
fsqrt [IA32] FP square root, 181
fst [IA32] FP store to register, 180
fstl [IA32] FP store double precision, 180
fstp [IA32] FP store to register with pop, 180
fstpl [IA32] FP store double precision with pop,

180
fstps [IA32] FP store single precision with pop,

180
fstpt [IA32] FP store extended precision with

pop, 180
fsts [IA32] FP store single precision, 180
fstt [IA32] FP store extended precision, 180
fsub [IA32] FP subtract, 181
fsubl [IA32] FP load double precision and sub-

tract, 181
fsubp [IA32] FP subtract with pop, 181
fsubr [IA32] FP reverse subtract, 181
fsubs [IA32] FP load single precision and sub-

tract, 181
fsubt [IA32] FP load extended precision and

subtract, 181
fucom [IA32] FP unordered compare, 185
fucoml [IA32] FP unordered compare double

precision, 185
fucomp [IA32] FP unordered compare with pop,

185
fucompl [IA32] FP unordered compare double

precision with pop, 185
fucompp [IA32] FP unordered compare with two

pops, 185
fucomps [IA32] FP unordered compare single

precision with pop, 185

INDEX 751

fucoms [IA32] FP unordered compare single pre-
cision, 185

full-duplex connection,618
fully associative cache,315

line matching in, 316
set selection in, 316
word selection in, 316

function
pointer to, 164

function, explicitly reentrant,593
function, implicitly reentrant,593
function, reentrant,593
function, thread-safe,592
function, thread-unsafe,592
fxch [IA32] FP exchange registers,180

gaps (between disk sectors),285
garbage,547
garbage collection, 151,523, 547
garbage collector,523, 547

conservative,548
GDB GNU debugger, 95,165
getenv [C Stdlib] read environment variable,416
gethostbyaddr [Unix] get DNS host entry,615
gethostbyname [Unix] get DNS host entry,615
getpgrp [Unix] get process group ID,423
getpid [Unix] get process ID,404
getppid [Unix] get parent process ID,404
gettimeofday [Unix] Time-of-day library func-

tion, 476
GHz (gigahertz),207
gigahertz,207
global offset table,seeGOT
global symbol,354
global variable, 570
GNU project, 4
goodcnt.c [CS:APP] properly synchronized Pthreads

program,582
GOT (Global Offset Table),379
goto [C] control transfer statement, 117
goto code, 117
GPROFUnix profiler,261
graphics adapter,290

.h include (header) file,362

handler,392
hardware cache,seecache
head crash,287
header,529, 608
header file,362
heap,14, 151, 372,522

allocated block,522
allocation withmalloc orcalloc (C), 151
block,522
free block,522

heap storage
allocation withnew (C++ and Java), 151
freeing by garbage collection (Java), 151
freeing withfree function (C and C++), 151

hello [CS:APP] C Hello program,1
hello.c [CS:APP] Pthreads Hello program,566
hexadecimal,23
hit rate,320
hit time,320
host,606
host entry structure,615
hostent [Unix] DNS host entry structure,615
HOSTINFO [CS:APP] get DNS host entry,617
HOSTNAME host information program,613
HTML (Hypertext Markup Language),647
htonl [Unix] convert host-to-network long,612
htons [Unix] convert host-to-network short,612
HTTP (Hypertext Transfer Protocol),647

status code,650
status message,650
GET method,649
method,649
POST method,649
request,649
request header,649
request line,649
response,650
response body,650
response header,650
response line,650

hub,606
hyperlinks,647

.i preprocessed C source file,350

752 INDEX

i-cache (instruction cache),319
i-node,626
I/O (Input/Output),6
I/O bridge,282
I/O bus,290
I/O device,6
I/O port,292
IA32 (Intel Architecture 32-bit),91
idivl [IA32] signed divide, 109,110
IEEE, 12

floating point, 69–70
IEEE (Institute for Electrical and Electronic En-

gineers), 66
IEEE floating point standard, 66
if [C] conditional statement, 117
implicit thread termination,567
implicitly reentrant function,593
implied leading 1,70
imull [IA32] multiply double word, 105
imull [IA32] signed multiply, 109,109
in addr [Unix] IP address structure,612
incl [IA32] increment double word, 105
include file,362
indirect jump, 114
inet aton [Unix] convert application-to-network,

613
inet ntoa [Unix] convert network-to-application,

613
Institute for Electrical and Electronic Engineers,

seeIEEE
instruction

I/O read, 7
I/O write, 7
jump, 8
load, 7
machine-language,3
store, 7
update, 7

instruction cache, 222,319
integral data type,41
internal fragmentation,528
Internet,609
internet,608
internet address,609

Internet domain name,612
Internet protocol,seeIP
interrupt,394, 451
interrupt handler,394
interval time,451
IP (Internet Protocol),611
IP address,612
IP address structure,612
issue time, instruction,224
iteration splitting,243
iterative server,638

ja [IA32] jump if unsigned greater, 114
jae [IA32] jump if unsigned greater or equal,

114
jb [IA32] jump if unsigned less, 114
jbe [IA32] jump if unsigned less or equal, 114
jg [IA32] jump if greater, 114
jge [IA32] jump if greater or equal, 114
jl [IA32] jump if less, 114
jle [IA32] jump if less or equal, 114
jmp [IA32] Unconditional jump,114
jmp [IA32] jump unconditionally, 114
jna [IA32] jump if not unsigned greater, 114
jnae [IA32] jump if unsigned greater or equal,

114
jnb [IA32] jump if not unsigned less, 114
jnbe [IA32] jump if not unsigned less or equal,

114
jne [IA32] jump if not equal, 114
jng [IA32] jump if not greater, 114
jnge [IA32] jump if not greater or equal, 114
jnl [IA32] jump if not less, 114
jnle [IA32] jump if not less or equal, 114
jns [IA32] jump if nonnegative, 114
jnz [IA32] jump if not zero, 114
job, 424
joinable thread,568
js [IA32] jump if negative, 114
jump, 114

direct, 114
indirect, 114
nonlocal,436
table,128

INDEX 753

target,114
jump table, 393
jz [IA32] jump if zero, 114

K-best program measurement scheme,467
K&R (C book),2
Kahan, William, 66
kernel,15,393
kernel context,563
kernel mode,394,396,400, 451
Kernighan, Brian, 12
kill [Unix] send signal,425
kill.c [CS:APP]kill example,426

L1 cache,10, 304
L2 cache,10, 304
L3 cache,304
last-in first-out,seeLIFO
latency

timer,478
latency, instruction,224
lazy binding,380
LD Unix static linker,351
LD-LINUX .SO Linux dynamic linker,375
leal [IA32] load effective address, 105,106
least squares fit, 207
leave [IA32] prepare stack for return, 134
library

shared,374
static,361

LIFO (Last-In First-Out),543
<limits.h> numeric limit declarations, 43
.line section,354
linear address space,487
linker, 3, 4, 349

dynamic,374
static,351

linking, 349–382
dynamic,374
static,351

Linux, 16
history of, 16

listen [Unix] convert active socket to listening
socket,633

listening socket,633

little endian,27
load time,349
loader,351, 372
loading,372
local automatic variable,572
local static variable, 572
local symbol,354
locality, 295, 493
locality of reference,seelocality
locality, principle of,295
locality, spatial,295
locality, temporal,295
lock-and-copy,593
logical blocks,289
logical control flow, 398,398
logical flow,398
logical shift,40
longjmp [C Stdlib] nonlocal jump,438
loop

do-while statement, 119
for statement, 126
while statement, 122

loop unrolling, 207,233
loopback address,616
LRU replacement policy,302
lvalue (C) assignable value, 162

main memory,279
main thread,564
maketimeout [CS:APP] builds a timeout struct,

590
maketimeoutu [CS:APP] thread-safe non-reentrant

function,595
maketimeoutu [CS:APP] thread-safe reentrant

function,595
maketimeoutu [CS:APP] thread-unsafe func-

tion, 594
malloc [C Stdlib] allocate heap storage,523
malloc [C Stdlib] heap storage allocation func-

tion, 151
mark phase,548
Mark&Sweep,547

pseudo-code for,549
McIlroy, Doug, 12

754 INDEX

Megahertz,207
meminit [CS:APP] heap model,536
memsbrk [CS:APP]sbrk emulator,536
memory

aliasing,205
main,7
virtual, 14, 23,485

memory bus,282
memory controller,278
memory hierarchy,11, 298–304

example of (fig.), 300
levels in, 300

memory management unit,seeMMU
memory mapping,496,516
memory module,279
memory mountain,328

Pentium III Xeon (fig.), 329
memory system,275
memory utilization,527
memory-mapped I/O,292
memory-mapped object, 516
mhz [CS:APP] clock rate function,462
MHz (megahertz),207
MIME (Multipurpose Internet Mail Extensions),

647
minimum block size,530
miss penalty,320
miss rate,320
mm-ijk [CS:APP] matrix multiplyijk, 333
mm-ikj [CS:APP] matrix multiplyikj, 333
mm-jik [CS:APP] matrix multiplyjik, 333
mm-jki [CS:APP] matrix multiplyjki, 333
mm-kij [CS:APP] matrix multiplykij, 333
mm-kji [CS:APP] matrix multiplykji, 333
mmcoalesce [CS:APP] allocator: boundary tag

coelescing,541
mmfree [CS:APP] allocator: free heap block,

541
mminit [CS:APP] allocator: initialize heap,539
mmmalloc [CS:APP] allocator: allocate heap

block,542
mmap[Unix] map disk object into memory,520
MMU (Memory Management Unit),487
mode

kernel,394,396,400, 451
supervisor,400
user,394, 395,400, 451

mode bit,400
monotonicity, 77
mountain [CS:APP] memory mountain program,

328
movb [IA32] move byte, 101,102
movl [IA32] move double word, 101,102
movsbl [IA32] move and sign-extend byte to dou-

ble word, 101,102
movw[IA32] move word, 101,102
movzbl [IA32] move and zero-extend byte to dou-

ble word, 101,102
mull [IA32] unsigned multiply, 109,109
Multics, 12
multiple zone recording,286
multiplication

two’s complement,62
unsigned,62

multitasking,399
munmap[Unix] unmap disk object,521
mutex,581,583

aquiring,586
mutual exclusion,581

NaN (not-a-number),70
nanoseconds,207
negation

two’s complement,60
negative overflow,57
negl [IA32] negate double word, 105
network adapter,290
network byte order,612
networks, 606–619
newline character (\n), 2
next fit,531
NFS (Network File System), 300
no-write-allocate,319
nonlocal jump,436
nonvolatile memory,281
nop [IA32] no operation,96
norace.c [CS:APP] Pthreads program without

a race,598

INDEX 755

normalized
floating-point value,70

not-a-numberNaN , 70
notl [IA32] complement double word, 105
ns (nanoseconds),207
ntohl [Unix] convert network-to-host long,612
ntohs [Unix] convert network-to-host short,612

.o relocatable object file,350
OBJDUMPGNU object file reader,367
object

in C++ and Java, 153
memory-mapped, 516
private,517
shared,374, 517

object file,352
executable,351, 352
relocatable,350, 352
shared,352

object module,352
on-chip cache,304
open (file),619
open source,16
open clientfd [CS:APP] establish connection

with server,632
open listenfd [CS:APP] establish a listening

socket,634
operating system,11

kernel, 15
optimization blockers,205
origin server,650
orl [IA32] or double word, 105
OS,seeoperating system
Ossanna, Joe, 12
out-of-order execution,221
overflow

arithmetic,55
buffer, 167
negative,57
positive,58

P semaphore operation,579
P6 microarchitecture, 91
PA, seephysical address
packet,609

packet header,609
padding,529
page

demand zero,516
physical,488
virtual, 488

page directory,509
page directory base register,seePDBR
page directory entry,seePDE
page fault,491
page frame,488
page table, 401,489
page table base register,seePTBR
page table entry (PTE),489
paged in,492
paged out,492
paging,492

demand,492
parent process,404
parse uri [CS:APP] TINY helper function,659
parseline [CS:APP] shell helper routine,421
Pascal

reference parameters, 165
pause [Unix] suspend until signal arrives,414
payload,528, 608, 609

aggregate,528
PC,seeprogram counter
PC (program counter) relative,115
PCI (Peripheral Component Interconnect), 290
PDBR (Page Directory Base Register),509
PDE (Page Directory Entry),509
peak utilization, 527,528
peer thread,564
pending signal,423
persistent connection,650
physical address,486
physical address space,487
physical addressing, 486
physical page (PP),488
physical page number,seePPN
physical page offset,seePPO
PIC (Position-Independent Code),379
PID (Process ID),404
pipelined functional units, 224

756 INDEX

placement,529
policy, 531

placement policy,302
platter,285
PLT (Procedure Linkage Table),380
point-to-point connection,618
pointer,23

void *, 30
creation, 104
declaration, 26
dereferencing, 103
example, 103
relation to array, 30
to function, 164

polluting cache,337
popl [IA32] pop double word, 101,102
port,608,618
port, I/O,292
position-independent code,seePIC
positive overflow,58
Posix

history of, 12
standards, 12

Posix threads,563
PP,seephysical page
PPN (Physical Page Number),498
PPO (Physical Page Offset),498
preemption,398
prefetching

in caches,337
preprocessor, 3,3
principle of locality,295
printf [C Stdlib] formatted printing function,

30
printing

formatted, 30
private address space,399
private area,517
private object,517
privileged instruction,400
procedure linkage table,seePLT
process,13, 398

background,419
child, 404

concurrent, 13,13
context of,398
foreground,419
group,423
parent,404
preemption of,398
reaping of,409
running,404
scheduling of,401
stopped,404
suspended,404
terminated,404
zombie,409

process context, 563
process group,423
process hierarchy,406
process ID,seePID
process table, 401
processor,seeCPU

package,508
superscalar,221

processor event,392
processor state,392
processor-memory gap,9, 294
prodcons.c [CS:APP] Pthreads producer-consumer

program,584
producer [CS:APP] producer thread routine,585
profiling, 261
program

executable object,3
source,2

program context,563
program counter, 7

%eip, 93
program order,232
progress graph,576

deadlock region of,600
forbidden region in,580
initial state of,576
safe trajectory through,577
trajectory through,577
transition in,576
unsafe region of,577
unsafe trajectory through,577

INDEX 757

prologue block,537
PROM (Programmable ROM),281
protocol,609
protocol software,609
proxy cache,650
proxy chain,650
PTBR (Page Table Base Register),498
PTE,seepage table entry
PTE (Page Table Entry), 509
pthread cancel [Unix] terminate another thread,

568
pthread cond broadcast [Unix] broadcast

a condition,588
pthread cond init [Unix] initialize condition

variable,586
pthread cond signal [Unix] signal a condi-

tion, 586
pthread cond timedwait [Unix] wait for con-

dition with timeout,588
pthread cond wait [Unix] wait for condition,

586
pthread create [Unix] create a thread,567
pthread detach [Unix] detach thread,569
pthread exit [Unix] terminate current thread,

568
pthread join [Unix] reap a thread,568
pthread mutex init [Unix] initialize mutex,

583
pthread mutex lock [Unix] lock mutex,583
pthread mutex unlock [Unix] unlock mu-

tex,583
pthread self [Unix] get thread ID,567
Pthreads,563
pushl [IA32] push double word, 101,102

race,596
race.c [CS:APP] Pthreads program with a race,

597
RAM (Random-Access Memory), 276–282
rand [CS:APP] pseudo-random number genera-

tor, 592
random replacement policy,302
random-access memory,seeRAM
RAS (Row Access Strobe),278

rdtsc [IA32] read time stamp counter, 460
reachability graph,547
reachable,547
read [C Stdlib] read file,620
read bandwidth,327
read operation (file),620
read throughput,327
read transaction,281

example of, 282
read-only memory,seeROM
read/evaluate step,418
read/write head,287
read requesthdrs [CS:APP] TINY helper func-

tion, 658
READELF GNU object file reader,356
reading a disk sector, 290
readline [CS:APP] read text line,623, 624
readline r [CS:APP] reentrant version ofread-

line, 644
readline r [CS:APP] reentrantreadline func-

tion, 645
readline rinit [CS:APP]readline r init

function,644
readn [CS:APP] read without short count,621,

622
reaping,409
reaping child processes,409
receiving signals,428
recording density,286
recording zones,286
reentrant function,593
reference

function parameter, 165
reference bit,512
reference count,626
register,7

file, 7
renaming,223
spilling, 153, 245

regular file,516, 625
.rel.data section,354
.rel.text section,354
releasing (a mutex),586
reliable connection,618

758 INDEX

relocatable object file,350, 352
relocation,352, 365–369

algorithm (fig.),367
entry,366

replacement policy,302
replacing blocks,302
request,605
resident set,493
resolution

timer,478
resource,605
response,606
restart.c [CS:APP] nonlocal jump example,

440
ret [IA32] procedure return, 134
return address, 134
revolutions per minute,seeRPM
RFC (Request for Comments),662
ring, 35
Ritchie, Dennis, 2, 12
Rline [Unix] readline r struct,644
.rodata section,353
ROM (Read-Only Memory),281
root node,547
rotational latency,288
rotational rate,285
rounding,75

round-down,75
round-to-even,75
round-to-nearest,75
round-toward-zero,75
round-up,75
rounding mode,75

router,608
row access strobe,seeRAS
row-major order,147, 296
RPM (Revolutions Per Minute),285
run time,349, 374
running process,404

.s assembly language file,350
SA[CS:APP] shorthand forstruct sockaddr,

631
safe trajectory,577

sall [IA32] shift left double word, 105
sarl [IA32] shift arithmetic right double word,

105
sbrk [C Stdlib] extend the heap,523
scheduler,401
scheduling,401
SDRAM (Synchronous DRAM),280
second-level domain name,614
sector,285
seek,287
seek operation (file),620
seek time,287
segment

code,371
data,371
time,454

segregated fits,544
segregated storage,544
sem init [Unix] initialize semaphore,580
sem post [Unix] V operation,581
sem wait [Unix] P operation,581
semaphore,579

binary,580
semaphore invariant,580
semaphore operation

P,579
V, 579

separate comilation,349
sequentially consistent,573
serve dynamic [CS:APP] TINY helper func-

tion, 661
serve static [CS:APP] TINY helper function,

660
server,17, 605
service,605
set index bits,306
set-associative cache,313

LFU replacement policy in, 315
line matchine in, 314
line replacement in, 315
LRU replacement policy in, 315
set selection in,314
word selection in, 314

seta [IA32] set on unsigned greater, 112

INDEX 759

setae [IA32] set on unsigned greater or equal,
112

setb [IA32] set on unsigned less, 112
setbe [IA32] set on unsigned less or equal, 112
sete [IA32] set on equal, 112
setenv [Unix] create environment variable,417
setg [IA32] set on greater, 112
setge [IA32] set on greater or equal, 112
setjmp [C Stdlib] init nonlocal jump,436
setjmp.c [CS:APP] nonlocal jump example,439
setl [IA32] set on less, 112
setle [IA32] set on less or equal, 112
setna [IA32] set on unsigned not greater, 112
setnae [IA32] set on unsigned not less or equal,

112
setnb [IA32] set on unsigned not less, 112
setnbe [IA32] set on unsigned not less or equal,

112
setne [IA32] set on not equal, 112
setng [IA32] set on not greater, 112
setnge [IA32] set on not greater or equal, 112
setnl [IA32] set on not less, 112
setnle [IA32] set on not less or equal, 112
setns [IA32] set on nonnegative, 112
setnz [IA32] set on not zero, 112
setpgid [Unix] set process group ID,423
sets [IA32] set on negative, 112
setz [IA32] set on zero, 112
shared area,517
shared library,14, 374
shared object,374, 517
shared object file,352
shared variable,570
sharing.c [CS:APP] sharing in Pthreads pro-

grams,571
shell,5
shellex.c [CS:APP] shell main routine,418
shift, arithmetic,40
shift, logical,40
shll [IA32] shift left double word, 105
short count,621
shrl [IA32] shift logical right double word, 105
sigaction [Unix] install portable handler,434

sigint1.c [CS:APP] catches SIGINT signal,
429

siglongjmp [Unix] init nonlocal jump,438
sign bit,42
sign extension,49
Signal [CS:APP] portable version ofsignal,

436
signal [C Stdlib] install signal handler,428
signal (Pthreads),587
signal (Unix),391, 419

action,428
blocked,423
catching,423, 424,428
default action,428
handler, 423, 426,428
handling,428
installing,428
pending,423
receiving,423, 428
sending,423

signal handler, 423, 426,428
signal1.c [CS:APP] Flawed signal handler,431
signal2.c [CS:APP] flawed signal handler,433
signal3.c [CS:APP] flawed signal handler,435
signal4.c [CS:APP] portable signal handling

example,437
significand,69
sigsetjmp [Unix] init nonlocal handler jump,

436
SIMM (Single Inline Memory Module),279
simple segregated storage,544
single inline memory module,seeSIMM
single precision, 26,69
size class,544
sleep [Unix] suspend process,414
Smith, Richard, 172
.so shared object file,374
sockaddr [Unix] Generic socket address struc-

ture,630
sockaddr in [Unix] Internet-style socket ad-

dress structure,630
socket,618, 625
socket [Unix] create a socket descriptor,631
socket address,618

760 INDEX

socket descriptor,631
socket pair,618
sockets interface,611, 629
source host,609
spare cylinder, 289
spatial locality,295
speculative execution,222
spilling, 153, 245
spindle,285
splitting, 529, 531
splitting, iteration,243
SRAM (Static RAM),10,276

DRAM vs., 277
technology trends vs. DRAM, disk, and CPU

(fig.), 294
SRAM cache,seecache,489
SRAM cell,276
srand [CS:APP] seed random number genera-

tor, 592
stack

frame,132
program stack,14
user stack,14

stall, 241
Stallman, Richard, 4
standard error,620
standard I/O library,628
standard input,620
standard output,620
startup code,372
stat [Unix] fetch file info, 623
stat [Unix] stat structure,625
state,392
state transition,576
static [C] variable and function attribute,355,

572
static content,647

serving,647
static library,361
static linker,351
static linking,351
static random-access memory,seeSRAM
static variable, local, 572
status word, floating-point, 184

STDERRFILENO [Unix] Constant for standard
error descriptor,620

STDIN FILENO [Unix] Constant for standard in-
put descriptor,620

stdlib, seeC standard library
STDOUTFILENO [Unix] Constant for standard

output descriptor,620
Stevens, W. Richard, 621
stopped process,404
store buffer, 257
stream,628
streaming media, 337
stride-k reference pattern,296
stride-1 reference pattern,296
strong symbol,358
.strtab section,354
struct [C] structure data type, 153
subdomain,614
subl [IA32] subtract double word, 105
sumarraycols [CS:APP] column-major sum,

324
sumarrayrows [CS:APP] row-major sum,323
sumvec [CS:APP] vector sum,322
supercell,277
superscalar processor,221
supervisor mode,400
surface,285
suspended process,404
swap area,517
swap file,517
swap space,517
swapped in,492
swapped out,492
swapping,492
sweep phase,548
switch

translation, 128
switch [C] multi-way branch statement, 128
symbol

global,354
local,354
strong,358
weak,358

symbol resolution,351

INDEX 761

symbol table,354
.symtab section,354
synchronization error,573
synchronize,579
synchronous exception,395
system bus,282
system call,13, 15, 395

slow,430
system-level function,402

T2B (two’s complement to binary conversion),
45

T2U (two’s complement to unsigned conversion),
45

table
jump,128

tag bits,305, 306
target, jump,114
TCP (Transmission Control Protocol),612
TCP/IP (Transmission Control Protocol/Internet

Protocol),611
TELNET remote login program,648
temporal locality,295
terminated process,404
testb [IA32] test bytes, 111
testl [IA32] test double word, 111
testw [IA32] test word, 111
.text section,353
text line,623
Thompson, Ken, 12
thrashing,312, 493
thread,14, 563

reaping of,568
variables shared by,570

thread context,564
thread ID (TID),564
thread routine,567
thread termination

explicit, 567
implicit, 567

thread-safe function,592
thread-unsafe function,592
throughput,527
TID, seethread ID

time
interval,451

TIME Unix time command,456
time segment,454
time slicing,399
timebomb, beeping,590
timebomb.c [CS:APP] Pthreads timeout wait-

ing, 591
timeout waiting,588
timer

latency,478
resolution,478

times [Unix] timing function,456
TINY [CS:APP] Web server,652
tiny.c [CS:APP] TINY Web server,655
TLB (Translation Lookaside Buffer),500
TLB index,seeTLBI
TLB tag,seeTLBT
TLBI (TLB Index), 501
TLBT (TLB Tag), 501
TMax (maximum two’s complement number),42
TMin (minimum two’s complement number),42
Torvalds, Linus, 16
touch (a page),516
track,285
track density,286
trajectory,577
transaction,605
transfer time,288
transfer units,301
transition,576
translation lookaside buffer,seeTLB
transmission control protocol,seeTCP
trap,394, 395
trap, hardware, 248
two’s complement

addition,57
multiplication,62
negation,60

two’s complement number encoding,42
type

associated with pointer, 23
definition with typedef, 28

typedef [C] type definition,28

762 INDEX

U2B (unsigned to binary conversion),45
U2T (unsigned to two’s complement conversion),

45
UDP (Unreliable Datagram Protocol),611
UMax (maximum unsigned number),42
Unicode,33
unified cache,319
Unix

4.xBSD, 12
history of, 12
Solaris, 12
System V, 12

Unix I/O, 619–629
C standard I/O vs., 628

Unix signal,419
unix error [CS:APP] Unix-style error-handling,

403,403
unrealiable datagram protocol,seeUDP
unrolling, loop,233
unsafe region,577
unsafe trajectory,577
unsetenv [Unix] delete environment variable,

417
unsigned

addition,56
multiplication,62
number encoding,41

URI (Uniform Resource Identifier),649
URL (Universal Resource Locator),648
USB (Universal Serial Bus),290
user mode,394, 395, 400, 451

V semaphore operation,579
VA, seevirtual address
valid bit

in cache line,305
in page table,489

variable
automatic,572
global, 570
local,572
static, 572

variable rate clock, 480
victim block,302

virtual
address space, 23
memory, 23

virtual address,487
virtual address space,487
virtual addressing,487
virtual memory,485, 485–556

area,513
management of, 522
segment,513

virtual page (VP),488
virtual page number,seeVPN
virtual page offset,seeVPO
virus

computer, 171
VM, seevirtual memory
void * [C] untyped pointer, 30
VP, seevirtual page
VPN (Virtual Page Number),498
VPO (Virtual Page Offset),498
VRAM (Video RAM), 281

wait set,409
waitpid [Unix] wait for child process,409
waitpid1 [CS:APP]waitpid example,412
waitpid2 [CS:APP]waitpid example,413
warmed up cache,302
weak symbol,358
Web client,seebrowser
well-known port,618
while [C] loop statement, 122
word,6
word size,6, 25
working set,303, 493
worm program, 171
wrapper

error-handling,403
write [C Stdlib] write file,620
write hit, 319
write operation (file),620
write transaction,281

example of, 282
write-allocate,319
write-back,319

INDEX 763

write-through,319
writen [CS:APP] write without short count,621,

622

xorl [IA32] exclusive-or double word, 105

zero extension,49
zombie process,409

	[深入理解计算机系统].(美国)Randal.E.Bryant.清晰版
	出版说明
	译序
	关于术语的翻译
	前言
	关于作者
	目录
	第一章 计算机系统漫游
	第一部分 程序执行和结构
	第二章 信息的表示和处理
	第三章 程序的机器级表示
	第四章 处理器体系结构
	第五章 优化程序性能
	第六章 存储器层次结构

	第二部分 在系统上运行程序
	第七章 链接
	7.1 编译器驱动程序
	7.2 静态链接
	7.3 目标文件
	7.4 可重定位目标文件
	7.5 符号和符号表
	7.6 符号解析
	7.7 重定位
	7.8 可执行目标文件
	7.9 加载可执行目标文件
	7.10 动态链接共享库
	7.11 从应用程序中加载和链接共享库
	7.12 与位置无关的代码（PIC）
	7.13 处理目标文件的工具
	7.14 小结

	第八章 异常控制流
	8.1 异常
	8.2 进程
	8.3 系统调用和错误处理
	8.4 进程控制
	8.5 信号
	8.6 非本地跳转
	8.7 操作进程的工具
	8.8 小结

	第九章 测量程序执行时间
	9.1 计算机系统上的时间流
	9.2 通过间隔计数来测量时间
	9.3 周期计数器
	9.4 用周期计数器来测量程序执行时间
	9.5 基于gettimeofday函数的测量
	9.6 综合：一个实验协议
	9.7 展望未来
	9.8 现实生活：K次最优测量方法
	9.9 得到的经验教训
	9.10 小结

	第十章 虚拟存储器
	10.1 物理和虚拟寻址
	10.2 地址空间
	10.3 虚拟存储器作为缓存的工具
	10.4 虚拟存储器作为存储器管理的工具
	10.5 虚拟存储器作为存储器保护的工具
	10.6 地址翻译
	10.7 案例研究：Pentinum/Linux存储器系统
	10.8 存储器映射
	10.9 动态存储器分配
	10.10 垃圾收集
	10.11 C程序中常见与存储器有关的错误
	10.12 扼要重述一些有关虚拟存储器的关键概念
	10.13 小结

	第三部分 程序间的交互和通信
	第十一章 系统级I/O
	11.1 unix I/O
	11.2 打开和关闭文件
	11.3 读和写文件
	11.4 用Rio包进行健壮地读和写
	11.4.1 Rio的无缓冲的输入输出函数
	11.4.2 Rio的带缓冲的输入输出函数

	11.5 读取文件元数据
	11.6 共享文件
	图11.11 打开文件的内核数据结构
	图11.12 打开文件的内核数据结构

	11.7 I/O重定向
	11.14 dup2后内核的数据结构

	11.8 标准I/O
	11.9 综合：我该使用那些I/O函数

	第十二章 网络编程
	12.1 客户端-服务器编程模型
	12.2 网络
	12.3 全球IP因特网
	12.4 套接字接口
	12.5 Web服务器
	12.6 综合：Tiny Web服务器
	12.7 小结

	第十三章 并发编程
	13.1 基于进程的并发编程
	13.2 基于I/O多路复用的并发编程
	13.3 基于线程的并发编程
	13.4 多线程程序中的共享变量
	13.5 用信号量同步线程
	13.6 综合：基于预线程化的并发服务器
	13.7 其他并发性问题
	13.8 小结

	附录A 处理器控制逻辑的HCL描述
	附录B 错误处理
	B.1 Unix系统中的错误处理
	B.2 错误处理包装函数
	B.3 csapp.h头文件
	B.4 csapp.c源文件

	深入理解计算机系统-英文原版
	Contents
	Preface
	Chapter 1 Introduction
	Part I Program Structure and Execution
	Chapter 2Representing and ManipulatingInformation
	Chapter 3Machine-Level Representation of CPrograms
	Chapter 4Processor Architecture
	Chapter 5Optimizing Program Performance
	Chapter 6The Memory Hierarchy

	Part IIRunning Programs on a System
	Chapter 7Linking
	Chapter 8Exceptional Control Flow
	Chapter 9Measuring Program Execution Time
	Chapter 10Virtual Memory

	Part IIIInteraction and Communication BetweenPrograms
	Chapter 11Concurrent Programming with Threads
	Chapter 12Network Programming

	Appendix AError handling
	Appendix BSolutions to Practice Problems

